Towards Constraining the IMF of Pop III Stars

Athena Stacy KITP, April 2014

THE EXPANDING UNIVERSE: A CAPSULE HISTORY

Hierarchical Merging

Virial approximation: $E_{pot} \sim E_{kin} \sim E_{therm}$

$$M_{DM \text{ halo}} \uparrow$$
 $T_{vir} \alpha M^{2/3} (1+z) \uparrow$

- DM clumps form first
- Eventually provides sufficient gravity for gas to collapse and form stars

Athena Stacy, Pop III IMF

Pop III stars were first contributors to reionization

Pop III stars began metal enrichment and set environment for later Pop II generations

Pop III = formed from gas with NO metals. Only coolant is H_2 (and some HD)

Pop II = formed from gas enriched with metals, which were created within stars from previous generations

Pop III stars began metal enrichment and set environment for later Pop II generations

1 Mpc (comoving)

Pop III = formed from gas with NO metals. Only coolant is H_2 (and some HD)

Pop II = formed from gas enriched with metals, which were created within stars from previous generations

Primordial Gas Cooling Driven by H₂

It is only in larger minihalos with mass > $10^6 \, \rm M_{\odot}$ of DM where gas warms enough to form sufficient H₂ for gas collapse and SF.

$$t_{cool} \simeq rac{rac{3}{2}nk_BT}{\Lambda(n,T)}$$
 $t_{\rm ff} = \left(rac{3\pi}{32G\rho}
ight)^{1/2}$

Primordial Gas Cooling Driven by H₂

no dust/metal cooling
= higher temps
= faster protostellar
accretion rates
= larger Pop III masses than
Pop I/II?

$$\dot{M}_{
m acc} \simeq rac{M_{
m J}}{t_{
m ff}} \simeq rac{c_s^3}{G} \propto T^{3/2}$$

Primordial Gas Cooling Driven by H₂

no dust/metal cooling

- = higher temps
- = faster protostellar accretion rates
- = larger Pop III masses than Pop I/II?

Bromm et al 2002

Possible fates of single non-rotating stars: variation with mass

Motivating Questions

- What role did Pop III play in reionization and metal enrichment? (Madau 2001, Alvarez 2006, Johnson 2007, Greif 2010, Maio 2010, Wise et al 2010)
- What feedback did Pop III exert on later star formation (i.e. Pop III to Pop II transition)? On early protogalaxy formation?
- How long did metal-free star formation and pockets of primordial gas persist in the universe? (e.g. Scannapieco et al. 2005, Muratov et al. 2013)
- What role did Pop III play in seeding the first nuclear black holes?

This depends on the Pop III IMF, SFR, and rotation rates...

- What were their typical masses? (Abel et al 2002, Bromm et al 2004, McKee &Tan 2004/2008)
- What was their typical multiplicity? (Turk et al 2010, Stacy 2010, 2012)

or

???

I. Pop III Star FormationWithout Feedback

Explore this unobservable epoch of the universe with cosmological simulations!

Gadget (SPH + N-body)

- -initialized at z=100 according to ΛCDM model
- followed formation of protostar (sink particle) and subsequent 5000 yr of accretion
- $m_{sph} (gas) = 0.015 M_{\odot}$
- $M_{res} \sim 1.5 N_{neigh} m_{sph} \sim 1 M_{\odot}$
- = minimum allowed Jeans mass

Initial Collapse

Pop III stars form in multiples and have a wide range of masses!

 $(t_{acc} = 5000 \text{ yrs})$ 5000 AU r_{init} [AU] sink t_{form} [yr] $M_{\rm final} [M_{\odot}]$ r_{final} [AU] 43 300 13 3700 1.3 930 1110 0.8 740 3750 890

By 5000 yr, multiple stars with M_* ranging from 1 M_{\odot} to 30 M_{\odot} form within a disk that has grown to ~ 40 M_{\odot} . Largest star should later reach > 100 M_{\odot} .

Primordial Disk Satisfies Fragmentation Criteria

- Toomre Fragmentation criterion:
- Q ~ 0.4 < 1
- $Q = \frac{c_s \kappa}{\pi G \Sigma} < 1$ • $t_{cool} < t_{rot}$ and

$$\xi = \frac{\dot{M}_{\rm in}G}{c_{s,d}^3}$$

$$\Gamma = rac{\dot{M}_{
m in}}{M_{st d}\Omega_{k,
m in}} = rac{\dot{M}_{
m in}\langle j
angle_{
m in}^3}{G^2M_{st d}^3}$$

Overview of Part I

- Primordial star-forming gas becomes unstable to secondary fragmentation after initial protostar forms
- Pop III stars form in multiples, mostly due to disk fragmentation
- Disk fragmentation may allow for range of Pop III masses to be very broad (some ~1 M_o stars)

Also seen by other later sims:

Clark et al 2011

Greif et al 2011

II. Pop III Star Formation With Radiative Feedback

Protostellar Feedback

- Repeat previous cosmological simulation, but with updated H₂ cooling rates
- Model LW radiation and growth of surrounding HII region
- Also performed a comparison "nofeedback" simulation
- How will radiation alter the growth of the Pop III star?

$$n_n r_{\rm I}^2 \frac{\mathrm{d}r_{\rm I}}{\mathrm{d}t} = \frac{\dot{N}_{\rm ion}}{4\pi} - \alpha_{\rm B} \int_0^{r_{\rm I}} n_e n_+ r^2 \mathrm{d}r ,$$

- 10⁵ angular sements
 - 2 x 10⁷ bins

$$L_* = L_{\rm acc} + L_{\rm photo} = \frac{GM_*\dot{M}}{R_*} + L_{\rm photo}$$

$$M_* = M_{sink}$$

$$R_* = ?$$

The I-front Tracker

Adding ionization feedback: I-front emerges, expands beyond size of disk, and greatly slows inflow

1500 yr

2500 yr

4500 yr

Ionization reduces accretion rate, but massive binary still forms

Can get more statistics with 2-D simulations

- 1. Use cosmological 3-D SPH simulations to initialize 2-D AMR simulations
- 2. Evolve sink particle growth until HII region halts inflow for **100** different minihalos

NOTE! Follows growth of **only the most massive star** in each minihalo!
2-D sims cannot follow formation of secondary fragmentation

Hirano, Hosokawa, Yoshida et al. 2014

Hirano et al. 2014

Some correlation between $M_{\text{PopIII},\text{max}}$, M_{cloud} , and β_{cloud}

Left: Relation between M_{popIII}, M_{cloud}, and rotation parameter of SF cloud

Right: Relation between M_{poplll}, M_{virial} of minihalo, and formation redshift of minihalo

$$\beta_{\text{cloud}} = \frac{\Omega_{\text{cloud}}^2 R_{\text{cloud}}^3}{3GM_{\text{cloud}}}$$

$$M_{\rm popIII} = 100~{\rm M}_{\odot} \left(\frac{M_{\rm cloud}}{350~{\rm M}_{\odot}} \cdot \frac{0.3}{\beta_{\rm cloud}}\right)^{0.8}~M_{\rm popIII} = 100~{\rm M}_{\odot} \left(\frac{1+z}{20}\right)^{3} \left(\frac{M_{\rm virial}}{3\times10^{5}~{\rm M}_{\odot}}\right)^{2}$$

Hirano et al. 2014

Overview of Part II

- Fragmentation and broad mass range likely to describe Pop III stars even under radiative feedback!
- Possibly massive binaries.
- Pop III stars can likely reach tens of solar masses, but hundreds to one thousand solar masses may be harder.
- In including fragmentation further lowers typical Pop III mass. May explain why PISN signature has not been observed (requires 140M_☉ < M_∗ < 260M_☉).

III. Statistics of Pop III Binaries and Multiple Systems

Stacy & Bromm 2013, MNRAS

How do characteristics of stellar clusters vary between minihalos?

- Binary companions:
 - May spin up star
 - Allow for possible GRBs, HMXB
 - Generate gravitational waves
 - May allow for stellar mergers and "rejuvenation"

- Initialize 1.4 Mpc (comoving) box at z=100
- Pick out first ten minihalos to form in box
- Evolve to densities of 10¹³ cm⁻³, resolution length of 20 AU
- Employ sink particle method to follow evolution of stellar cluster for next 5000 yr

- 1.4 Mpc comoving box
- -z=20
- zoom in to resolution of 20 AU

- 1.4 Mpc comoving box
- -z=20
- zoom in to resolution of 20 AU
- ☐ = Pop III SF site!

Note: Feedback not

included

SF regions all initially similar

Gas structure just prior to sink formation

log n_H [cm⁻³]

Some variation in degree of flattening and dominance of rotational vs. radial velocity

Variation in Total Sink Growth Rates

Pop III sink accretion rates within different minihalos varies widely.

120 M_{\odot} < $M_{\star, total}$ < 20 M_{\odot} 6x10⁻³ M_☉/yr

solid = TOTAL sink mass

dashed = mass of largest sink

dotted = mass of 2nd largest sink

Mass distribution between different minihalos varies widely

 $dN/dm \propto M_*^{-\alpha}$

$$\int_{m_{\min}}^{m_{\max}} \frac{\mathrm{d}N}{\mathrm{d}m} \, \mathrm{d}m \propto m^{1-\alpha}$$

$$\int_{m_{\min}}^{m_{\max}} m \frac{\mathrm{d}N}{\mathrm{d}m} \, \mathrm{d}m \propto m^{2-\alpha}$$

Blue dotted – α = 2 (top-heavy)

Red dashed – fit to sim

Athena Stacy, Pop III IMF

Overall flat Pop III "IMF"

Solid black line – "IMF" from this work after 5000 yr of protostellar accretion

Red line -- $\alpha = 0.17$

Binary fraction = 36%

Blue dotted line – Greif et al 2011 (α = -0.17; t_{acc} = 1000 yr)

Pop III escape fraction is large!

50% escape stellar disk and minihalo

$$v_{
m esc,halo} = \sqrt{rac{GM_{
m halo}}{r_{
m halo}}} \sim 5\,{
m km\,s}^{-1}$$
 $v_{
m esc} = \sqrt{rac{GM_{
m enc}}{r}}$

Overview of Part III

- Pop III IMF likely very broad
- Stellar mass distribution varies widely from minihalo to minihalo
- Ejection will terminate accretion onto 50% of stars.
- PISN, GRBs, HMXBs, etc. may possible through rapid stellar rotation and high binary fraction

IV. Unusual Minihalo Hosts: A Low-Mass Pop III Formation Mode

Pop III Low Mass Formation Mode

- Low-mass Pop III Stars:
 - May survive to present day
 - May contain signatures of previous AGB companions
- The experiment:
 - Initialize 140 kpc box at z=100
 - Evolve to densities of 10¹⁶ cm⁻³, resolution length of 1 AU
 - Employ sink particle method to follow evolution of stellar cluster for next 5000 yr

Stars undergo slow disk accretion

Athena Stacy, Pop III IMF

Gas properties at point of initial sink formation: Red line — this work Other lines — other minihalos

$$\dot{M}_{\rm sph} = 4\pi r^2 \rho v_{\rm rad}$$

At a given radius, our minihalo has lower density, temperature, and radial infall velocity.

→slow accretion!

Central SF gas has comparatively high rotational support

Ang. mom. profile at point of initial sink formation:

Red line – this work

Other lines - other minihalos

Total sink mass accreted after 5000 yr for various minihalos versus total angular momentum within central 200 M_o

Slow Disk Accretion:

 $dM/dt \sim 2x10^{-3} M_{\odot} yr^{-1}$ $M_{disk} \sim 20 M_{\odot}$

Other lines – primordial disks from other simulations

Red line - This work

Distance of secondary sinks from

Projected Stellar Masses: M_{*} ~ 1 - 5 M_☉

- Smallest stars could survive to present day!
- 5 M_☉ stars undergo AGB phase
- Close encounters allow for possibility of tight binaries and mass overflow during larger companion's AGB phase

Effect of photo-dissociating LW background

Solid red $-J_{21,0} = 0$ Solid black $-J_{21,0} = 0.1$ Dashed black $-J_{21,0} = 1.0$

$$J_{21} = J_{21,0} \times 10^{-(z-z_0)/5}$$

$$k_{\rm H_2} = 1.38 \times 10^{-12} f_{\rm shield} J_{21} \text{ s}^{-1}$$

-H₂ shielding limits LW effects on central gas

-LW background has moderate but not monotonic effect on gas properties.

Solid red $-J_{21,0} = 0$ Solid black $-J_{21,0} = 0.1$ Dashed black $-J_{21,0} = 1.0$

Disk accretion rate is still slow!

Resulting stellar accretion rate and Pop III masses still likely to be unusually small.

Overview of Part IV

- Pop III IMF extends to very low masses in some minihalos, even under the influence of a range of global LW backgrounds.
- Some Pop III stars may survive to present day.
- These stars may carry signatures of enrichment by mass overflow of previous AGB companions.
- For a range of global LW backgrounds, H₂ shielding will prevent prevent significant changes to the low Pop III accretion rates.

V. Pop III Formation Under Dark Matter Effects

Dark Matter annihilation important for Pop III stars?

Can high-energy photons released from DMA heat SF gas, or replace/supplement nuclear fusion?

Athena Stacy Populity Sa.gov, Sky and Telescope, Gregg Dinderman)

Pop III stars form in regions of high DM density

May lead to extremely massive and luminous Pop III stars

a.k.a. "dark stars"

(e.g., Freese et al. 2008, Spolyar et al. 2008, locco et. al 2008, Natarajan et al. 2009) -R_∗ ~-T_{eff} too low to ionize 1 AU -Accretion unimpeded for long time

Athena Stacy, Pop III IMF

DM heating and capture rates

1. DM heating → delayed protostellar contraction
 → prolonged accretion (M_{*} reaches 10⁵ M_☉?)

$$\Gamma_{\rm DM} \propto \rho_{\rm DM}^2 \langle \sigma_a v \rangle / m_{\rm WIMP}$$

2. DM capture by MS star → burn DM instead of hydrogen
→ prolonged stellar lifetime (to z=0?)

$$C = 9.2 \times 10^{47} s^{-1} \left(\frac{M_*^2}{R_*} \right) \left(\frac{\rho_{\rm DM}}{10^{11} {\rm GeV \, cm^{-3}}} \right) \times \left(\frac{\sigma_0}{10^{-38} {\rm cm^2}} \right) \left(\frac{m_{\rm WIMP}}{100 {\rm GeV}} \right)^{-1}.$$

Higher DM density → greater effect on gas and stars

- 1. Will this still work when following gas and DM in 3-D?
- 2. What if gas still fragments? How will that change evolution of DM density?

Test Simulations

Name	DM profile type	$m_x \; ({\rm GeV}/c^2)$	$n_{ m frag}$	$M_{*,\mathrm{tot}} \; [\mathrm{M}_{\odot}]$
no-DMA	no DMA	N/A	3	7
DMA-A1	analytic, Smith et al. (2012)	100	N/A	N/A
DMA-A2	analytic, $\rho \propto r^{-2}$	100	4	14
DMA-L2	live, $\rho \propto r^{-2}$	100	7	16

$$\rho_x = 6000 \left(\frac{r}{1 \mathrm{pc}}\right)^{-2} \frac{\mathrm{GeV}}{c^2} \mathrm{cm}^{-3} \quad \begin{array}{l} \mathrm{DMA-A1} \\ \mathrm{Analytic\ DM\ profile\ remains} \\ \mathrm{constant} \end{array}$$

$$ho_x = 5 imes 10^4 \left(rac{r}{1 \mathrm{pc}}
ight)^{-1.8} rac{\mathrm{GeV}}{c^2} \mathrm{cm}^{-3}$$
 DMA-A2 DMA-L2 at t=0 'Live' DM partic

DMA-A1

DMA-A2 'Live' DM particles with $m_{DM} \sim 4 \times 10^{-4} M_{\odot}$ are added to simulation box immediately after initial sink formation

Black dots – DMA-A2 Red dashed – DMA-A1 Red dotted – no-DMA

DMA leads to:

- Warmer gas at high densities
- H₂ formation at lower densites
- Higher e-fraction

DMA speeds initial collapse to high densities

Collapse occurs by 10⁵ yr earlier

DMA delays fragmentation, but does not prevent it!

DMA does not prevent fragmentation!

Central DM density declines over time

Mutual gravitational interaction between gas and DM scatters DM to low densities.

Overview of Part V

- DMA is ineffective in suppressing gas collapse and subsequent fragmentation
- Formation of long-lived dark stars is unlikely
- DMA effects may still be significant in the early collapse and disk formation phase of primordial gas evolution

What about observational constraints?

Direct signatures

- JWST cannot observe MS Pop III stars at high redshift (z~20).
- Observation of an actual low-mass Pop III star in the Milky Way?
 - -> None yet detected. Possibly but unlikely.
- Observation of a PISNe or GRB?
 - -> Perhaps with JWST, JANUS, etc. (e.g. Hummel et. al 2012, Pan et. Al 2012; but PISN identification is difficult! Cannot be seen as transient, but candidates might be identifiable through photometric variation.)

Indirect evidence and signatures

- Stellar and dwarf archaeology

- -- Pop III SNe abundance signatures in nearby lowest-Z stars
- -- PISN signature yet to be observed in a stellar atmosphere
- -- But Note: Oldest stars and lowest-Z stars not necessarily the same. E.g., one Pop III SNe can already significantly enrich its surroundings to 10⁻³ Z_o (e.g. Greif et al 2010)

SMSS J031300.36-670839.3

No Fe detected!

- $Z < 10^{-7.1} Z_{\odot}$

Star most likely seeded by a single faint 60 M_☉ SN

Keller et al 2014, Nature

Athena Stacy, Pop III IMF

Indirect evidence and signatures, cont'd

- DLAs and LLS

- -- Simcoe et al. (2012) reported observations of extremely low metallicity or possibly metal-free gas within a z ~ 7 damped Ly- α system
- -- Fumagalli et al. (2011) reported the detection of metalfree gas within Lyman-limit systems at $z \sim 3$.

-Gas may fuel Pop III SF down to z ~3 ?

- Mixing of metals within the IGM is an inefficient and inhomogeneous process

Conclusions

- Pop III IMF likely to be broad (1 M_{\odot} to >100 M_{\odot}) but still top-heavy, even under radiative feedback.
- Some correlation between Pop III multiple accretion rate and angular momentum of SF clump (but NOT, e.g., with spin of minihalo)
- Binarity, N-body dynamics, and stellar ejections important considerations for Pop III growth and evolution

For the Future

Questions remain!

- How will previous results change under influence of B-fields? Winds? Jets and outflows? (Turk et al, Machida et al., etc.)
- How will Pop III systems evolve over longer timescales?
- What percentage of Pop III stars undergo binary mass transfer and/or mergers?
- Can we find further correlations between minihalo/cloud environment and Pop III stars?

Continued numerical exploration will allow for improved predictions for future observations:

- rate at which we may observe Pop III CCSNe, PISNe, and GRBs
- number low-mass Pop III stars in Milky Way and nearby dwarfs galaxies
- chemical abundances within low-Z MW halo stars, nearby dwarf galaxies, DLAs
- Growing understanding of Pop III stars will ultimately increase physical realism of models of the formation of later stellar generations and the assembly of high-redshift (z>10) galaxies which will be observed by, e.g., JWST.