Seismology of rapidly rotating stars

D. R. Reese¹, G. Mirouh², M.-A. Dupret³, and M. Rieutord⁴

¹LESIA, Meudon, ²SISSA, Triestre, ³ULg, Liège, ⁴IRAP, Toulouse

March 21, 2017

• many massive and intermediate mass stars are rapid rotators

0

05 B0 B5 A0 A5 F0 F5 G0

Reese, Mirouh, Dupret, Rieutord Seismology of rapidly rotating stars

Spectral type

 G_{5}

K0 K5 M0 M5

Introduction	Theory	Seismology	α Ophiuchi	Con
	00000	000000000000000000		

clusion

Introduction

the same applies to pulsating stars

Theory

Seismology

 α Ophiuchi

Conclusion

The challenges of rapid rotation

Stars/stellar models

- centrifugal deformation
- gravity darkening
- baroclinic flows (differential rotation, meridional circulation)
- turbulence, mixing, modified evolution

Theory

Seismology

 α Ophiuchi

Conclusion

The challenges of rapid rotation

Pulsations

- no longer described by single spherical harmonics
 - \Rightarrow currently no automatic classification scheme
- lack of *simple* frequency patterns
 - p-modes: superposition of multiple independent patterns (Lignières & Georgeot 2008, 2009)
 - $\bullet\,$ g-modes: varying period separation (e.g. Berthomieu et al. 1978) $+\,$ numerous inertial modes
 - \Rightarrow difficult to identify observed modes
- $\bullet\,$ usually classical pulsators $\Rightarrow\,$ amplitudes are difficult to predict

Introduction	Theory	Seismology	α Ophiuchi	Conclusion
	00000	000000000000000000000000000000000000000		

2 Theory

- Pulsation calculations
- Numerical implementation

3 Seismology

- Search for frequency patterns
- Observational mode identification methods
 - Non-adiabatic calculations
 - Amplitude ratios and phase shifts
 - LPVs

4 α Ophiuchi

5 Conclusion

∃ ⊳

Introduction	Theory	Seismology	α Ophiuchi	Conclusion

2 Theory

- Pulsation calculations
- Numerical implementation

3 Seismology

- Search for frequency patterns
- Observational mode identification methods
 - Non-adiabatic calculations
 - Amplitude ratios and phase shifts
 - LPVs

(4) α Ophiuchi

5 Conclusion

< ∃⇒

Pulsation calculations in rapidly rotating stars

Different approaches for including rotation

- perturbative approach
 - e.g. Saio (1981), Soufi et al. (1998)
- traditional approximation
 - e.g. Berthomieu et al. (1978), Lee & Saio (1987), Townsend (1997)
- 2D calculations
 - e.g. Reese et al. (2006), Lovekin et al. (2009), Ouazzani et al. (2015)
- ray dynamics, characteristics
 - e.g. Dintrans & Rieutord (2000), Lignières & Georgeot (2009)

Pulsation equations – adiabatic case

$$\begin{aligned} 0 &= \frac{\delta\rho}{\rho_o} + \vec{\nabla} \cdot \vec{\xi} \\ 0 &= \Delta \Psi - 4\pi G \left(\rho_o \frac{\delta\rho}{\rho_o} - \vec{\xi} \cdot \vec{\nabla} \rho_o \right) \\ 0 &= \left[\omega + m\Omega \right]^2 \vec{\xi} - 2i\vec{\Omega} \times \left[\omega + m\Omega \right] \vec{\xi} - \vec{\Omega} \times \left(\vec{\Omega} \times \vec{\xi} \right) \\ &- \vec{\xi} \cdot \vec{\nabla} \left(\varpi\Omega^2 \vec{e}_{\varpi} \right) - \frac{P_o}{\rho_o} \vec{\nabla} \left(\frac{\delta P}{P_o} \right) + \frac{\vec{\nabla} P_o}{\rho_o} \left(\frac{\delta\rho}{\rho_o} - \frac{\delta P}{P_o} \right) - \vec{\nabla} \Psi \\ &+ \vec{\nabla} \left(\frac{\vec{\xi} \cdot \vec{\nabla} P_o}{\rho_o} \right) + \frac{\left(\vec{\xi} \cdot \vec{\nabla} P_o \right) \vec{\nabla} \rho_o - \left(\vec{\xi} \cdot \vec{\nabla} \rho_o \right) \vec{\nabla} P_o}{\rho_o^2} \\ \frac{\delta P}{P_o} &= \Gamma_1 \frac{\delta\rho}{\rho_o} \end{aligned}$$

neglects energy exchanges during oscillations

Pulsation equations – non-adiabatic case

and perturbed EOS, and opacities

Numerica			
Numerica	i impleme	ntation	

- explicit expression in spheroidal coordinates
- projection onto spherical harmonics
- radial discretization using Chebyshev polynomials

Introduction	Th O	eory ⊃○○●	Sei OC	ismology α Ophiuchi Concl	lusion

Numerical implementation

N _r	$N_{ m h}$	Memory (in Gb)	Time (in min)	Num. proc.
400	10	3.5		
400	15	7.9		
400	20	13.4	5	4
400	29	28.0	10	8
400	40	52.7	22	8
400	50	82.3	26	16

- estimated accuracy based on variational expression and work integral:
 - $\bullet~frequencies:~\sim 10^{-4}$
 - $\bullet\,$ excitation/damping rates: 10^{-2} to 10^{-1}

		er opfindelin	Conclusion
00000	000000000000000000000000000000000000000		

Theory

- Pulsation calculations
- Numerical implementation

3 Seismology

Search for frequency patterns

• Observational mode identification methods

- Non-adiabatic calculations
- Amplitude ratios and phase shifts
- LPVs

(4) α Ophiuchi

5 Conclusion

< ∃⇒

Search for frequency patterns – g-modes

- see Ehsan Moravveji's talk
- linear trend between period spacing and period.
 - slope depends on azimuthal order and rotation rate
- based on traditional approximation (e.g. Berthomieu et al. 1978, Lee & Saio 1987, Townsend 2003)
- qualitatively confirmed with 2D calculations (e.g. Ballot et al. 2011, Ouazzani et al. 2016)

э

• observational confirmation (Bedding et al. 2015, Van Reeth et al. 2015)

• large frequency separation, $\Delta \nu$, scales with the mean density, at arbitrary rotation rates (Reese et al. 2008)

ъ

Search for frequency patterns – p-modes

• observational confirmation based binary systems with independent estimates for the mean density (García Hernández et al. 2015)

however, identification of individual modes remains difficult

- use supplementary observations to constrain mode geometry
- multicolor photometry: amplitude ratios and phase differences
- spectroscopy: line profile variations
- need for consistent calculation of $\delta\,{T_{\rm eff}}/\,{T_{\rm eff}}$
- non-adiabatic calculations
 - provide $\delta T_{\rm eff}/T_{\rm eff}$
 - predict which modes are excited

Introduction	Theory 00000	Seismology	lpha Ophiuchi	Conclusion
Non-adiabat	tic calculat	tions		

Model

- calculated with the ESTER code (Rieutord et al. 2016)
- 9 M_{\odot} models
- $\Omega = 0.0$ to $0.8 \,\Omega_K$
- *z* = 0.025
- OPAL opacities

Modes

- calculated with the TOP code (Reese et al. 2006, 2009)
- β Cep type pulsations
- p and g modes
- excited by iron opacity bump at log(T) = 5.3

Seismology

 α Ophiuchi

Conclusion

Seismology

 α Ophiuchi

Conclusion

Seismology

 α Ophiuchi

Conclusion

Seismology

 α Ophiuchi

Conclusion

э.

Seismology

 α Ophiuchi

Conclusion

Seismology

 α Ophiuchi

Conclusion

Seismology

 α Ophiuchi

Conclusion

프 > 프

 $\omega = 2.233$ 2, 3

 $\omega = 2.346 \\ 3, 3^*$

 $\omega = 2.518$ 5, 2*

 $\substack{\omega = 3.066\\12, 1^{\circ}}$

0

.....

 $\substack{\omega=\ 3.086\ 13,\ 1^*}$

 $\omega = \frac{2.664}{7}$

Ь

 $\substack{\omega = & 3.183 \\ 14, & 1^{\circ} \end{array}$

0 0

 $\substack{\omega = \\ 21, \\ 0^* }$

0

0

 $\substack{\omega = 3.582 \\ 22, 0^{\circ}}$

 $\omega = 3.877$ 29, -17

0.

 $\substack{\omega = 3.622\\23, 0^*}$

 $\substack{\omega = 3.903\\30, 0^*}$

 $\substack{\omega = \\ 17, 1^{*}}$

 $\substack{\omega = 3.627 \\ 24, 0^*}$

 $\substack{\omega=\ 3.970\\ 31,\ -1^{-}}$

 $\substack{\omega = 3.059\\11}, 1^*$

 $\substack{\omega = 3.405 \\ 18, 1^*}$

 $\substack{\omega = 3.692 \\ 25, 0^*}$

 $\substack{\omega = 4.055 \\ 34, 0^{\circ}}$

<□▶ <@▶ <글▶<u><글</u>

SQC.

 $\omega = 4.118$ 35. -1°

Ш

 $\Omega = 0.5 \Omega k$

10 $\omega = 3.413$ 19, 0*

 $\substack{\omega = 3.723\\26, 0^*}$

 $\substack{\phi = \\ 27, 0^{\circ}}$

 $\substack{\omega = 3.803 \\ 28, 0^{\circ}}$

Seismology

 α Ophiuchi

Conclusion

Excited modes

Introduction	Theory 00000	Seismology ○○○○○○○○○●○○○○○○○○○	lpha Ophiuchi	Conclusion
N.A. 1.1.1.				

- prograde modes remain unstable longer
- Lee (2008) also found a preference for prograde modes

< ∃ →

Amplitude ratios and phase shifts

Basic principle

- measure pulsation modes in different photometric bands
- calculate ratio of mode amplitudes and phase differences between different bands
- these will depend on mode structure, thereby constraining mode ID

Advantages

- independent of intrinsic mode amplitudes
- independent of inclination and azimuthal order only in non-rotating case (e.g. Daszyńska-Daszkiewicz et al. 2002, Townsend 2003)

Intensities

$$I(T_{\mathrm{eff}}, g_{\mathrm{eff}}, \mu) = I_0(T_{\mathrm{eff}}, g_{\mathrm{eff}})h(\mu, T_{\mathrm{eff}}, g_{\mathrm{eff}})$$

- $I_0(T_{\rm eff},g_{\rm eff})$ from blackbody spectrum
- $h(\mu, T_{\text{eff}}, g_{\text{eff}})$ from Claret (2000)
- bolometric, Strömgren, and Johnson-Cousins photometric bands

 $\delta T_{\rm eff}/T_{\rm eff}$

Amplitude ratios for an $\ell = 3$ multiplet ($i = 30^{\circ}$)

Reese, Mirouh, Dupret, Rieutord Seismology of rapidly rotating stars

Reese, Mirouh, Dupret, Rieutord Seismology of rapidly rotating stars

Reese, Mirouh, Dupret, Rieutord Seismology of rapidly rotating stars

Reese, Mirouh, Dupret, Rieutord Seismology of rapidly rotating stars

Reese, Mirouh, Dupret, Rieutord Seismology of rapidly rotating stars

 similar amplitude ratios – may be used to identify similar modes (Reese et al. 2017)

Introduction	Theory	Seismology	α Ophiuchi	Conclusion
		000000000000000000000000000000000000000		

Phase shifts

₹ Ξ > < Ξ >

æ

Seismology

 α Ophiuchi

Conclusion

Line Profile Variations (LPVs)

Previous works

- Clement (1994): 2D calculations
- Townsend (1997): the traditional approximation, but realistic stellar spectra

Description

- includes Doppler shifts and $\delta(\vec{dS})$
- δT_{eff} and δg_{eff} neglected
- use of blackbody spectrum (incl. gravity darkening)
- rudimentary description of limb darkening

< 3 b

Increasing rotation rates

- ∢ ≣ →

E >

< 🗇 🕨

э

 α Ophiuchi

< 🗇 🕨

★ Ξ → < Ξ →</p>

э

Conclusion

Increasing rotation rates

Increasing rotation rates

< 🗇 🕨

< 注 > < 注 >

Increasing rotation rates

★ Ξ → < Ξ →</p>

< 🗇 🕨

э

Conclusion

4 ∃ > < ∃ >

< 🗇 🕨

Increasing rotation rates

Theory

Seismology

 α Ophiuchi

< 17 ►

∃ ► < ∃ ►</p>

Conclusion

Theory

Seismology

 α Ophiuchi

< 🗇 >

通 トーイ 通 ト

э

Conclusion

Theory

Seismology

 α Ophiuchi

< 17 ►

∃ ► < ∃ ►</p>

Conclusion

Theory

Seismology

 α Ophiuchi

< 17 ►

< 注 > < 注 >

э

Conclusion

Introduction	Theory	Seismology	α Ophiuchi	Conclusion
	00000	000000000000000000000000000000000000000		

2 Theory

- Pulsation calculations
- Numerical implementation

3 Seismology

- Search for frequency patterns
- Observational mode identification methods
 - Non-adiabatic calculations
 - Amplitude ratios and phase shifts
 - LPVs

(4) α Ophiuchi

5 Conclusion

.⊒...>

Introduction	Theory 00000	Seismology 000000000000000000000000000000000000	lpha Ophiuchi	Conclusion
α Ophiuchi				

- binary system: A5III + K6V (Cowley 1969 et al. + Hinkley et al. 2011)
- $v_{\rm eq} = 240 {\rm km.s^{-1}}$
- polar and equatorial radii determined through interferometry (Zhao et al. 2009)
- 57 pulsation frequencies from photometry (Monnier et al. 2010)

Characteristics of the model

- calculated with ESTER
- mass: 2.22 M_{\odot}
- Z = 0.02, X = 0.7, X_c = 0.26

Э

Introduction Theory Seismology lpha Ophiuchi Conclusion

Initial results

• large selection of theoretical models around each observed frequencies

Theory

Seismology

 α Ophiuchi

Conclusion

Initial results

- find excitation rate through quasi-adiabatic approximation
 - no unstable modes!

Introductio	on Theory 00000	Seismology	lpha Ophiuchi	Conclusion
New	calculations			
	• new fully non-	adiabatic calculations		

▲□▶ ▲圖▶ ▲国▶ ▲国▶ - 国 - のへ⊙

- new fully non-adiabatic calculations
- unstable modes appear

- new fully non-adiabatic calculations
- unstable modes appear

- new fully non-adiabatic calculations
- unstable modes appear

Introduction	Theory	Seismology	α Ophiuchi	Conclusion

Conclusion

- non-adiabatic calculations are an important step forward:
 - can now predict which modes are unstable
 - can calculate amplitude ratios, phase shifts, and LPVs

Prospects

- use realistic atmospheres in calculating visibilities and LPVs
- identify modes in observed stars
 - e.g. through multicolor photometry see Gerald Handler's talk
- constrain internal structure of rapidly rotating stars

Introduction	Theory	Seismology	α Ophiuchi	Conclusion
	00000	000000000000000000		

▲□▶ ▲圖▶ ▲国▶ ▲国▶ - 国 - のへ⊙

Introduction	Theory 00000	Seismology	α Ophiuchi	Conclusion

Supplementary material

æ

< 注 → < 注 → -

< 🗗 🕨
Introduction Theory Seismolegy on Ophiuchi Conclusion
Work integral

• it is possible to derive an integral expression for the complex frequencies:

$$A\omega^2 + 2B\omega + C = 0$$

where

$$A = \int_{V} \rho_{0}\xi^{2} \mathrm{dV},$$

$$B = \int_{V} \rho_{0} \left[m\Omega\xi^{2} - i\vec{\Omega} \cdot \left(\vec{\xi} \times \vec{\xi^{*}}\right) \right] \mathrm{dV}$$

$$\Re(C) = \text{a complicated expression}$$

$$\Im(C) = -\int_{V} \Im\left\{ \frac{\delta P \delta \rho^{*}}{\rho_{0}} \right\} \mathrm{dV}$$

• From this we deduce the excitation rate:

$$\Im(\omega) = -\frac{\Im(C)}{2(A\Re(\omega) + B)}$$

Introduction	Theory 00000	Seismology	lpha Ophiuchi	Conclusion
Work int	tegral			

- red = driving regions
- blue = damping regions

 obtained by integrating in horizontal direction + vertical anti-derivative

Introduction	Theory 00000	Seismology	α Ophiuchi	Conclusion

• rotation rate = 0.0 $\Omega_{\rm K}$, $\varepsilon = 0$

< ∃⇒

æ

Introduction	Theory	Seismology	α Ophiuchi	Conclusion
	00000	000000000000000000		

A multiplet

• rotation rate = 0.1 $\Omega_{
m K}$, $arepsilon = 4.9 imes 10^{-3}$

Introduction	Theory	Seismology	α Ophiuchi	Conclusion
	00000	000000000000000000000000000000000000000		

A multiplet

• rotation rate = 0.2 $\Omega_{
m K}$, $arepsilon = 1.9 imes 10^{-2}$

문 🕨 🗉 문

Introduction	Theory	Seismology	α Ophiuchi	Conclusion
	00000	000000000000000000000000000000000000000		

A multiplet

• rotation rate = 0.3 $\Omega_{\rm K}$, $\varepsilon = 4.3 imes 10^{-2}$

Introduction	Theory 00000	Seismology	α Ophiuchi	Conclusion

• rotation rate = 0.4 $\Omega_{
m K}$, $\varepsilon = 7.4 imes 10^{-2}$

Introduction	Theory	Seismology	α Ophiuchi	Conclusion
	00000	000000000000000000000000000000000000000		

• rotation rate = $0.5 \ \Omega_{\rm K}$, $\varepsilon = 11.2 \times 10^{-2}$

프 > 프

Introduction	Theory 00000	Seismology	lpha Ophiuchi	Conclusion

• rotation rate = $0.6 \ \Omega_{
m K}$, $\varepsilon = 15.5 \times 10^{-2}$

Introduction	Theory 00000	Seismology	α Ophiuchi	Conclusion
A multiplet				

• rotation rate = 0.4 $\Omega_{\rm K}$, arepsilon = 7.4 imes 10⁻²

ヨト イヨト