The CSM of massive stars

Norbert Langer (Bonn University)

Envelope inflation

The stellar Eddington limit

acceleration through photon momentum balances gravity

$$\frac{\kappa F}{c} = g$$

$$\Rightarrow L_{\rm Edd} = \frac{4\pi cG}{\kappa} M$$

$$\Gamma = L/L_{\rm Edd}$$

The stellar Eddington limit

acceleration through photon momentum balances gravity

$$\frac{\kappa F}{c} = g$$

$$\Rightarrow L_{\rm Edd} = \frac{4\pi cG}{\kappa} M$$

$$\Gamma = L/L_{\rm Edd}$$

$$L > L_{\rm Edd} \Rightarrow$$
 ?

Opacity

complete opacity: e-scattering + ff + bf + bb + ...

- lacksquare massive/hot stars: $\kappa_{\mathrm{Fe}} \simeq 2\kappa_{\mathrm{e}}$
- ullet low mass/cool stars: $\kappa_{
 m H} \simeq 1000 \kappa_{
 m e}$
- atomic opacity increases with density

Inflation: 1D

Sanyal et al. 2015

 $3D \Rightarrow$ Jiang, Cantiello, et al. 2016, 2017

Eddington-limit Inflation

inflated envelope masses

Fast evolution \rightarrow loss of envelope!?

Langer 2012, ARAA

LBV eruptions...

- ... do NOT happen for all stars at the Eddington limit!
- ... might happen when stars at the Eddington limit are driven out of TE:
- → ... after core H-exhaustion
 needed to explain the LBVs we see Visit and 2007
- → ... after core He-exhaustion:
 needed to explain pre-SN LBVs smill at 2012.
- ... do or don't require binarity! smit = Humphreys
 η Carinae, HR Carinae Rymus et al. 2015, ...
- ... are helped by rotation? (— SG B[e]?)

Inflation: metallicity dependance

Sanval et al. 2017

Post-MS: Red Supergiants

Fast evolution \rightarrow loss of envelope?

Pulsations \rightarrow mass loss at high L/M

- Heger et al. 1997
 - consistent periods and growth rates with linear theory
 - extreme mass loss before SN explosion?
- Yoon & Cantiello 2010
 - superwind may turn off
 - shell formation
- Moriya & Langer 2015
 - works also in Pop III RSG
 - included damping of pulsations due to mass loss

Post-MS: WR SN progenitors

→ SN 2008D

Moriya et al. 2015

?

Ionisation Confined Shells

Betelgeuse

Ionisation Confined Shells

Mackey et al., 2014, Nature

Betelgeuse's ICS

Le Bertre et al. 2012, MNRAS 422, 3433

- detected in 21 cm, neutral hydrogen
- observed shell mass: $0.09\,\mathrm{M}_\odot$
- shell observed to be stationary
- observed shell radius: 3 10¹⁷ cm
- inferred photo-ionising flux: $F \simeq 2 \, 10^7 \, \mathrm{cm}^{-2} \mathrm{s}^{-1}$
- inferred stationary shell mass: $\sim 1\,\mathrm{M}_\odot$ (1D)

ICS: analytic theory

$$R_{\rm ICS} = 5 \, 10^{16} \, \text{cm} \quad \dot{M}_{-4}^{2/3} F_{13}^{-1/3}$$
 $M_{\rm ICS} = 9 \, \text{M}_{\odot} \quad \dot{M}_{-4}^{5/3} F_{13}^{-1/3}$
 \Rightarrow
 $R_{\rm ICS} : 3 \, 10^{15} \dots 10^{18} \, \text{cm}$
 $M_{\rm ICS} : 0.03 \dots 10 \, \text{M}_{\odot}$

⇒ appliable to SN IIn and SLSN-II!?

Rapidly spinning WR stars

→ GRB-SNe; SLSN-I

late radius evolution of WR stars

neutrino-accelerated contraction

spin-up induced mass loss

WRs fling off matter

In GRB-SNe and SLSNe I:

- observations: no helium: SNe Ic
 no "mirror effect" => late contraction
- favored models (magnetar/collapsar): very rapid rotation
 - ⇒ will reach critical rotation during late contraction
- neutrino-induced speed-up of contraction
 - ⇒ dramatic mass loss increase
 - independant of previous progenitor evolution

More ways for late-time CSM

- wind-wind bubbles
 when a fast wind follows a slow wind: wind shells
- bow shocks10% of the massive stars are runaway stars
- binary mass transfer after core He-exhaustion "mirror effect" ⇒ late expansion! ⇒ mass donor explodes during (non-conservative) mass transfer

at core collpse:

stationary dense CSM at core collapse:

- SN progenitor is inflated
- RSG progenitor is externally ionised
- SN progenitor is runaway star / exposed to moving ISM
 expanding dense CSM at core collapse:
- late evolution → increase in L/M → envelope loss
- GRB-SNe, SLSN-I: late spin-up
- binaries: late mass transfer / CEE

Some of this combines well with:

pulsational pair instability = Woosley

wave driven mass loss = Qualact, Fuller

super-Eddington winds = Owocki

Surface Eddington factors

Sub-surface Eddington factors

Turbulent pressure: $60\,\mathrm{M}_{\odot}$ model

Eddington-limit Inflation

Sanval et al. 2015

Inflation (Gamma)

Tau (Gamma-max)

