# What do we know about BH spins, masses (...and kicks) from BHX-ray binaries

**Tassos Fragos**<sup>1,2</sup> <sup>1</sup>Geneva Observatory - University of Geneva <sup>2</sup>SNSF Ambizione Fellow





**KITP** 



FONDS NATIONAL SUISSE Schweizerischer Nationalfonds FONDO NAZIONALE SVIZZERO Swiss National Science Foundation

March 24<sup>th</sup> 2017

# Dynamically confirmed black holes



 Cyg X-1: the first BH candidate Bolton (1972), Webster & Mardin (1972)
 21 BHs with dynamical mass measurement McClintock & Remillard 2006, Casares & Jonker 2014
 18 Galactic, 3 in nearby galaxies
 33 more BH candidates

# Dynamically confirmed black holes



Farr et al. (2011)

Cyg X-1: the first BH candidate Bolton (1972), Webster & Mardin (1972) 21 BHs with dynamical mass measurement McClintock & Remillard 2006, Casares & Jonker 2014 18 Galactic, 3 in nearby galaxies 33 more BH candidates

#### Özel et al. (2011) $MXBs: M_{BH,current} \sim 7.8 \pm 1.2 M_{\odot}$

<u>-МХВз:</u> М<sub>вн</sub> ~ 10-16 Мо

# Dynamically confirmed black holes



Farr et al. (2011)

Cyg X-1: the first BH candidate Bolton (1972), Webster & Mardin (1972) 21 BHs with dynamical mass measurement McClintock & Remillard 2006, Casares & Jonker 2014 18 Galactic, 3 in nearby galaxies 33 more BH candidates

Özel et al. (2011) \_MXBs: M<sub>BH,current</sub> ~ 7.8±1.2 M⊚ *Fragos & McCLintock (2015)* M<sub>BH,natal</sub> ~ 6.3±1.1 M⊚

S: Мвн ~ 10-16 М⊙

# Formation of Black Hole X-ray Binaries

#### van den Heuvel 1992; Tauris & Van den Heuvel 1996; Podsiadlowski et al. 2003



Low mass X-ray Binary (Roche lobe overflow)

# Formation of Black Hole X-ray Binaries

#### van den Heuvel 1992; Tauris & Van den Heuvel 1996; Podsiadlowski et al. 2003



High mass X-ray Binary (Wind-fed)

Low mass X-ray Binary

(Roche lobe overflow)

**Dynamical Formation** Voss et al. 2006; Naoz, **TF** et al 2016; Erez & Perets 2016; Jakub et al. 2016

### **Explosive CE**

Podsiadlowski et al. 2010

#### **Pre-MS donors**

Ivanova 2006

### Case-M Evolution De Mink et al. 2009

Intermediate mass donors Justham et al. 2006; Chen & Li 2006; Chen & Podsiadlowski 2016

# Going backwards in time



**Currently observed properties:** Donor's position on the H-R (T<sub>eff</sub> vs. L) diagram, BH and donor masses, orbital period, position in the galaxy and 3-D systemic velocity

Step 1: Model the mass-transfer phase (MESA; Paxton et al. 2011,2013,2015)
Step 2: Model the detached post-SN secular evolution
Step 3: Find the peculiar velocity post BH formation
Step 4: Compute the orbital dynamics involved in core collapse
Derive limits on immediate progenitor mass and natal kicks magnitude
Step 5: Compute priors based on population synthesis models and derive PDFs (BSE; Hurley et al. 2002)

## The case of LMC X-3



# The case of LMC X-3



# Results so far...

| System                             | Observed Current<br>BH mass<br>(M₀)                                                         | Post-SN<br>BH mass<br>(M⊙)                                                             | Immediate<br>Progenitor mass<br>(M⊙)                                                    | Natal Kick<br>(km/s)                                                              |
|------------------------------------|---------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------|
| XTE J1118+480<br>(late-type, P<1d) | <b>8.0 ± 2.0</b><br>(McClintock et al. 2001, Wagner<br>et al. 2001, Gelino et al. 2006)     | <b>6.0 — 10.0</b><br>(Fragos et al. 2009)                                              | <b>6.5 — 20.0</b><br>(Fragos et al. 2009)                                               | <b>80 — 310</b><br>(Fragos et al. 2009)                                           |
| GRO J1655-40<br>(early-type, P>1d) | <b>6.3 ± 0.5</b><br>(Greene et al. 2001)<br><b>5.4 ± 0.3</b><br>(Beer & Podsiadlowski 2002) | <b>5.5 – 6.3</b><br>(Willems et al. 2005)<br><b>3.5 – 5.4</b><br>(Willems et al. 2005) | <b>5.5 – 11.0</b><br>(Willems et al. 2005)<br><b>3.5 – 9.0</b><br>(Willems et al. 2005) | <b>30 – 160</b><br>(Willems et al. 2005)<br>≤ <b>210</b><br>(Willems et al. 2005) |
| LMC X-3                            | <b>6.98 ± 0.56</b>                                                                          | <b>6.4</b> — <b>8.2</b>                                                                | <b>11.1 – 18.0</b>                                                                      | <b>≤ 600</b>                                                                      |
| (early-type, P>1d)                 | (Orosz et al. 2014)                                                                         | (Sorensen, <b>TF</b> et al. 2017)                                                      | (Sorensen, <b>TF</b> et al. 2017)                                                       | (Sorensen, <b>TF</b> et al. 2017)                                                 |
| GRS 1915+105                       | <b>12.4 ± 2.0</b>                                                                           | <b>5.0-16.0</b>                                                                        | COMING SOON                                                                             | <b>consistent with ~0</b>                                                         |
| (late-type, P>1d)                  | (Reid et al. 2014)                                                                          | (Kimball, <b>TF</b> et al. 2017, in prep.)                                             |                                                                                         | (Kimball, <b>TF</b> et al. 2017, in prep.)                                        |
| V404 Cyg<br>(late-type, P>1d)      | <b>9.0 ± 0.6</b><br>(Khargharia et al. 2010)                                                | <b>7.5-9.5</b><br>(Kimball, <b>TF</b> et al. 2017, in prep.)                           | COMING SOON                                                                             | COMING SOON                                                                       |
| Cygnus X-1                         | <b>14.81 ± 0.98</b>                                                                         | <b>13.8 — 15.8</b>                                                                     | <b>15.0 – 20.0</b>                                                                      | <b>≤ 77</b>                                                                       |
| (wind-fed, high mass)              | (Orosz et al. 2011)                                                                         | (Wong et al. 2012)                                                                     | (Wong et al. 2012)                                                                      | (Wong et al. 2012)                                                                |
| IC10 X-1                           | <b>23.0 - 34.0</b>                                                                          | <b>23.0 - 34.0</b> (Wong et al. 2014)                                                  | > <b>31.0</b>                                                                           | ≤ <b>130</b>                                                                      |
| (wind-fed, high mass)              | (Orosz et al. 2011)                                                                         |                                                                                        | (Wong et al. 2014)                                                                      | (Wong et al. 2014)                                                                |
| M33 X-7                            | <b>13.5 – 20.0</b>                                                                          | <b>13.5</b> – <b>14.5</b>                                                              | <b>15.0</b> – <b>16.1</b>                                                               | ≤ <b>850</b>                                                                      |
| (wind-fed, high mass)              | (Orosz et al. 2007)                                                                         | (Valsecchi et al.2010)                                                                 | (Valsecchi et al.2010)                                                                  | (Valsecchi et al.2010)                                                            |

Willems et al. (2005); Fragos et al (2009); Valseccchi et al. (2010); Wong et al. (2012); Wong et al. (2014) Sorensen, **TF** et al. (2017); Kimball, **TF** et al. (2017, in prep.)

# Results so far...

| System                                                                    | Observed Curre<br>BH mass<br>(M <sub>☉</sub> ) | ent                           | Post∽SN<br>BH mass<br>(M₀)                   | Immediate<br>Progenitor mass<br>(M₀)         | Natal Kick<br>(km/s)                    |  |
|---------------------------------------------------------------------------|------------------------------------------------|-------------------------------|----------------------------------------------|----------------------------------------------|-----------------------------------------|--|
| XTE J1118+480<br>(late-type R<1d)                                         | <b>8.0 ± 2.0</b> (McClintock et al. 2001,      | Wagner                        | 6.0 – 10.0                                   | 6.5 – 20.0<br>(Fragos et al. 2000)           | <b>80 – 310</b><br>(Fragos et al. 2009) |  |
| Repetto et al. 2012, 2015 (but also see Mandel 2016 for possible caveats) |                                                |                               |                                              |                                              |                                         |  |
| (early-typ                                                                | Source min NK<br>[km/s]                        | min $M_{\rm e}$ $[M_{\odot}]$ | $a_{\rm pre}, RLO$ [ $R_{\odot}$ ]           | on MS max $a_{\rm pre}$ , bou $[R_{\odot}]$  | al. 2005)<br>Ind in SN<br>] al. 2005)   |  |
| LMC GS 20                                                                 | 00+251 24-47                                   | 0.13-0.3                      | 33 9-37<br>8 27                              | 7800                                         | 00                                      |  |
| (early-ty) A06<br>Nova                                                    | 20-00     20-43       Mus 91     62-77         | 0.09-0.3                      | 32     8-37       34     8                   | 8400<br>1400                                 | et al. 2017)                            |  |
| (late-typ GRS 19<br>GRS 19<br>GRS 1                                       | 118+48093-1061009-4549-73                      | 0.31-0.3                      | 37       23-38         28       8-38         | 570<br>2400                                  | 2017, in prep.)                         |  |
| V404<br>(late-typ                                                         | 0422+32 35-61<br>05-250 415-515                | 0.04-0.2<br>0.40-0.5          | 26     7-38       50     11-19               | 3000<br>27                                   | SCON                                    |  |
| Cygnus X-1<br>(wind-fed, high mass)                                       | <b>14.81 ± 0.98</b><br>(Orosz et al. 2011      | )                             | <b>13.8 — 15.8</b><br>(Wong et al. 2012)     | <b>15.0 – 20.0</b><br>(Wong et al. 2012)     | <b>≤ 77</b><br>(Wong et al. 2012)       |  |
| IC10 X-1<br>(wind-fed, high mass)                                         | <b>23.0 - 34.0</b><br>(Orosz et al. 2011       | )                             | <b>23.0 - 34.0</b><br>(Wong et al. 2014)     | > <b>31.0</b><br>(Wong et al. 2014)          | ≤ <b>130</b><br>(Wong et al. 2014)      |  |
| M33 X-7<br>(wind-fed, high mass)                                          | <b>13.5 – 20.0</b><br>(Orosz et al. 2007       | )                             | <b>13.5 – 14.5</b><br>(Valsecchi et al.2010) | <b>15.0 – 16.1</b><br>(Valsecchi et al.2010) | ≤ <b>850</b><br>(Valsecchi et al.2010)  |  |

Willems et al. (2005); Fragos et al (2009); Valseccchi et al. (2010); Wong et al. (2012); Wong et al. (2014) Sorensen, **TF** et al. (2017); Kimball, **TF** et al. (2017, in prep.)

# Measuring the the spin of Black Holes

## **Continuum-fitting** and **Reflection** methods



*McClintock et al. (2011, 2014)* 

McClintock et al. (2011, 2014)

# Measuring the the spin of Black Holes

## **Continuum-fitting** and **Reflection** methods

- Simple physical model
- Availability of high-quality data
- Thorough analysis of systematic errors
- **x** Need accurate measurements of M,i,D
- **x** Assumption of spin-orbit alignment
- **x** Only applicable to stellar mass BHs
- **x** All available data have been analyzed

- ✓ Independent of M,D
- ✓ inclination can be a fit parameter
- ✓ applicable also to SMBH
- ✓ data available for more BH XRBs
- **x** Need careful removal of X-ray continuum
- **x** Need assumption on irradiation profile
- **x** Poor understanding of systematic errors
- A lot of studies with poor application of the method

#### McClintock et al. (2011, 2014)

#### McClintock et al. (2011, 2014)

# Measuring the the spin of Black Holes

# **Continuum-fitting** and **Reflection** methods

- ✓ Simple physical model
- Availability of high-quality data
- Thorough analysis of systematic errors
- **x** Need accurate measurements of M,i,D
- **x** Assumption of spin-orbit alignment
- **x** Only applicable to stellar mass BHs
- **x** All available data have been analyzed

- ✓ Independent of M,D
- ✓ inclination can be a fit parameter
- ✓ applicable also to SMBH
- ✓ data available for more BH XRBs
- **x** Need careful removal of X-ray continuum
- **x** Need assumption on irradiation profile
- **x** Poor understanding of systematic errors
- **x** A lot of studies with poor application of the method

The two methods currently give consistent results for 5 out 7 BH XRBs where both have been applied!

McClintock et al. (2011, 2014)

McClintock et al. (2011, 2014)













*McClintock et al. (2011, 2013)* 

# Sample of Galactic BH LMXBs

|               | $\mathbf{M}_{\mathbf{B}\mathbf{H}}\left(\mathbf{M}_{\odot} ight)$ | $\mathbf{M_{2}}\left(\mathbf{M}_{\odot} ight)$ | $\mathbf{P_{orb}}\left(\mathbf{days} ight)$ | $\mathbf{T_{eff}}\left(\mathbf{K}\right)$ | $\mathbf{a}_{*}$ |
|---------------|-------------------------------------------------------------------|------------------------------------------------|---------------------------------------------|-------------------------------------------|------------------|
| GRS 1915+105  | 12.4±2.0                                                          | 0.52±0.41                                      | 33.85                                       | 4100-5433                                 | 0.95±0.05        |
| 4U 1543-47    | 9.4±2.0                                                           | 2.7±1.0                                        | 1.116                                       | 9000±500                                  | 0.8±0.1          |
| GRO J1655-40  | 6.3±0.5                                                           | 2.4±0.4                                        | 2.622                                       | 5706-6466                                 | 0.7±0.1          |
| XTE J1550-564 | 9.1±0.61                                                          | 0.3±0.07                                       | 1.542                                       | 4700±250                                  | 0.34±0.2         |
| A0620-00      | 6.61±0.25                                                         | 0.4±0.045                                      | 0.323                                       | 3800-4910                                 | 0.12±0.19        |
| GRS 1124-683  | 6.95±1.1                                                          | 0.9±0.3                                        | 0.433                                       | 4065-5214                                 | 0.25±0.15        |
| GX 339-4      | 8.0±1.0*                                                          |                                                | 1.754                                       |                                           | 0.25±0.15        |
| XTE J1859+226 | 8.0±1.0*                                                          |                                                | 0.383                                       |                                           | 0.25±0.15        |
| GS 2000+251   | 8.0±1.0*                                                          | 0.35±0.05                                      | 0.344                                       | 3915-5214                                 | 0.05±0.05        |
| GRO J0422+32  | 8.0±1.0*                                                          | 0.95±0.25                                      | 0.212                                       | 2905-4378                                 |                  |
| GRS 1009-45   | 8.5±1.0                                                           | 0.54±0.1                                       | 0.285                                       | 3540-4640                                 |                  |
| GS 1354-64    | 8.0±1.0                                                           |                                                | 2.545                                       | 4985-6097                                 |                  |
| GS 2023+338   | 9.0±0.6                                                           | 0.54±0.05                                      | 6.471                                       | 4100-5433                                 |                  |
| H1705-250     | 6.4±0.75                                                          | 0.245±0.0875                                   | 0.521                                       | 3540-5214                                 |                  |
| V4641 Sgr     | 6.4±0.6                                                           | 2.9±0.4                                        | 2.817                                       | 10500±200                                 |                  |
| XTE J1118+480 | 7.55±0.325                                                        | 0.17±0.07                                      | 0.17                                        | 3405-4640                                 |                  |

\* No reliable BH mass measurement is available. Using fiducial value from Ozel et al. (2010)

<sup>†</sup> Spin estimates from Steiner et al. (2013) using the BH spin - jet power correlation (Narayan & McClintock, 2012)

## Retrieved binary properties at the onset of RLO

|               | $\mathbf{M_{BH,init}}\left(\mathbf{M}_{\odot} ight)$ | $\mathbf{M_{2,init}}\left(\mathbf{M}_{\odot} ight)$ | $\mathbf{P_{orb,init}}\left(\mathbf{days}\right)$ | $\mathbf{M_{acc}}\left(\mathbf{M}_{\odot} ight)$ | $\mathbf{a}_*$ |
|---------------|------------------------------------------------------|-----------------------------------------------------|---------------------------------------------------|--------------------------------------------------|----------------|
| GRS 1915+105  | 3-10                                                 | 1.0-10.0                                            | 0.6-30.0                                          | 0.0-9.0                                          | 1.00           |
| 4U 1543-47    | 3-10                                                 | 2.2-6.4                                             | 0.6- 1.1                                          | 0.0-4.0                                          | 1.00           |
| GRO J1655-40  | 4- 6                                                 | 2.6-5.0                                             | 0.7- 1.7                                          | 0.5-3.2                                          | 0.94           |
| XTE J1550-564 | 7-9                                                  | 0.9-1.5                                             | 0.3- 0.9                                          | 0.6-1.2                                          | 0.44           |
| A0620-00      | 5- 6                                                 | 1.1-1.8                                             | 0.6- 0.8                                          | 0.7-1.3                                          | 0.59           |
| GRS 1124-683  | 4- 8                                                 | 1.0-1.8                                             | 0.3- 0.9                                          | 0.3-1.1                                          | 0.62           |
| GX 339-4      | 3-9                                                  | 0.6-8.8                                             | 0.2- 1.7                                          | 0.0-5.8                                          | 1.00           |
| XTE J1859+226 | 5-9                                                  | 0.6-1.8                                             | 0.2- 0.9                                          | 0.1-1.5                                          | 0.63           |
| GS 2000+251   | 5-9                                                  | 0.9-1.8                                             | 0.3- 0.9                                          | 0.1-1.3                                          | 0.57           |
| GRO J0422+32  | 5-9                                                  | 0.8-1.5                                             | 0.3- 0.7                                          | 0.2-1.0                                          | 0.49           |
| GRS 1009-45   | 6-10                                                 | 1.0-1.6                                             | 0.6- 0.8                                          | 0.5-1.3                                          | 0.50           |
| GS 1354-64    | 3-9                                                  | 1.6-6.8                                             | 0.6- 2.4                                          | 0.0-5.1                                          | 1.00           |
| GS 2023+338   | 7-9                                                  | 1.0-2.0                                             | 0.6- 2.0                                          | 0.4-1.4                                          | 0.49           |
| H1705-250     | 4- 6                                                 | 1.0-1.5                                             | 0.4- 0.9                                          | 0.9-1.4                                          | 0.63           |
| V4641 Sgr     | 3-4                                                  | 7.0-7.8                                             | 1.2- 1.7                                          | 2.3-2.6                                          | 0.94           |
| XTE J1118+480 | 6-7                                                  | 1.0-1.8                                             | 0.6- 0.8                                          | 0.7-1.6                                          | 0.59           |

## Retrieved binary properties at the onset of RLO

|               | $\mathbf{M_{BH,init}}\left(\mathbf{M}_{\odot} ight)$ | $\mathbf{M}_{\mathbf{2,init}}\left(\mathbf{M}_{\odot} ight)$ | $\mathbf{P_{orb,init}}\left(\mathbf{days}\right)$ | $\mathbf{M}_{\mathbf{acc}}\left(\mathbf{M}_{\odot} ight)$ | max a <sub>*</sub> |
|---------------|------------------------------------------------------|--------------------------------------------------------------|---------------------------------------------------|-----------------------------------------------------------|--------------------|
| GRS 1915+105  | 3-10                                                 | 1.0-10.0                                                     | 0.6-30.0                                          | 0.0-9.0                                                   | 1.00               |
| 4U 1543-47    | 3-10                                                 | 2.2-6.4                                                      | 0.6- 1.1                                          | 0.0-4.0                                                   | 1.00               |
| GRO J1655-40  | 4- 6                                                 | 2.6-5.0                                                      | 0.7- 1.7                                          | 0.5-3.2                                                   | 0.94               |
| XTE J1550-564 | 7-9                                                  | 0.9-1.5                                                      | 0.3- 0.9                                          | 0.6-1.2                                                   | 0.44               |
| A0620-00      | 5-6                                                  | 1.1-1.8                                                      | 0.6- 0.8                                          | 0.7-1.3                                                   | 0.59               |
| GRS 1124-683  | 4-8                                                  | 1.0-1.8                                                      | 0.3- 0.9                                          | 0.3-1.1                                                   | 0.62               |
| GX 339-4      | 3-9                                                  | 0.6-8.8                                                      | 0.2- 1.7                                          | 0.0-5.8                                                   | 1.00               |
| XTE J1859+226 | 5-9                                                  | 0.6-1.8                                                      | 0.2- 0.9                                          | 0.1-1.5                                                   | 0.63               |
| GS 2000+251   | 5-9                                                  | 0.9-1.8                                                      | 0.3- 0.9                                          | 0.1-1.3                                                   | 0.57               |
| GRO J0422+32  | 5-9                                                  | 0.8-1.5                                                      | 0.3- 0.7                                          | 0.2-1.0                                                   | 0.49               |
| GRS 1009-45   | 6-10                                                 | 1.0-1.6                                                      | 0.6- 0.8                                          | 0.5-1.3                                                   | 0.50               |
| GS 1354-64    | 3-9                                                  | 1.6-6.8                                                      | 0.6- 2.4                                          | 0.0-5.1                                                   | 1.00               |
| GS 2023+338   | 7-9                                                  | 1.0-2.0                                                      | 0.6- 2.0                                          | 0.4-1.4                                                   | 0.49               |
| H1705-250     | 4- 6                                                 | 1.0-1.5                                                      | 0.4- 0.9                                          | 0.9-1.4                                                   | 0.63               |
| V4641 Sgr     | 3-4                                                  | 7.0-7.8                                                      | 1.2- 1.7                                          | 2.3-2.6                                                   | 0.94               |
| XTE J1118+480 | 6-7                                                  | 1.0-1.8                                                      | 0.6- 0.8                                          | 0.7-1.6                                                   | 0.59               |

# Implications on birth black-hole mass

![](_page_23_Figure_1.jpeg)

# Spinning up of program is the set

![](_page_24_Figure_1.jpeg)

# Summary

Based on the currently observed properties of BH XRBs, one can recover their evolutionary history and put constraints on natal kicks. Strong evidence for large kick (>100 km/s) only for XTE J1118+480. We should wait for GAIA proper motions in mid-2018

![](_page_25_Figure_2.jpeg)

![](_page_25_Figure_3.jpeg)

The observed BH spin in LMXBs *can* be due to mass accretion during the XRB phase. The BH spin in HMXBs is likely a result of the angular momentum of the BH progenitor, but some fine-tuning is needed.

If the observed BH spin in LMXBs is due to accretion, the observed M<sub>BH</sub> spectrum can differ significantly from the birth one.

![](_page_25_Figure_6.jpeg)

![](_page_25_Figure_7.jpeg)

LIGO constraints on the second-born BH are consistent with the "Classical" binary formation channel. Observed spins are expected to be small as high spins correlate with short merger times

## Stability of mass-transfer

### Massuming hydrostatic equilibrium and adiabatic mass-loss, $q=M_2/M_{NS}$

> 2.2 - 3 leads to dynamical instability

(e.g. Hjellming & Webbink 1987; Ivanova & Taam 2004)

BUT see more recent: Passy et al. (2012) and Pavlovskii & Ivanova (2015)

Accuracy of thermally unstable mass-transfer in parametric binary

population synthesis codes

Thermally unstable mass-transfer: Detailed vs Approximate treatment

![](_page_29_Figure_8.jpeg)

![](_page_30_Figure_0.jpeg)

![](_page_31_Figure_0.jpeg)

![](_page_32_Figure_0.jpeg)

![](_page_33_Figure_0.jpeg)

## **Maximum Black Hole Spin**

![](_page_34_Figure_1.jpeg)

# Grid of Mass-Transfer Calculations

~26,000 Detailed mass-transfer (MT) Calculations using MESA (Paxton et al. 2011,2013,2015; vs. 5527)
 -M<sub>2</sub> → 0.5-10 M<sub>☉</sub>, dM<sub>2</sub> → 0.1-0.2 M<sub>☉</sub>
 -P<sub>Orb</sub> → 0.2-100 days, P<sub>Orb</sub> → 0.05-5 days
 -M<sub>BH</sub> → 3-10 M<sub>☉</sub>, dM<sub>BH</sub> → 1 M<sub>☉</sub>

MT sequence termination criteria:
 — P<sub>Orb</sub> > 365 days
 — M<sub>2</sub> < 0.03 M<sub>☉</sub>
 — Age < 13.7Gyr</li>
 — Donor star is not degenerate.

> MT is fully conservative