Be Stars and Rotational Mixing

Th. Rivinius, L.R. Rímulo & A.C. Carciofi

With many thanks for discussions to make things clearer to myself to S. Justham, N. Langer, P. Marchant, G. Meynet, F. Schneider

> European Southern Observatory, Chile IAG, São Paulo, Brasil

March 21, 2017

Some Be stars, Credit: Robert Gendler via APOD (January 9, 2006)

Pleione, Alkyone, Electra, Merope

Angular Momentum Mixing

Chemical Mixing

Conclusions

Content

Chemical Mixing

Be star classification

Definition (Be stars)

A non-supergiant B star whose spectrum has, or had at some time, one or more Balmer lines in emission. (Jaschek et al., 1981; Collins, 1987) (Non-sg B star: 3 to 15 solar masses, 10 000 to 28 000 K)

Physical properties of classical Be stars

Definition (Classical Be stars)

- Emission is formed in a disk
 - → Evidence: Interferometry, polarimetry
- Disk is created by central star through mass loss
 - → Evidence: Disks come and go in weeks to decades, absence of mass-transferring companion

More physical definition, still based on observational properties, but hard to apply. Though necessary to understand physics.

Physical properties of classical Be stars

Definition (Classical Be stars)

- Emission is formed in a disk
 - → Evidence: Interferometry, polarimetry
- Disk is created by central star through mass loss
 - → Evidence: Disks come and go in weeks to decades, absence of mass-transferring companion

More physical definition, still based on observational properties, but hard to apply. Though necessary to understand physics.

Observational corollary (Disk angular momentum)

- Disk is rotationally supported (i.e. Keplerian)
 - → Evidence: Spectro-interferometry, spectroscopy of shell stars, time behaviour of perturbed disks

Chemical Mixing

Astrophysical relevance

Most rapid massive rotators

- How did they evolve? How will they evolve?
- Differences vs. slower rotators in structure, chemistry etc.?
- Will the most massive ones become GRBs?
- Do they have magnetic fields? No!

Disk physics

- Brightest example pieces to study disk physics, with impacts on all scales:
 - → Catcalysmic variables
 - → Star & planet formation
 - → Our own Galactic Center
 - → AGNs

Angular Momentum Mixing

Chemical Mixing

Conclusions

How rapid is rapid rotation?

- Achernar at 88% of critical velocity (84% of Keplerian velocity)
- Cases in which inclination could be determined point to 80 to 90% critical (75 to 85% of Keplerian vel. above equator).

Chemical Mixing

Two thresholds!

Survey results

- Mean rotation rate 75 to 85% Keplerian, independant of subtype
- Huang et al. (2010) studied clusters, find only Be stars above certain rotation rates (no more B stars).

A B star can become a Be star

- If it rotates above about 70% of the equatorial Keplerian velocity
- This does not depend on spectral type.

A B star must become a Be star

- For early type B stars:
 - → If it rotates above about 70% of the equatorial Keplerian velocity
- For late type B stars
 - → If it rotates above about 95% of the equatorial Keplerian velocity
- This does depend on spectral type.

Chemical Mixing

Conclusions

What do we observe?

Physical model

- Disk structure analytically out of dynamical viscous model
- HDUST Monte Carlo radiative transfer model of Be star
 - \rightarrow High dynamic range, colour computed with model for human vision

Angular Momentum Mixing

Chemical Mixing

Conclusions

Content

Rimulo, Carciofi et al, submitted

Disk formation and decay

Disks are formed and decay inside out

 R/R_{ea}

- Disk evolves assuming standard viscuous disk processes
 - → Viscous disks cannot be stable
- Mass and AM lost in an individual event can be measured
 - → Outer radius is set by $v_{orb} = v_{sound}$ (e.g., Krtička, Owocki, & Meynet, 2011)

 R/R_{m}

Chemical Mixing

Angular momentum loss through a Be star disk cycle

Measuring Am loss through outer disk edge

- Bold: AM of current disk
- Dotted: AM that is not in star
- Difference: AM lost from system
 - → Disk forms, AM is lost to ISM when outer edge of disk reached
 - → Disk decays, part of AM is re-accreted, but still most is lost
 - → Vertical lines: Time snapshots from last slide

Intro	
000	000

Chemical Mixing

Conclusions

Finding well isolated events

SMC, OGLE II and III data, 12 years

- Total of \sim 1000 Be star candidates, 54 of those:
 - → Show clear, well isolated events, plus stretches of inactivity
 - → Only events with at least 15 days build-up time chosen
 - → Total of 81 events

Chemical Mixing

Conclusions

Modeling the event

Monte-Carlo radiative transfer modeling of lightcurves

- Large grid of models for each event
- Probablilty density functions found with Markov-Chain method

Chemical Mixing

Conclusions

The AM-loss rate

Say for a 10 solar mass star:

- $\dot{J} \approx 5 \times 10^{36} g \, \text{cm}^2 \, \text{s}^{-2}, \, 0.5 \tau_{\rm MS} = 3 \times 10^{14} \, \text{s}, \, 30\%$ duty cycle
- $\Delta J = 5 \times 10^{50} \mathrm{g \, cm^2 \, s^{-1}}$, (2.5% for critical solid body rotation)

Chemical Mixing

The evolving rotation of Main Sequence B stars

- Bold: Geneva code prediction (Ekström et al., 2008)
- Dotted: No AM mixing at all
- Obvious issue for late B stars, inconclusive for early ones

Chemical Mixing

The evolving rotation of Main Sequence B stars

- Bold: Geneva code prediction (Ekström et al., 2008)
- Dotted: No AM mixing at all
- Obvious issue for late B stars, inconclusive for early ones

Chemical Mixing

Is there MA mixing at all?

Binaries?

- If no AM mixing, all Be stars must be binary products
 - → Because then there is no evolutionary spin-up
- How long can a Be star remain above rotational threshold?
 - → Both evolutionary spin-down and disk spin down work against you
 - → E.g., if 25% of B stars are Be stars, but can be Be stars only for 1/4 of their min sequence life...

Definition (Spin-up and spin-down)

Spin-up: A star gets closer to the critical limit **Spin-down:** A star moves away from the critical limit

Chemical Mixing

Conclusions

The no-AM transfer hypothesis

At least some AM transfer is required to explain Be stars

- Two rigidly rotating models, 100% and 70% critical
- This much ΔJ (5 × 10⁵⁰g cm² s⁻¹) comes from 0.5 to 1 R_{eq} if the star has to remain above 70% on surface.

Chemical Mixing

Conclusions

Evolutionary spin-up

Chemical Mixing

Are Be stars inevitable?

If there is spin-up then

- Number of stars above Be star threshold will increase
- AM needs to be removed to keep star stable
- The most efficient way to remove AM
 - → is an equatorial viscous **disk**, not a wind.
- · Be stars are a natural consequence of evolutionary spin-up
- AM lost through the disk equals AM transported to surface
 - → Critical fraction remains about the same once Be-phenomenon started

Angular Momentum Mixing

Chemical Mixing

Conclusions

AM removed from the system, J vs. M_{\star}

But how much AM transfer?

- Blue line: Geneva models by Granada et al. 2013, J at surface
- One order of magnitude more than actual Be disks remove
 - → Even with 100% duty cycle, 30% are more typical

Chemical Mixing

AM removed from the system, J vs. $\tau/\tau_{\rm MS}$

When is the AM transfered?

Be stars more likely to exist in later stages of the MS evolution

Chemical Mixing

AM removed from the system, J vs. $\tau/\tau_{\rm MS}$

When is the AM transfered?

· AM loss rate increases with time

Chemical Mixing

Other disk quantities

- Typical mass loss rate $\sim 10^{-10} M_{\odot}/yr$
- But both \dot{M} and Σ_0 scale inversely with MS-lifetime
- Expected behaviour if AM mixing is controlled by nuclear timescale, but not for binary transfer products

Angular momentum mixing in rapid rotators

(Some) Angular momentum mixing is required

- Otherwise Be-star phase too short to explain ~20-25% incidence in
 - → Disk removes AM from surface layers

Predicted AM mixing too strong?

- AM removed from surface by disk measured for many (54) stars
 - → One to two orders of mag below Granada et al.

Be stars as binary evolution products

- Not touching mixing parameters:
 - → Overwhelming majority of Be stars then must come from binaries
 - → Strong constraints on post-interaction structure (rotation profile)
- Scaling down mixing:
 - → Leaves open fraction of single vs. binary produced Be stars.
 - → Weaker contraints constraints on post-interaction structure
 - → Naturally explains observed correlations with B subtype
 - → However: Still sufficent spin-up to make enough Be stars?

Angular Momentum Mixing

Chemical Mixing

Conclusions

Content

Chemical Mixing ●○

Single star results: Unmixed Be stars

Lennon et al. 2005, A&A, 438, 265

- Two Be stars in NGC 330 (SMC) lack any sign for rotational mixing
- No Nitrogen enhancement at all
- Other B stars in NGC330 do show enhancement

Nieva & Rivinius, in progress

- Three out of three MW Be stars analyzed in detail
- Fully consistent with ZAMS B star values
- More stars to be analyzed in the near future

Angular Momentum Mixing

Chemical Mixing

A survey of N in SMC/LMC Be stars

Dunstall et al., 2011, A&A 536, A65

- 30 Be stars from FLAMES survey in LMC and SMC
- Analysis included correction for emission (blue points)
- Abundances inconsistent with expected rotational enrichment

Angular Momentum Mixing

Chemical Mixing

Conclusions

0

Content

Rotational mixing in the most rapid rotators

Angular momentum and chemical mixing in Be stars

- Disk AM loss measured for a large sample of stars in SMC
- Abundances measured for a large sample of stars in LMC/SMC
 - → SMC means wind effects probably not important
- Disagreement with current predictions for rapidly rotating stars
 - → If binary products, chemical results may be more easily explained.

Future work

- Inhibition of rotational mixing (for most rapid rotators)?
- Extend AM loss measurement to LMC and MW
- Make local (MW) equivalent to LMC/SMC abundance analysis