New Heterotic GUT and Standard Model Vacua

Ralph Blumenhagen

MPI für Physik, München

based on: R.B., S. Moster, T. Weigand (hep-th/0603015), R.B., S. Moster, R. Reinbacher, T. Weigand (hep-th/0609nnn)

Mainly two kinds of semi-realistic compactifications:

Mainly two kinds of semi-realistic compactifications:

Compactifications with intersecting D-branes

Mainly two kinds of semi-realistic compactifications:

Compactifications with intersecting D-branes

Reviews: (Bl., Cvetic, Langacker, Shiu, hep-th/0502005), (Bl., Körs, Lüst, Stieberger, Phys. Rept. due this fall)

Mainly two kinds of semi-realistic compactifications:

Compactifications with intersecting D-branes

Reviews: (Bl., Cvetic, Langacker, Shiu, hep-th/0502005), (Bl., Körs, Lüst, Stieberger, Phys. Rept. due this fall)

see also talks by Bianchi, Choi, Cvetic, Lüst, Marchesano, Schellekens, Taylor, Verlinde

Heterotic strings on Calabi-Yau with bundles

Heterotic strings on Calabi-Yau with bundles

see talks by Faraggi, Kyae, Ovrut, Raby, Ratz

Heterotic strings on Calabi-Yau with bundles

see talks by Faraggi, Kyae, Ovrut, Raby, Ratz

Usually, one uses SU(4) and SU(5) vector bundles + discrete Wilson lines to get realistic string models. (Bouchard, Cvetic, Donagi), (Braun, He, Ovrut, Pantev)

Usually, one uses SU(4) and SU(5) vector bundles + discrete Wilson lines to get realistic string models. (Bouchard, Cvetic, Donagi), (Braun, He, Ovrut, Pantev)

Alternatively:

• Consider the $E_8 \times E_8$ heterotic string equipped with the specific class of bundles

$$W = V \oplus L$$

with structure group $G = SU(4) \times U(1)$.

Usually, one uses SU(4) and SU(5) vector bundles + discrete Wilson lines to get realistic string models. (Bouchard, Cvetic, Donagi), (Braun, He, Ovrut, Pantev)

Alternatively:

• Consider the $E_8 \times E_8$ heterotic string equipped with the specific class of bundles

$$W = V \oplus L$$

with structure group $G = SU(4) \times U(1)$.

• Embedding this structure group into one of the E_8 factors leads to the breaking to $H = SU(5) \times U(1)_X$, where the adjoint of E_8 decomposes as follows into $G \times H$ representations.

$$egin{aligned} {f 248} \longrightarrow \left\{ egin{array}{c} ({f 15},{f 1})_0 \ ({f 1,1})_0 + ({f 1,10})_4 + ({f 1,\overline{10}})_{-4} + ({f 1,24})_0 \ ({f 4,1})_{-5} + ({f 4,\overline{5}})_3 + ({f 4,10})_{-1} \ ({f \overline{4,1}})_5 + ({f \overline{4,5}})_{-3} + ({f \overline{4,\overline{10}}})_1 \ ({f 6,5})_2 + ({f 6,\overline{5}})_{-2} \end{array}
ight\}. \end{aligned}$$

reps.	Cohomology
10_{-1}	$H^*(\mathcal{M}, V \otimes L^{-1})$
10_4	$H^*(\mathcal{M}, L^4)$
$\overline{f 5}_3$	$H^*(\mathcal{M}, V \otimes L^3)$
$\overline{f 5}_{-2}$	$H^*(\mathcal{M}, \bigwedge^2 V \otimes L^{-2})$
1_{-5}	$H^*(\mathcal{M}, V \otimes L^{-5})$

Table 1: Massless spectrum of $H = SU(5) \times U(1)_X$ models.

reps.	Cohomology
10_{-1}	$H^*(\mathcal{M}, V \otimes L^{-1})$
10_4	$H^*(\mathcal{M}, L^4)$
$\overline{f 5}_3$	$H^*(\mathcal{M}, V \otimes L^3)$
$\overline{f 5}_{-2}$	$H^*(\mathcal{M}, \bigwedge^2 V \otimes L^{-2})$
1_{-5}	$H^*(\mathcal{M}, V \otimes L^{-5})$

Table 1: Massless spectrum of $H = SU(5) \times U(1)_X$ models.

Candidate for a flipped SU(5) model \rightarrow need to understand structure of $E_8 \times E_8$ compactification with U(N) bundles.

• Direct breaking of E_8 to the Standard Model group by a bundle with structure group $SU(5) \times U(1)$.

• Direct breaking of E_8 to the Standard Model group by a bundle with structure group $SU(5) \times U(1)$.

$SU(3) \times SU(2) \times U(1)_Y$	Cohom.
$({f 3},{f 2})_{rac{1}{3}}$	$H^*(V)$
$({f 3},{f 2})_{-rac{5}{3}}$	$H^*(L^{-1})$
$(\overline{f 3},{f 1})_{rac{2}{3}}$	$H^*(\bigwedge^2 V)$
$(\overline{f 3},{f 1})_{-rac{4}{3}}$	$H^*(V \otimes L^{-1})$
$({f 1},{f 2})_{-1}$	$H^*(\bigwedge^2 V \otimes L^{-1})$
$(1,1)_2$	$H^*(V \otimes L)$
$(1,1)_1$	$H^*(L^{-1})$

Santa Barbara, 31.08.2006 - p.7/30

Compactifications of the Heterotic String

- Compactifications of the Heterotic String
- Loop corrected Donaldson-Uhlenbeck-Yau condition

- Compactifications of the Heterotic String
- Loop corrected Donaldson-Uhlenbeck-Yau condition
- Flipped SU(5) vacua

- Compactifications of the Heterotic String
- Loop corrected Donaldson-Uhlenbeck-Yau condition
- Flipped SU(5) vacua
- Example of three-generation model

- Compactifications of the Heterotic String
- Loop corrected Donaldson-Uhlenbeck-Yau condition
- Flipped SU(5) vacua
- Example of three-generation model
- Conclusions and Outlook

- Compactifications of the Heterotic String
- Loop corrected Donaldson-Uhlenbeck-Yau condition
- Flipped SU(5) vacua
- Example of three-generation model
- Conclusions and Outlook

 $E_8 \times E_8$ HS with vector bundles of the following form

$$W=W_1\oplus W_2,$$

where $W_{1,2}$ is embedded into the first/second E_8 .

 $E_8 \times E_8$ HS with vector bundles of the following form

$$W=W_1\oplus W_2,$$

where $W_{1,2}$ is embedded into the first/second E_8 . We choose

$$W_i = V_{N_i} \oplus \bigoplus_{m_i=1}^{M_i} L_{m_i}$$

with $U(N_i)$ bundle V_{N_i} and the complex line bundles L_{m_i} .

 $E_8 \times E_8$ HS with vector bundles of the following form

$$W = W_1 \oplus W_2$$
,

where $W_{1,2}$ is embedded into the first/second E_8 . We choose

$$W_i = V_{N_i} \oplus \bigoplus_{m_i=1}^{M_i} L_{m_i}$$

with $U(N_i)$ bundle V_{N_i} and the complex line bundles L_{m_i} .

$$c_1(W_i) = c_1(V_{N_i}) + \sum_{m_i=1}^{M_i} c_1(L_{m_i}) = 0.$$

W can be embedded into an $SU(N_i+M_i)$ Garders, 31.08.2006 - p.9/30

Tadpole cancellation

Tadpole cancellation

 The Bianchi identity for the three-form H implies the tadpole cancellation condition

$$0 = \frac{1}{4(2\pi)^2} \left(\operatorname{tr}(\overline{F}_1^2) + \operatorname{tr}(\overline{F}_2^2) - \operatorname{tr}(\overline{R}^2) \right) - \sum_a N_a \overline{\gamma}_a,$$

to be satisfied in cohomology. Here $\overline{\gamma}_a$ are Poincare dual to two-cycles Γ_a wrapped by the N_a M5-branes.

Tadpole cancellation

 The Bianchi identity for the three-form H implies the tadpole cancellation condition

$$0 = \frac{1}{4(2\pi)^2} \left(\operatorname{tr}(\overline{F}_1^2) + \operatorname{tr}(\overline{F}_2^2) - \operatorname{tr}(\overline{R}^2) \right) - \sum_a N_a \overline{\gamma}_a,$$

to be satisfied in cohomology. Here $\overline{\gamma}_a$ are Poincare dual to two-cycles Γ_a wrapped by the N_a M5-branes. This can be written as

$$\sum_{i=1}^{2} \left(\operatorname{ch}_{2}(V_{N_{i}}) + \frac{1}{2} \sum_{m_{i}=1}^{M_{i}} c_{1}^{2}(L_{m_{i}}) \right) - \sum_{a} N_{a} \overline{\gamma}_{a} = -c_{2}(T).$$

Massless spectrum

Massless spectrum

The massless spectrum is determined by various cohomology classes

$$H^*(X,W),$$

where the bundles W can be derived from the explicit embedding of the structure group into SO(32) or $E_8 \times E_8$.

Massless spectrum

The massless spectrum is determined by various cohomology classes

$$H^*(X,W),$$

where the bundles W can be derived from the explicit embedding of the structure group into SO(32) or $E_8 \times E_8$.

• The net-number of chiral matter multiplets is given by the Euler characteristic of the respective bundle ${\cal W}$

$$\chi(X, \mathcal{W}) = \int_X \left[\operatorname{ch}_3(\mathcal{W}) + \frac{1}{12} c_2(T_X) c_1(\mathcal{W}) \right].$$

The Green-Schwarz mechanism

The Green-Schwarz mechanism

• All non-abelian cubic gauge anomalies do cancel, whereas the mixed abelian-nonabelian, the mixed abelian-gravitational and the cubic abelian ones do not.

The Green-Schwarz mechanism

 All non-abelian cubic gauge anomalies do cancel, whereas the mixed abelian-nonabelian, the mixed abelian-gravitational and the cubic abelian ones do not. They need to be cancelled by a generalised Green-Schwarz mechanism involving the terms

$$S_{GS} = \frac{1}{24 (2\pi)^5 \alpha'} \int B \wedge X_8,$$

and

$$S_{kin} = -\frac{1}{4\kappa_{10}^2} \int e^{-2\phi_{10}} H \wedge \star_{10} H.$$

(Lukas, Stelle, hep-th/9911156), (R.B., Honecker, Weigand, hep-th/0504232)

Hermitian Yang-Mills equation

Hermitian Yang-Mills equation

 At string tree level, the connection of the vector bundle has to satisfy the hermitian Yang-Mills equations

$$F_{ab} = F_{\overline{a}\overline{b}} = 0, \quad g^{a\overline{b}} F_{a\overline{b}} = \star [J \wedge J \wedge F] = 0.$$

F has to be a holomorphic vector bundle.

Hermitian Yang-Mills equation

 At string tree level, the connection of the vector bundle has to satisfy the hermitian Yang-Mills equations

$$F_{ab} = F_{\overline{a}\overline{b}} = 0, \quad g^{a\overline{b}} F_{a\overline{b}} = \star [J \wedge J \wedge F] = 0.$$

F has to be a holomorphic vector bundle.

 A necessary condition is the so-called Donaldson-Uhlenbeck-Yau (DUY) condition,

$$\int_X J \wedge J \wedge c_1(V_{N_i}) = 0, \qquad \int_X J \wedge J \wedge c_1(L_{m_i}) = 0,$$

to be satisfied for all n_i , m. If so, a theorem by Uhlenbeck-Yau guarantees a unique solution provided each term is μ -stable.

Computing the FI-terms, reveals a one-loop correction to the DUY equation in the presence of M5-branes, which leads to the conjecture (BI., Moster, Reinbacher, Weigand, alg-geom/0609nnn).

Computing the FI-terms, reveals a one-loop correction to the DUY equation in the presence of M5-branes, which leads to the conjecture (BI.,Moster, Reinbacher, Weigand, alg-geom/0609nnn). There exists a corresponding stringy one-loop correction to the HYM equation of the form

$$\star_{6} \left[J \wedge J \wedge F_{i}^{ab} - \frac{\ell_{s}^{4}}{4(2\pi)^{2}} e^{2\phi_{10}} F_{i}^{ab} \wedge \left(\operatorname{tr}_{E_{8i}}(F_{i} \wedge F_{i}) - \frac{1}{2} \operatorname{tr}(R \wedge R) \right) + \ell_{s}^{4} e^{2\phi_{10}} \sum_{a} N_{a} \left(\frac{1}{2} \mp \lambda_{a} \right)^{2} F_{i}^{ab} \wedge \overline{\gamma}_{a} \right] + \left(\operatorname{non-pert. terms} \right) = 0..$$

There exists a unique solution, once the bundle satisfies the corresponding integrability condition and the bundle is Λ -stable with respect to the slope

$$\Lambda(\mathcal{F}) = \frac{1}{\operatorname{rk}(\mathcal{F})} \left[\int_{X} J \wedge J \wedge c_{1}(\mathcal{F}) - \ell_{s}^{4} g_{s}^{2} \int_{X} c_{1}(\mathcal{F}) \wedge \left(\operatorname{ch}_{2}(V_{N_{i}}) + \frac{1}{2} \sum_{n_{i}=1}^{M_{i}} c_{1}^{2}(L_{n_{i}}) + \frac{1}{2} c_{2}(T) \right) + (\operatorname{npt}). \right]$$

There exists a unique solution, once the bundle satisfies the corresponding integrability condition and the bundle is Λ -stable with respect to the slope

$$\Lambda(\mathcal{F}) = \frac{1}{\operatorname{rk}(\mathcal{F})} \left[\int_{X} J \wedge J \wedge c_{1}(\mathcal{F}) - \ell_{s}^{4} g_{s}^{2} \int_{X} c_{1}(\mathcal{F}) \wedge \left(\operatorname{ch}_{2}(V_{N_{i}}) + \frac{1}{2} \sum_{n_{i}=1}^{M_{i}} c_{1}^{2}(L_{n_{i}}) + \frac{1}{2} c_{2}(T) \right) + (\operatorname{npt}). \right]$$

If, as for SU(N) Bundles

$$\lambda(V) = \mu(V),$$

we can immediately conclude that a μ -stable bundle is also λ -stable for sufficiently small string coupling q_s . Barbara, 31.08.2006 – p.15/30

Consider heterotic string on a Calabi-Yau manifold X with bundle

$$W = V \oplus L$$

with structure group $G = SU(4) \times U(1)$.

Consider heterotic string on a Calabi-Yau manifold X with bundle

$$W = V \oplus L$$

with structure group $G = SU(4) \times U(1)$.

reps.	Cohomology
10_{-1}	$H^*(\mathcal{M}, V \otimes L^{-1})$
$oxed{10_4}$	$H^*(\mathcal{M}, L^4)$
$\overline{f 5}_3$	$H^*(\mathcal{M}, V \otimes L^3)$
$\overline{f 5}_{-2}$	$H^*(\mathcal{M}, \bigwedge^2 V \otimes L^{-2})$
1_{-5}	$H^*(\mathcal{M}, V \otimes L^{-5})$

• If this really is flipped SU(5), then GUT breaking via Higgs in ${\bf 10}$.

- If this really is flipped SU(5), then GUT breaking via Higgs in 10.
- However, for $c_1(L) \neq 0$ the U(1) receives a mass via the GS mechanism \rightarrow standard SU(5) GUT with extra exotics + GUT breaking via discrete Wilson lines (Tatar, Watari, hep-th/0602238), (Andreas, Curio, hep-th/0602247)

- If this really is flipped SU(5), then GUT breaking via Higgs in 10.
- However, for $c_1(L) \neq 0$ the U(1) receives a mass via the GS mechanism \rightarrow standard SU(5) GUT with extra exotics + GUT breaking via discrete Wilson lines (Tatar, Watari, hep-th/0602238), (Andreas, Curio, hep-th/0602247)
- Embed a second line bundle into the other E_8 , such that a linear combination of the two observable U(1)'s remains massless

• Concretely, we embed the line bundle L also in the second E_8 , where it leads to the breaking $E_8 \to E_7 \times U(1)_2$ and the decomposition

248
$$\xrightarrow{E_7 \times U(1)} \left\{ (\mathbf{133})_0 + (\mathbf{1})_0 + (\mathbf{56})_1 + (\mathbf{1})_2 + c.c. \right\}.$$

• Concretely, we embed the line bundle L also in the second E_8 , where it leads to the breaking $E_8 \to E_7 \times U(1)_2$ and the decomposition

248
$$\xrightarrow{E_7 \times U(1)} \left\{ (\mathbf{133})_0 + (\mathbf{1})_0 + (\mathbf{56})_1 + (\mathbf{1})_2 + c.c. \right\}.$$

The resulting massless spectrum is

$E_7 \times U(1)_2$	bundle
56_{1}	L^{-1}
1_2	L^{-2}

• Concretely, we embed the line bundle L also in the second E_8 , where it leads to the breaking $E_8 \to E_7 \times U(1)_2$ and the decomposition

248
$$\xrightarrow{E_7 \times U(1)} \left\{ (\mathbf{133})_0 + (\mathbf{1})_0 + (\mathbf{56})_1 + (\mathbf{1})_2 + c.c. \right\}.$$

• The resulting massless spectrum is

$E_7 \times U(1)_2$	bundle
56_{1}	L^{-1}
1_2	L^{-2}

More general breakings are possible.

Tadpole cancellation condition

$$\operatorname{ch}_2(V) + 3\operatorname{ch}_2(L) - \sum_a N_a \overline{\gamma}_a = -c_2(T).$$

Tadpole cancellation condition

$$\operatorname{ch}_2(V) + 3\operatorname{ch}_2(L) - \sum_a N_a \overline{\gamma}_a = -c_2(T).$$

The linear combination

$$U(1)_X = -\frac{1}{2} \left(U(1)_1 - \frac{5}{2} U(1)_2 \right)$$

remains massless if the following conditions are satisfied

$$\int_X c_1(L) \wedge c_2(V) = 0, \ \int_{\Gamma_a} c_1(L) = 0 \quad \text{for all M5 branes.}$$

Flipped SU(5) vacua: spectrum

Flipped SU(5) vacua: spectrum

reps.	bundle	SM part.
$({f 10},{f 1})_{rac{1}{2}}$	$\chi(V) = g$	$(q_L, d_R^c, \nu_R^c) + [H_{10}]$
$(10,1)_{-2}$	$\chi(L^{-1}) = 0$	
$(\overline{f 5},{f 1})_{-rac{3}{2}}$	$\chi(V \otimes L^{-1}) = g$	(u_R^c, l_L)
$(\overline{f 5},{f 1})_1$	$\chi(\bigwedge^2 V) = 0$	$[(h_3, h_2) + (\overline{h}_3, \overline{h}_2)]$
$(1,1)_{rac{5}{2}}$	$\chi(V \otimes L) + \chi(L^{-2}) = g$	e_R^c
$(1,56)_{rac{5}{4}}$	$\chi(L^{-1}) = 0$	

Table 2: Massless spectrum of $H = SU(5) \times U(1)_X \times E_7$ models with $g = \frac{1}{2} \int_X c_3(V)$.

• One gets precisely g generations of flipped SU(5) matter.

- One gets precisely g generations of flipped SU(5) matter.
- Right handed leptons from the second E_8 are absent if

$$\int_X c_1^3(L) = 0.$$

- One gets precisely g generations of flipped SU(5) matter.
- Right handed leptons from the second E_8 are absent if

$$\int_X c_1^3(L) = 0.$$

• The generalised DUY condition for the bundle ${\cal L}$ simplifies to

$$\lambda(V) = \mu(V) = \int_X J \wedge J \wedge c_1(V) = 0,$$

Flipped SU(5) vacua: couplings

Flipped SU(5) vacua: couplings

• GUT breaking via $H_{10} + \overline{H}_{10}$ leads to a natural solution of the doublet-triplet splitting problem via a missing partner mechanism in the superpotential coupling

$$\mathbf{10}_{rac{1}{2}}^{H}\,\mathbf{10}_{rac{1}{2}}^{H}\,\mathbf{5}_{-1}.$$

Flipped SU(5) vacua: couplings

• GUT breaking via $H_{10}+\overline{H}_{10}$ leads to a natural solution of the doublet-triplet splitting problem via a missing partner mechanism in the superpotential coupling

$$\mathbf{10}_{rac{1}{2}}^{H}\,\mathbf{10}_{rac{1}{2}}^{H}\,\mathbf{5}_{-1}.$$

Gauge invariant Yukawa couplings

$${f 10}_{rac{1}{2}}^i \, {f 10}_{rac{1}{2}}^j \, {f 5}_{-1}, \quad {f 10}_{rac{1}{2}}^i \, {f \overline{5}}_{-rac{3}{2}}^j \, {f \overline{5}}_{1}, \quad {f \overline{5}}_{-rac{3}{2}}^i \, {f 1}_{rac{5}{2}}^j \, {f 5}_{-1},$$

lead to Dirac mass-terms for the d, (u, ν) and e quarks and leptons after electroweak symmetry breaking.

Flipped SU(5) vacua: couplings

Flipped SU(5) vacua: couplings

 Since the electroweak Higgs carries different quantum numbers than the lepton doublet, the dangerous dimension-four proton decay operators

$$egin{array}{lll} {f lle} & \in & {f \overline{5}}^i_{-rac{3}{2}} \, {f 1}^j_{rac{5}{2}} \, {f \overline{5}}^k_{-rac{3}{2}}, \,\, {f qdl}, \,\,\,\,\, {f udd} & \in & {f 10}^i_{rac{1}{2}} \, {f 10}^j_{rac{1}{2}} \, {f \overline{5}}^k_{-rac{3}{2}} \end{array}$$

are not gauge invariant.

Flipped SU(5) vacua: gauge coupl.

Flipped SU(5) vacua: gauge coupl.

• Breaking a stringy SU(5) or SO(10) GUT model via discrete Wilson lines, the Standard Model tree level gauge couplings satisfy

$$\alpha_3 = \alpha_2 = \frac{5}{3}\alpha_Y = \alpha_{GUT}$$

at the string scale.

Flipped SU(5) vacua: gauge coupl.

• Breaking a stringy SU(5) or SO(10) GUT model via discrete Wilson lines, the Standard Model tree level gauge couplings satisfy

$$\alpha_3 = \alpha_2 = \frac{5}{3}\alpha_Y = \alpha_{GUT}$$

at the string scale.

• Since the $U(1)_X$ has a contribution from the second E_8 , this relation gets modified to

$$\alpha_3 = \alpha_2 = \frac{8}{3}\alpha_Y = \alpha_{GUT}$$

Elliptically fibered Calabi-Yau manifold X

$$\pi:X\to B$$

with the property that the fiber over each point is an elliptic curve E_b and that there exist a section σ .

Elliptically fibered Calabi-Yau manifold X

$$\pi:X\to B$$

with the property that the fiber over each point is an elliptic curve E_b and that there exist a section σ .

• If the base is smooth and preserves only $\mathcal{N}=1$ supersymmetry in four dimensions, it is restricted to a del Pezzo surface, a Hirzebruch surface, an Enriques surface or a blow up of a Hirzebruch surface.

Elliptically fibered Calabi-Yau manifold X

$$\pi:X\to B$$

with the property that the fiber over each point is an elliptic curve E_b and that there exist a section σ .

- If the base is smooth and preserves only $\mathcal{N}=1$ supersymmetry in four dimensions, it is restricted to a del Pezzo surface, a Hirzebruch surface, an Enriques surface or a blow up of a Hirzebruch surface.
- Friedman, Morgan and Witten have defined stable SU(N) bundles on such spaces via the so-called spectral cover construction. (Friedman, Morgan, Witten, hep-th/9701162)

The idea is to use a simple description of SU(n) bundles over the elliptic fibers and then globally glue them together to define bundles over X.

The idea is to use a simple description of SU(n) bundles over the elliptic fibers and then globally glue them together to define bundles over X.

Mathematically, such a prescription is realized by the Fourier-Mukai transform

$$V = \pi_{1*}(\pi_2^* \mathcal{N} \otimes \mathcal{P}_B)$$

with

$$(X \times_B C, \mathcal{P}_B \otimes \pi_2^* \mathcal{N})$$

The idea is to use a simple description of SU(n) bundles over the elliptic fibers and then globally glue them together to define bundles over X.

Mathematically, such a prescription is realized by the Fourier-Mukai transform

$$V = \pi_{1*}(\pi_2^* \mathcal{N} \otimes \mathcal{P}_B)$$

with

$$(X \times_B C, \mathcal{P}_B \otimes \pi_2^* \mathcal{N})$$

Cohomology classes

ln

(Bl., Moster, Reinbacher, Weigand, hep-th/0609nnn)

Cohomology classes

In

(BI., Moster, Reinbacher, Weigand, hep-th/0609nnn) we will provide all the necessary mathematics to compute all relevant cohomology classes of vector bundles on X via various intertwined exact sequences from those of line bundles on B.

Cohomology classes

In

(Bl., Moster, Reinbacher, Weigand, hep-th/0609nnn)

we will provide all the necessary mathematics to compute all relevant cohomology classes of vector bundles on X via various intertwined exact sequences from those of line bundles on B.

For example:

$$H^{0}(X, V_{a} \otimes V_{b}) = 0,$$

$$H^{1}(X, V_{a} \otimes V_{b}) = H^{0}(C_{a} \cap C_{b}, \mathcal{N}_{a} \otimes \mathcal{N}_{b} \otimes K_{B}),$$

$$H^{2}(X, V_{a} \otimes V_{b}) = H^{1}(C_{a} \cap C_{b}, \mathcal{N}_{a} \otimes \mathcal{N}_{b} \otimes K_{B}),$$

$$H^{3}(X, V_{a} \otimes V_{b}) = 0.$$

For the special case $V_a=\mathcal{O}_X$ and $C_a=\sigma$, one finds agreement with (Donagi, He, Ovrut, Reinbacher, hep-th/0405014)

Using stable bundle extensions

$$0 \to V_1 \to V \to V_2 \to 0$$

we have so far found concrete flipped SU(5) models with just three generations of MSSM quarks and leptons plus one vector-like GUT Higgs, i.e.

$$H^{i}(X, V) = (0, 1, 4, 0).$$

Jumping over many technical details, the total spectrum of the "best" example we found so far reads

$SU(5) \times U(1)_X \times E_6$	Cohomology	χ
$({f 10},{f 1})_{rac{1}{2}}$	(0, 1, 4, 0)	3
$({f 10},{f 1})_{-2}$	(0,0,0,0)	0
$(\overline{f 5},{f 1})_{-rac{3}{2}}$	(0,0,3,0)	3
$(\overline{f 5},{f 1})_1$	(0, [51, 55], [51, 55], 0)	0
$(1,1)_{rac{5}{2}}$	(0,0,3,0) + (0,[0,2],[0,2],0)	3
$(1,27)_{rac{5}{6}}$	(0,0,0,0)	0
$({f 1},{f 27})_{-rac{5}{3}}$	(0,0,0,0)	0

• Heterotic string compactifications with U(N) bundles provide new prospects for string model building.

- Heterotic string compactifications with U(N) bundles provide new prospects for string model building.
- They do have multiple anomalous U(1) gauge symmetries, which are cancelled by a generalised Green-Schwarz mechanism.

- Heterotic string compactifications with U(N) bundles provide new prospects for string model building.
- They do have multiple anomalous U(1) gauge symmetries, which are cancelled by a generalised Green-Schwarz mechanism.
- There appears a one-loop correction to the DUY supersymmetry condition, motivating a new notion of stability of vector bundles.

- Heterotic string compactifications with U(N) bundles provide new prospects for string model building.
- They do have multiple anomalous U(1) gauge symmetries, which are cancelled by a generalised Green-Schwarz mechanism.
- There appears a one-loop correction to the DUY supersymmetry condition, motivating a new notion of stability of vector bundles.
- Three generation flipped SU(5) and SM like vacua can be constructed on elliptically fibered CY manifolds.

- Heterotic string compactifications with U(N) bundles provide new prospects for string model building.
- They do have multiple anomalous U(1) gauge symmetries, which are cancelled by a generalised Green-Schwarz mechanism.
- There appears a one-loop correction to the DUY supersymmetry condition, motivating a new notion of stability of vector bundles.
- Three generation flipped SU(5) and SM like vacua can be constructed on elliptically fibered CY manifolds.
- Relation between heterotic orbifold constructions and the smooth Calabi-Yau description? (Buchmüller, Hamaguchi, Lebedev, Ratz, hep-ph/0511035), (Kim, Kyae, hep-th/0608086)

- Heterotic string compactifications with U(N) bundles provide new prospects for string model building.
- They do have multiple anomalous U(1) gauge symmetries, which are cancelled by a generalised Green-Schwarz mechanism.
- There appears a one-loop correction to the DUY supersymmetry condition, motivating a new notion of stability of vector bundles.
- Three generation flipped SU(5) and SM like vacua can be constructed on elliptically fibered CY manifolds.
- Relation between heterotic orbifold constructions and the smooth Calabi-Yau description? (Buchmüller, Hamaguchi, Lebedev, Ratz, hep-ph/0511035), (Kim, Kyae, hep-th/0608086)
- Heterotic Landscape?