



### Competitive Accretion in Stellar Clusters

Ian Bonnell (St Andrews)

Matthew Bate, Paul Clark, Ralf Klessen, Jim Dale

### Origin of stellar masses

- **Turbulently driven fragmentation** 
  - Structure in molecular clouds
  - Clump mass spectrum: IMF
- Gravity driven fragmentation
  - ~ thermal Jeans masses
- Accretion in clusters produces higher masses
- Low masses from gravity-produced dense gas
- SPH Simulations: self-gravitating decaying turbulence
- $E_{kin} \ge |E_{grav}|$
- No Magnetic fields
- Some feedback!

Origin of stellar masses: context Need to understand SF in context of forming full IMF M. McCaughrean

many/most stars form in clusters Full IMF

~ All higher mass stars De Wit et al 2005

- Massive stars in centre
- Binaries
- Disks



The Orion Nebula and Trapezium Cluster (VLT ANTU + ISAAC)

ESO PR Photo 03a/01 (15 January 2001)

### **Turbulent Fragmentation**

Produces full clump mass fn But low masses unbound High-mass clumps fragment Star formation occurs ~ Jeans Mass

Klessen et al 2005: Clark & Bonnell





Klessen et al 2005

Evolution towards SF

Clark & Bonnell 2005



### Clump velocities

P. Clark



At point of first SF
Low clump-clump vels

After free-fall time ~ higher clump-clump vels

### Characteristic stellar mass

Simulations sh

#### What sets M<sub>1</sub>?

ρ

Thermal physics:

 $\mathbf{O}$ 



### **Competitive accretion**

Bonnell et al 1997, 2001

#### Fragmentation down to (thermal) Jeans Mass

- Form as lower mass stars (~ 0.5 M<sub>sun</sub>)
- Subsequent accretion forms high-mass stars

#### Accretion limited by

- Tidal effects
- Gas velocities: Bondi-Hoyle

#### Stars do not have to move!

- Gas in the second second second
  - to cluster centre
  - Higher gas density:
    - Higher accretion rates

#### Requirements:

- N > 2 fragments
- Common gas reservoir

**Gas inflow** 

#### **Cluster potential**

### The Formation of a stellar cluster

 $10^3 M_{sun}$  in 1 pc



#### Forms full IMF Mass segregated clusters

UK Astrophysical

Bonnell, Bate & Vine 2003

#### Origin of stellar masses



Fragmentation mass

~ Jeans Mass

• Envelope mass

• Accretion from outside stellar cluster

•Massive stars form due to accretion from large-scale reservoir

Bonnell, Vine & Bate (2004)

#### **Competitive accretion**

**Gas inflow** 

Accretion rates

$$\dot{M}_{acc} = \pi \rho v R_{acc}^2 \approx \pi \rho \frac{(GM_*)^2}{v^3}$$

All local variables

Cluster potential

#### **Global Cloud**

| ρ               | $2 \ 10^{-19} \text{ g/cm}^3$ |
|-----------------|-------------------------------|
| V               | 2 km/s                        |
| M <sub>*</sub>  | 0.1 M <sub>sun</sub>          |
| $\dot{M}_{acc}$ | $10^{-9} \mathrm{M_{sun}/yr}$ |

Competitve accretion doesn't work ? Krumholz et al 2005

Bonnell & Bate 2006

# **Competitive accretion**

1

**Gas inflow** 

Accretion rates

$$\dot{M}_{acc} = \pi \rho v R_{acc}^2 \approx \pi \rho \frac{(GM_*)^2}{v^3}$$

All local variables

| Cluster potent | ial |
|----------------|-----|

| 1024            | Global Cloud                          | Local Cluster Co                      | ore                        |
|-----------------|---------------------------------------|---------------------------------------|----------------------------|
| ρ               | 2 10 <sup>-19</sup> g/cm <sup>3</sup> | 10 <sup>-17</sup> g/cm <sup>3</sup>   | Large range                |
| V               | 2 km/s                                | 0.5 km/s                              | in possibl $\dot{M}_{acc}$ |
| $M_*$           | $0.1 \mathrm{M}_{\mathrm{sun}}$       | $0.5 \mathrm{M}_{\mathrm{sun}}$       |                            |
| $\dot{M}_{acc}$ | 10 <sup>-9</sup> M <sub>sun</sub> /yr | 10 <sup>-4</sup> M <sub>sun</sub> /yr | ➡ full IMF                 |



Attain ~ higher masses before v<sub>disp</sub> high
 Form massive stars in few 10<sup>5</sup> years

#### GMC scale star formation

- $10^4 M_{sun}$  in 10 pc Forms > 2500 stars
- Over 6 x 10<sup>5</sup> years Full IMF
- 1.5 x10<sup>7</sup> SPH particles

   On two levels

   Mass resolution ~0.02 M<sub>sun</sub>

   Sink radii 200 AU

   Bound (top) and unbound (bottom) initial conditions



Bonnell, Clark & Bate 2007

#### Full GMC

Bound (top) and unbound (bottom) initial conditions 10<sup>4</sup> M<sub>sun</sub> in 10 pc

Clustered and distributed SF Efficiency varies from < 1% to 20%

Universal IMF

UK Astrophysical





### **Fragmentation environment**

Gas density in 0.1 pc  $M_J \sim \rho^{-1/2}$ 

Velocity in (0.2 km/s ) relative to CoM in 0.5 pc



### Origin of stellar masses

Massive stars

- Form early at ~M<sub>J</sub>, sit in centre of cluster
  - High accretion rates

#### Low-mass stars

- Form later as gas falling into cluster potential
- High relative velocity
- Little subsequent accretion

# SF efficiencies and clustered SF

Bound conditions produce stellar clusters

- Relatively high efficiencies
- 20-50 %
- Full IMF

# Unbound regions produce distributed SF

- Low SF efficiencies
- Few %
- Flat/Peaked IMF
- No high-mass, few low mass stars



# An unbound example...

 $KE = 2 \times PE$ (initially) Isothermal



Clark, Bonnell & Klessen (2007)

Naturally, more unbound clouds/regions have lower efficiencies...

#### $\alpha_{kin} = |PE|/KE$

Clark et al 2007



Star formation efficiencies?

#### **Isothermal EOS**

**Barotropic EOS** 

### IMFs of unbound clouds

Isothermal EOS

Barotropic (Larson Style) EOS



As clouds become more unbound

Competitive accretion is unable to create the 'correct' IMF

#### Star formation efficiency per t<sub>ff</sub>

GMC simulation Final SFE ~15 %

BUT Equal probability of observing at all stages of evolution

Average value of SFE is then much lower

- $\sim$  3 % SFE/t<sub>ff</sub>
- Even for short cloud lifetimes





Winds have moderate effect on accretion rates



### Conclusions

- Gravity driven SF can explain IMF
  - Competitive accretion in cluster potential:
  - Higher mass stars due to high accretion rates in cluster centres
  - Low mass stars/BDs from infalling gas into cluster
  - Unbound clouds produce low SFEs
    - Distributed SF
    - Abnormal IMFs
  - Most stars must form in bound groups
  - Need to include all feedback processes

