Evolution of Gas and Dust in the ISM of High-Redshift Galaxies

Joseph A. Muñoz (UCSB)

KITP: June 10, 2014

Collaborators: Steve Furlanetto (UCLA), Peng Oh (UCSB)

Universe Timeline

Robertson et al. (2010)

Prese

da

0

z=0

3

.75

Ş

Reionization IGM mostly ionized rk Ages 30? z = 6-15? z = 0-6, t > 1 Gyr 70 Myr <1 Gyr Rare sources form ionized bubbles Modern galaxies form Ionized bubbles First stars overlap (z ≈ 15-30?) **First galaxies** Dense, neutral pockets $(z \approx 10-30?)$ z=10-30 z=6-10

Universe Timeline

Robertson et al. (2010)

rk Ages Reionizatio IGM mostly ionized z = 0-6, t > 1 Gyr 30? 70 Myr _iyr_ Pres Rare sources form ionized bubbles ω galaxies form Moderr Ionized bubbles First stars overlap (z ≈ 15-30?) 2 **First galaxies** se, neutral pockets $(z \approx 10-30?)$ z=10-30 Z=02 - 0 - 10Sources of Reionization

• Growth of SMBHs

• Extreme limits of galaxy formation

Strategy

- Develop simple analytic model of galaxies/ISM
- Understand empirical scalings of molecular/ atomic/continuum emission
 - Gas: evolution of gas fraction
 - Dust/Metals: FIR, CO, CII

• Understand dust enrichment: depleted? too much?

GMCs

Bathtub Model

20

marc

Inflow

S

Calibrate Feedback from LF

 $\eta_{\rm wind} = \eta_0 \, \frac{100 \, \rm km/s}{\sigma}$

• Model describes LF evol.

 Mass-loading consistent with sims (e.g. Oppenheimer+08)

Stellar to Halo Mass

From abundance matching

Galaxy Radius

Angular momentum + Feedback

 $R_{disk} \propto R_{vir}$ $\propto M_{halo}^{1/3} (1+z)^{-1}$

Kravtsov et al. (2014)

K-S Relation

Gas Fraction

Muñoz & Oh (in prep.)

Gas Fraction

$$\mathrm{SFR} \propto \frac{\mathrm{M_{halo}} \, (1+z)^{2.5}}{\sigma^{-\alpha}}$$

$$f_{\rm g} \propto {\rm M_{halo}}^{\nu_{\rm m}} (1+z)^{\nu_z}$$

GAS FRACTION SCALINGS

lpha	β	$ u_{ m m}$	$ u_z$
0	1	0	2.5
1	1	1/3	3
2	1	2/3	3.5
0	2	-1/6	0.25
1	2	0	0.5
2	2	1/6	0.75

Muñoz & Oh (in prep.)

Gas→Dust

Valiante et al. (2011)

- Can't produce dust mass observed at high-z
- Dust budget crisis (Rowlands et al. 2014)
- SN dust at high-z?

FIR

Take advantage of observations in the optically thin limit

 $(1+z) \kappa B_{\nu_{\rm em}}(T)$ M_{g} $F_{\nu_{
m obs}}$

Wagg et al. (2014)

FIR

Take advantage of observations in the optically thin limit

Sample at High-z

- 17 QSOs & SMGs from literature
- both FIR (100-400 μm rest) and CII
- z>4.3
- SFR=100s-1000s M_{sun}/yr (lot of variation)
- $M_{gas} \sim 10^{10} 10^{11} M_{sun}$ (lot of variation)
- R_{disk}~1-10 kpc (extent of CII)

 $\rightarrow \Sigma_{gas} \sim 100s - 100s M_{sun}/pc^{-2}$

• Plus a few LAEs w/ upper limits

FIR

$F_{\nu_{\rm obs}} = \frac{(1+z)\,\kappa\,B_{\nu_{\rm em}}(T)\,M_{\rm g}}{D_{\rm L}^2}$

FIR

$F_{\nu_{\rm obs}} = \frac{(1+z)\,\kappa\,B_{\nu_{\rm em}}(T)\,M_{\rm g}}{D_{\rm L}^2}$

How does this dust affect CO/CII?

Supersonically turbulent

$$\ln\left(\frac{f_{CO}}{f_{H_2}}\right) = \frac{-4.0}{A_V} \left[0.53 - 0.045 \ln\left(\frac{G'_0}{n_c \text{ cm}^3}\right) - 0.097 \ln(Z') \right]$$
Wolfire et al. (2010)
HI C+
H₂ C+
H₂ C+
In(fco/fmol) ≈ -2.12/Ay
× 1/(Zd \Sigmaga

Compute emission: Escape probability code Krumholz & Thompson (2007)

Consistency with Lower-z CO

Muñoz & Furlanetto (2013)

Following up LBGs in CO

low-Z kills
 you twice

CMB subtraction

CO(I-0): unobservable

 CO(6–5):
 depends on metallicity/ density peaks

 $L_{[CII]} \propto (1-f_{CO}) Z' M_{gas}$ Assume: optically thin

 $\ln (f_{CO}/f_{mol}) \propto A_V^{-1}$

 $A_V \propto \Sigma_{gas} Z' R'_{dm}$

In (fco/f_{mol}) $\propto A_V^{-1}$ $A_V \propto \Sigma_{gas} Z' R'_{dm}$

if $f_{mol} \approx 1$ and $A_V \gg 1$, then: $1 - f_{CO} \propto A_V^{-1} \propto R_{disk}^2 / (M_{gas} Z' R'_{dm})$

 $\ln (f_{CO}/f_{mol}) \propto A_V^{-1}$

L_[CII] ∝

(1-fco) Z' Mgas

 $A_V \propto \Sigma_{gas} Z' R'_{dm}$

if $f_{mol} \approx 1$ and $A_{V} \gg 1$, then: $1 - f_{CO} \propto A_V - 1 \propto R_{disk}^2 / (M_{gas} Z' R'_{dm})$

 $L_{[CII]} \propto R_{disk}^2/R'_{dm}$

$L_{[CII]} \propto R_{disk}^2/R'_{dm}$

Possible Interpretations

- Radius relation is wrong or biased
- Dust/dissociation is anisotropic

- Hot component
- Standard PDR model doesn't apply in limit of extreme extinction

Summary

- Analytic model of high-z ISM
- Describes how gas fractions relate to feedback
- Unlikely to observe z~6 LBGs in CO
- FIR+[CII] sets Z<0.3 for undetected LAEs
- [CII] in QSOs/SMGs requires more dissociation than can be explained with galaxy+PDR model
 - new picture?

• Probe feedback and dust enrichment at high-z