# Coisotropic Model Building 

## Fernando Marchesano

Ludwig Maximilians Universität - München


# Coisotropic Model Building 

## Fernando Marchesano

Ludwig Maximilians Universität - München

In collaboration with:
Anamaría Font and Luis Ibáñez hep-th/0607219

## String Model-Building

A classical question in string theory is if we can reproduce the SM as an effective theory

## String Model-Building

- A classical question in string theory is if we can reproduce the SM as an effective theory


## Four observable dimensions

3 Quarks \& Leptons generations Spontaneous EWSB

$$
S U(3) \times S U(2) \times U(I)
$$

Chirality
Gauge coupling constants
Yukawa couplings

## String Model-Building

## String Model-Building

Problem: we have not solved String/M-theory

## String Model-Building

- Problem: we have not solved String/M-theory
- Strategy: we explore a region of the theory which is under control

11-D Supergravity

You are here


## String Model-Building

- Problem: we have not solved String/M-theory
- Strategy: we explore a region of the theory which is under control

11-D Supergravity


- Classical scheme: high string scale, $\Lambda_{4}=0$, $\mathrm{D}=4 \mathrm{~N}=1$ gravity \& MSSM sector + SUSY source


## D-brane Model-Building

## D-brane Model-Building

## $D=4$ gravity

$\mathrm{U}(\mathrm{N})$ theory

Chiral fermions

# D-brane Model-Building 

$D=4$ gravity
compactification on
$M_{4} \times X_{6}$

- $\mathrm{U}(\mathrm{N})$ theory

Chiral fermions


## D-brane Model-Building


$\mathrm{U}(\mathrm{N})$ theory


Dp-brane wrapping a submanifold $\Pi_{p-3} \subset X_{6}$

Chiral fermions


## D-brane Model-Building

$D=4$ gravity

compactification on
$M_{4} \times X_{6}$
Dp-brane wrapping a submanifold $\Pi_{p-3} \subset X_{6}$

Chiral fermions
$\left(N_{a}, \overline{N_{b}}\right)$ from $\Pi_{p-3}^{a} \cap \Pi_{p^{\prime}-3}^{b}$


# =1D-brane Model-Building 

## $\mathrm{D}=4$ gravity sugra $^{\text {gra }} \longleftarrow \quad \begin{array}{r}\text { compactification } \\ M_{4} \times V_{6} Y_{3}\end{array}$

- U(N) theory $\longleftarrow \quad$ BPS Dp-brane wrapping
a submanifold $\Pi_{p-3} \subset X_{6}$
- Chiral fermionstiplets $\left(N_{a}, \overline{N_{b}}\right)$ from $\Pi_{p-3}^{a} \cap \Pi_{p^{\prime}-3}^{b}$



## D6-brane Model-Building

## D6-brane Model-Building

D6-branes wrap 3-cycles $\Pi_{3}^{a} \subset C Y_{3}$

## D6-brane Model-Building

D6-branes wrap 3-cycles $\Pi_{3}^{a} \subset C Y_{3}$

Each intersection gives rise to a $D=4$ chiral fermion
Berkaoz et al, '96

## D6-brane Model-Building

- D6-branes wrap 3-cycles $\Pi_{3}^{a} \subset C Y_{3}$

Each intersection gives rise to a $D=4$ chiral fermion


Berkaoz et al. '96

- Chiral spectrum: $I_{a b}=\left[\Pi_{3}^{a}\right] \circ\left[\Pi_{3}^{b}\right] \quad\left(N_{a}, \overline{N_{b}}\right)$


Marina et al.' 99

## D6-brane Model-Building

SUSY conditions


## D6-brane Model-Building

SUSY conditions

$$
\begin{array}{llc}
\mathrm{F}-\text { flatness } & \mathcal{F}+\left.i J\right|_{\Pi_{3}}=0 & \text { Lagrangian } \\
\mathrm{D}-\text { flatness } & \left.\operatorname{Im} \Omega\right|_{\Pi_{3}}=0 & \text { Special Lagrangian }
\end{array}
$$

Gauge kinetic function

$$
f_{a}=\int_{\Pi_{3}^{a}} e^{-\phi} \operatorname{Re} \Omega+i \overleftarrow{C_{3}}
$$

## D6-brane Model-Building

SUSY conditions

$$
\begin{array}{llc}
\mathrm{F}-\text { flatness } & \mathcal{F}+\left.i J\right|_{\Pi_{3}}=0 & \text { Lagrangian } \\
\mathrm{D}-\text { flatness } & \left.\operatorname{Im} \Omega\right|_{\Pi_{3}}=0 & \text { Special Lagrangian }
\end{array}
$$

Gauge kinetic function

$$
f_{a}=\int_{\Pi_{3}^{a}} e^{-\phi} \operatorname{Re} \Omega+i \overleftarrow{C_{3}} \text { Volume }
$$

Yukawa couplings

Very nice. .

# ...didn't we miss something?? 

## Let's $\$$

## D6-brane Model-Building

SUSY conditions

$$
\begin{array}{llc}
\mathrm{F}-\text { flatness } & \mathcal{F}+\left.i J\right|_{\Pi_{3}}=0 & \text { Lagrangian } \\
\mathrm{D}-\text { flatness } & \left.\operatorname{Im} \Omega\right|_{\Pi_{3}}=0 & \text { Special Lagrangian }
\end{array}
$$

Gauge kinetic function

$$
f_{a}=\int_{\Pi_{3}^{a}} \underbrace{\phi}-\frac{\mathrm{e} \text { tunction } \Omega+i \overleftarrow{C_{3}}}{\text { Volume }}
$$

Yukawa couplings


## D6-brane Model-Building

- D6-branes wrap 3-cycles $\Pi_{3}^{a} \subset C Y_{3}$

Each intersection gives rise to a $D=4$ chiral fermion


Berkaoz et al, '96

Chiral spectrum: $I_{a b}=\left[\Pi_{3}^{a}\right] \circ\left[\Pi_{3}^{b}\right] \quad\left(N_{a}, \overline{N_{b}}\right)$

## String Model-Building

- Problem: we have not solved String/M-theory
- Strategy: we explore a region of the theory which is under control

11-D Supergravity


## String Model-Building

- Problem: we have not solved String/M-theory
- Strategy: we explore a region of the theory which is under control

11-D Supergravity


Type IIA D-branes

## Type IIA D-branes

There are three kinds of space-filling D-branes in type IIA

- D4-branes
- D6-branes
- D8-branes


## Type IIA D-branes

There are three kinds of space-filling D-branes in type IIA

- D4-branes

- D6-branes
- D8-branes


## Type IIA D-branes

There are three kinds of space-filling D-branes in type IIA

- D4-branes
- D6-branes
- D8-branes

If we consider D4-branes, they should be wrapping a I-cycle $\Pi_{1}$. However, in generic CY's $b_{1}=0$, so the Chern-Simons action

$$
\int_{M_{4} \times \Pi_{1}} C_{5}
$$

vanishes

## Type IIA D-branes

There are three kinds of space-filling D-branes in type IIA

- D4-branes
- D6-branes
- D8-branes

If we consider D4-branes, they should be wrapping a I-cycle $\Pi_{1}$. However, in generic CY's $b_{1}=0$, so the Chern-Simons action

$$
\int_{M_{4} \times \Pi_{1}} C_{5}
$$

vanishes $\Rightarrow$ No central charge

## Type IIA D-branes

There are three kinds of space-filling D-branes in type IIA

- D4-branes
- D6-branes
- D8-branes

If we consider D4-branes, they should be wrapping a I-cycle $\Pi_{1}$. However, in generic CY's $b_{1}=0$, so the Chern-Simons action

$$
\int_{M_{4} \times \Pi_{1}} C_{5}
$$

vanishes $\Rightarrow$ No central charge $\Rightarrow$ No BPS D4-brane

## What about D8-branes?

## What about D8-branes?

- Naively, the same argument works for D8-branes:
- $b_{1}=b_{5}=0 \quad \Rightarrow \quad \Pi_{5}$ is homologically trivial
- $\int_{M_{4} \times \Pi_{5}} C_{9}=0$


## What about D8-branes?

- Naively, the same argument works for D8-branes:

$$
\begin{aligned}
& b_{1}=b_{5}=0 \Rightarrow \Pi_{5} \text { is homologically trivial } \\
& \int_{M_{4} \times \Pi_{5}} C_{9}=0
\end{aligned}
$$

However, D8-branes can carry internal worldvolume fluxes $\mathcal{F}_{\mu \nu}=B_{\mu \nu}+2 \pi \alpha^{\prime} F_{\mu \nu}$, and so the CS action reads

$$
\int_{M_{4} \times \Pi_{5}} C_{9}+\int_{M_{4} \times \Pi_{5}} C_{7} \wedge \mathcal{F}
$$

## What about D8-branes?

- Naively, the same argument works for D8-branes:

$$
\begin{aligned}
& b_{1}=b_{5}=0 \Rightarrow \Pi_{5} \text { is homologically trivial } \\
& \int_{M_{4} \times \Pi_{5}} C_{9}=0
\end{aligned}
$$

- However, D8-branes can carry internal worldvolume fluxes $\mathcal{F}_{\mu \nu}=B_{\mu \nu}+2 \pi \alpha^{\prime} F_{\mu \nu}$, and so the CS action reads

$$
\int_{M_{4} \times \Pi_{5}} C_{9}+C_{M_{4} \times \Pi_{5}}^{C_{7} \wedge \mathcal{F}}
$$

The second term will not vanish iff there is a dissolved D6-brane charge on our D8-brane

## What about D8-branes?

Idea: we can have a D8-brane with

- Trivial D8-brane charge
- Non-trivial induced D6-brane charge

induced D6
* So, in principle, we can also have BPS D8-branes !!!


## Going Coisotropic

## Going Coisotropic

In terms of topological strings, having BPS D8-branes implies that there are A-branes which are not Lagrangian

## Going Coisotropic

- In terms of topological strings, having BPS D8-branes implies that there are A-branes which are not Lagrangian
- Such possibility was pointed out by Kapustin and Orlov. In a CY $n$ we can have
- Typical A-branes: Lagrangian $n$-cycle, $\mathcal{F}=0$
- Exotic A-branes: Coisotropic $(n+2 k)$-cycle, $\mathcal{F} \neq 0$


## Going Coisotropic

- In terms of topological strings, having BPS D8-branes implies that there are A-branes which are not Lagrangian
- Such possibility was pointed out by Kapustin and Orlov. In a CY ${ }_{n}$ we can have
- Typical A-branes: Lagrangian $n$-cycle, $\mathcal{F}=0$
- Exotic A-branes: Coisotropic $(n+2 k)$-cycle, $\mathcal{F} \neq 0$
- We are interested in the case $n=3$, which means that coisotropic A-branes must wrap 5 -cycles with $\mathcal{F} \neq 0$
- Because those 5-cycles are trivial in homology, they are difficult to construct. No examples in the coisotropic literature


## Going Coisotropic

## Going Coisotropic

The BPS conditions for A-branes read

## D6-branes

$$
\begin{array}{lc}
\text { F-flatness } & \mathcal{F}+\left.i J\right|_{\Pi_{3}}=0 \\
\text { D-flatness } & \left.\operatorname{Im} \Omega\right|_{\Pi_{3}}=0
\end{array}
$$

## Going Coisotropic

The BPS conditions for A-branes read

$$
\begin{array}{lccc} 
& \text { D6-branes } & \text { D8-branes } \\
\text { F-flatness } & \mathcal{F}+\left.i J\right|_{\Pi_{3}}=0 & \left.(\mathcal{F}+i J)^{2}\right|_{\Pi_{5}}=0 & \text { Rapustin \& Orloa'O1 } \\
\text { D-flatness } & \left.\operatorname{Im} \Omega\right|_{\Pi_{3}}=0 & \left.\mathcal{F} \wedge \operatorname{Im} \Omega\right|_{\Pi_{5}}=0 & \text { Kapustin \& Li' O3 }
\end{array}
$$

## Going Coisotropic

- The BPS conditions for A-branes read


## D6-branes D8-branes

$$
\begin{array}{lcll}
\text { F-flatness } & \mathcal{F}+\left.i J\right|_{\Pi_{3}}=0 & \left.(\mathcal{F}+i J)^{2}\right|_{\Pi_{5}}=0 & \text { Kapustin \& Orloa' O1 } \\
\text { D-flatness } & \left.\operatorname{Im} \Omega\right|_{\Pi_{3}}=0 & \left.\mathcal{F} \wedge \operatorname{Im} \Omega\right|_{\Pi_{5}}=0 & \text { Kapustin \& \&i'O3 }
\end{array}
$$

- Let us consider the case where $\mathcal{F}=2 \pi \alpha^{\prime} F$, and $\left[\Pi_{3}^{F}\right]$ to be the Poincaré dual of $[F / 2 \pi]$. Then the BPS conditions suggest

$$
\begin{aligned}
\left.J\right|_{\Pi_{3}^{F}}=0 & \left.\sim \mathcal{F} \wedge J\right|_{\Pi_{5}}=0 \\
\left.\operatorname{Im} \Omega\right|_{\Pi_{3}^{F}}=0 & \left.\sim \mathcal{F} \wedge \operatorname{Im} \Omega\right|_{\Pi_{5}}=0
\end{aligned}
$$

So $\Pi_{3}^{F}$ looks like an special Lagrangian 3-cycle in $\mathbf{C Y}_{3}$

## A toroidal example

Let us consider $\mathbf{T}^{2} \times \mathbf{T}^{2} \times \mathbf{T}^{2}$ and the D8-brane

$\left(\mathrm{T}^{2}\right)_{2}$
$\Pi_{5}=(1,0)_{1} \times\left(\mathbf{T}^{2}\right)_{2} \times\left(\mathbf{T}^{2}\right)_{3}$ $F / 2 \pi=d x^{2} \wedge d x^{3}-d y^{2} \wedge d y^{3}$

## A toroidal example

- Let us consider $\mathbf{T}^{2} \times \mathbf{T}^{2} \times \mathbf{T}^{2}$ and the D8-brane


$$
\left(\mathrm{T}^{2}\right)_{1}
$$

$$
\Pi_{5}=(1,0)_{1} \times\left(\mathbf{T}^{2}\right)_{2} \times\left(\mathbf{T}^{2}\right)_{3}
$$

$$
F / 2 \pi=d x^{2} \wedge d x^{3}-d y^{2} \wedge d y^{3}
$$

The BPS conditions read

$$
\begin{aligned}
& \text { D-term } m \text { Trivial } \\
& \text { F-term }\left\{\begin{array}{l}
J_{c} \wedge F=0 \\
J_{c}^{2}+F^{2}=0 \quad \Longleftrightarrow
\end{array}\right. \\
& J_{c}=B+i J \quad T_{2} T_{3}=1
\end{aligned}
$$

## A toroidal example

- Let us consider $\mathbf{T}^{2} \times \mathbf{T}^{2} \times \mathbf{T}^{2}$ and the D8-brane


$$
\left(\mathrm{T}^{2}\right)_{1}
$$

$$
\Pi_{5}=(1,0)_{1} \times\left(\mathbf{T}^{2}\right)_{2} \times\left(\mathbf{T}^{2}\right)_{3}
$$

$$
F / 2 \pi=d x^{2} \wedge d x^{3}-d y^{2} \wedge d y^{3}
$$

## - Notice that

$$
\left[\Pi_{3}^{F}\right]=[(1,0)(1,0)(1,0)]+[(1,0)(0,1)(0,-1)]
$$

and so the D6-brane charge is not of the form (I-cycle) $\times$ (I-cycle) $\times$ (I-cycle), like for CFT D6-branes

## D8-branes on $Z_{2} \times Z_{2}$

$$
b_{1}\left(\mathbf{T}^{6}\right) \neq 0
$$

## D8-branes on $Z_{2} \times Z_{2}$

Notice that $b_{1}\left(\mathbf{T}^{6}\right) \neq 0$, so finding BPS D8-branes is not that surprising.

## D8-branes on $Z_{2} \times Z_{2}$

- Notice that $b_{1}\left(\mathbf{T}^{6}\right) \neq 0$, so finding BPS D8-branes is not that surprising.

Let us set $b_{1}=0$ by orbifolding our theory by $\mathbf{Z}_{2} \times \mathbf{Z}_{2}$ :


Tadpoles

## Tadpoles

Because is the only surviving one, D8-branes contribute to RR tadpoles via its induced D6-brane charge

$$
\sum_{a \in D 6} N_{a}\left[\Pi_{3}^{a}\right]+\sum_{b \in D 8} N_{b}\left[\Pi_{3}^{F_{b}}\right]=4\left[\Pi_{3}^{O 6}\right]
$$

## Tadpoles

- Because is the only surviving one, D8-branes contribute to RR tadpoles via its induced D6-brane charge

$$
\sum_{a \in D 6} N_{a}\left[\Pi_{3}^{a}\right]+\sum_{b \in D 8} N_{b}\left[\Pi_{3}^{F_{b}}\right]=4\left[\Pi_{3}^{O 6}\right]
$$

- SUSY guarantees the cancellation of NSNS tadpoles, which are related to D-branes tensions. These tensions are also related to the gauge coupling constants:

$$
\frac{1}{g_{b}^{2}}=\int_{\Pi_{5}^{b}} e^{-\phi} \frac{F_{b}}{2 \pi} \wedge \operatorname{Re} \Omega=\int_{\Pi_{3}^{F_{b}}} e^{-\phi} \operatorname{Re} \Omega
$$

- In fact, the gauge kinetic function reads

$$
f_{b}=\int_{\Pi_{3}^{F_{b}}} e^{-\phi} \operatorname{Re} \Omega+i C_{3}
$$

## Chirality

## Chirality

Chirality arises from a mixture of intersection and magnetization mechanisms, as in type IIB

D8 - D8


D 8 - $\mathrm{D} 8_{\mathrm{b}}$

$\mathrm{D} 8 \mathrm{a}-\mathrm{D} 6_{\mathrm{b}}$


## Chirality

Chirality arises from a mixture of intersection and magnetization mechanisms, as in type IIB

D8 $-\mathrm{D} 8_{\mathrm{b}}$


D8- D8


D8- D6


* However, the net number of chiral fermions is given by

$$
I_{a b}=\left[\Pi_{3}^{D 8_{a}}\right] \circ\left[\Pi_{3}^{D 8_{b}}\right] \quad \text { or } \quad I_{a b}=\left[\Pi_{3}^{D 6_{a}}\right] \circ\left[\Pi_{3}^{D 8_{b}}\right]
$$

## Yukawa couplings

## Yukawa couplings

- For D6-branes Yukawas arise from worldsheet instantons



## Yukawa couplings

- For D6-branes Yukawas arise from worldsheet instantons


For D8-branes both instantons and overlapping wavefunctions may be at work


## Superpotential

## Superpotential

The supersymmetry conditions can be understood from the effective scalar potential

$$
V_{N S N S}=\sum_{a} T_{D 6_{a}}+\sum_{b} T_{D 8_{b}}-4 T_{O 6}
$$

## Superpotential

The supersymmetry conditions can be understood from the effective scalar potential

$$
V_{N S N S}=\sum_{a} T_{D 6_{a}}+\sum_{b} T_{D 8_{b}}-4 T_{O 6}
$$

A D8-brane contribution is given by

$$
2 \operatorname{Re} f_{8} V_{D 8}=\left(\int_{\Pi_{5}} \mathcal{F} \wedge \operatorname{Im} \Omega\right)^{2}+e^{-2 \phi}| | l_{i} \|^{2}\left(\int_{\mathbf{T}^{4}}(\mathcal{F}+i J)^{2}\right)^{2}
$$

## Superpotential

The supersymmetry conditions can be understood from the effective scalar potential

$$
V_{N S N S}=\sum_{a} T_{D 6_{a}}+\sum_{b} T_{D 8_{b}}-4 T_{O 6}
$$

A D8-brane contribution is given by

$$
2 \operatorname{Re} f_{8} V_{D 8}=\left(\int_{\Pi_{5}} \mathcal{F} \wedge \operatorname{Im} \Omega\right)^{2}+e^{-2 \phi}\left\|l_{i}\right\|^{2}\left(\int_{\mathbf{T}^{4}}(\mathcal{F}+i J)^{2}\right)^{2}
$$

## Superpotential

The supersymmetry conditions can be understood from the effective scalar potential

$$
V_{N S N S}=\sum_{a} T_{D 6_{a}}+\sum_{b} T_{D 8_{b}}-4 T_{O 6}
$$

A D8-brane contribution is given by


- F-term $m$ Can be derived from the superpotential

$$
W=X_{i}\left(T_{j} T_{k}-n\right)
$$

$X_{i}$ : open string field (location + Wilson line)

$$
n=n^{x y} n^{y x}-n^{x x} n^{y y}
$$

## Superpotential

## Superpotential

This kind of open-closed superpotentials are very attractive for moduli fixing.

## Superpotential

This kind of open-closed superpotentials are very attractive for moduli fixing.

- However, one should be careful before concluding that Kähler moduli are stabilized because of the D8-brane. There could be extra open string moduli, coupled as

$$
W_{\text {open }}=X_{i} X_{j} X_{k}
$$

just like happens for D6-branes.
Douglas'98

## Superpotential

- This kind of open-closed superpotentials are very attractive for moduli fixing.
- However, one should be careful before concluding that Kähler moduli are stabilized because of the D8-brane. There could be extra open string moduli, coupled as

$$
W_{\text {open }}=X_{i} X_{j} X_{k}
$$

just like happens for D6-branes.
Douglas'98

- In this case the F-flatness condition reads

$$
\frac{\partial W}{\partial X_{i}}=\left(T_{j} T_{k}+X_{j} X_{k}-n\right)=0
$$

and only a combination of open and closed string moduli is fixed (like for D-term potentials).

## An MSSM-like model

$$
\mathbf{Z}_{2} \times \mathbf{Z}_{2}
$$

| $x x \quad x y \quad y x \quad y y$ |  |  |
| :---: | :---: | :---: |
| $D 8_{a}$ | $N_{a}=3+1$ | $(1,0)_{1} \times(1,3,-3,-10)_{23}$ |
| $D 6_{b}$ | $N_{b}=1$ | $(0,1)_{1}(1,0)_{2}(0,-1)_{3}$ |
| $D 6_{c}$ | $N_{c}=1$ | $(0,1)_{1}(0,-1)_{2}(1,0)_{3}$ |


| D6 | D6 |  |
| :--- | :--- | :--- |
|  |  |  |
|  |  | D8 |


$\times$|  |  |
| :--- | :--- |


[ $\quad \mathrm{SU}(2)_{\mathrm{L}}$
—— $\quad \mathrm{SU}(2)_{\mathrm{R}}$

## An MSSM-like model

- Let us consider the $\mathrm{Z}_{2} \times \mathbf{Z}_{2}$ orientifold background and the following set of D8 and D6-branes

| $D 8_{a}$ | $N_{a}=3+1$ | $(1,0)_{1} \times(1,3,-3,-10)_{23}$ |
| :---: | :---: | :---: |
| $D 6_{b}$ | $N_{b}=1$ | $(0,1)_{1}(1,0)_{2}(0,-1)_{3}$ |
| $D 6_{c}$ | $N_{c}=1$ | $(0,1)_{1}(0,-1)_{2}(1,0)_{3}$ |


| D6 | D6 |  |
| :--- | :--- | :--- |
|  |  |  |
|  |  | D8 |


$\qquad$ $S U(2)_{L}$
$\square \operatorname{SU}(2)_{R}$

## An MSSM-like model

- Let us consider the $\mathrm{Z}_{2} \times \mathrm{Z}_{2}$ orientifold background and the following set of D8 and D6-branes

| $D 8_{a}$ | $N_{a}=3+1$ | $(1,0)_{1} \times(1,3,-3,-10)_{23}$ |
| :---: | :---: | :---: |
| $D 6_{b}$ | $N_{b}=1$ | $(0,1)_{1}(1,0)_{2}(0,-1)_{3}$ |
| $D 6_{c}$ | $N_{c}=1$ | $(0,1)_{1}(0,-1)_{2}(1,0)_{3}$ |


| D6 | D6 |  |
| :--- | :--- | :--- |
|  |  |  |
|  |  | D8 |

$$
\begin{array}{|l|l|}
\hline & \\
\hline
\end{array}
$$

$$
\underbrace{\mathrm{F} \neq 0}_{\mathrm{SU}(3) \mathrm{xU}(1)} \mathrm{O6}
$$

$\qquad$ - $\quad \mathrm{SU}(2)_{\mathrm{L}}$
(V) LR MSSM spectrum

## Very similar to the prewious D6-madel...



Very similar to the previous D6-model. . .
Cremades et al. '03

| $N_{\alpha}$ | $\left(n_{\alpha}^{1}, m_{\alpha}^{1}\right)$ | $\left(n_{\alpha}^{2}, m_{\alpha}^{2}\right)$ | $\left(n_{\alpha}^{3}, m_{\alpha}^{3}\right)$ |
| :---: | :---: | :---: | :---: |
| $N_{a}=3+1$ | $(1,0)$ | $(3,1)$ | $(3,-1)$ |
| $N_{b}=1$ | $(0,1)$ | $(1,0)$ | $(0,-1)$ |
| $N_{c}=1$ | $(0,1)$ | $(0,-1)$ | $(1,0)$ |



## An MSSM-like model

- Let us consider the $\mathrm{Z}_{2} \times \mathrm{Z}_{2}$ orientifold background and the following set of D8 and D6-branes

| $D 8_{a}$ | $N_{a}=3+1$ | $(1,0)_{1} \times(1,3,-3,-10)_{23}$ |
| :---: | :---: | :---: |
| $D 6_{b}$ | $N_{b}=1$ | $(0,1)_{1}(1,0)_{2}(0,-1)_{3}$ |
| $D 6_{c}$ | $N_{c}=1$ | $(0,1)_{1}(0,-1)_{2}(1,0)_{3}$ |


| D6 | D6 |  |
| :--- | :--- | :--- |
|  |  |  |
|  |  | D8 |



- LR MSSM spectrum $\qquad$

An MSSM-like model

## An MSSM-like model

- We can introduce additional D-branes to cancel tadpoles:
$x x \quad x y \quad y x \quad y y$

| $D 8_{Z}$ | $N_{Z}=1$ | $(0,1)_{1}(0,-1,-1,0)_{23}$ |
| :---: | :---: | :---: |
| $D 6_{M}$ | $N_{M}=2$ | $(-2,1)_{1}(-3,1)_{2}(-3,1)_{3}$ |
| $D 6_{F}$ | $N_{F}=4$ | $(1,0)_{1}(1,0)_{2}(1,0)_{3}$ |

## An MSSM-like model

- We can introduce additional D-branes to cancel tadpoles:

| $D 8_{Z}$ | $N_{Z}=1$ | $(0,1)_{1}(0,-1,-1,0)_{23}$ |
| :---: | :---: | :---: |
| $D 6_{M}$ | $N_{M}=2$ | $(-2,1)_{1}(-3,1)_{2}(-3,1)_{3}$ |
| $D 6_{F}$ | $N_{F}=4$ | $(1,0)_{1}(1,0)_{2}(1,0)_{3}$ |

- The D6-brane charge induced on the D8-branes is

$$
\begin{aligned}
& D 8_{a}:(1,0)_{1} \times(1,3,-3,-10)_{23}=(1,0)_{1} \times[(3,1)(3,-1)+(1,0)(1,0)] \\
& D 8_{Z}:(0,1)_{1} \times(0,-1,-1,0)_{23}=(0,1)_{1} \times[(1,0)(0,-1)+(0,-1)(1,0)]
\end{aligned}
$$

Many more variants may be built...

## An MSSM-like model

The chiral spectrum of this model is quite minimal

| sector | Matter | Representation |
| :---: | :---: | :---: |
| ab | $Q_{L}+L$ | $3(3+1,2,1)$ |
| ac | $Q_{R}+R$ | $3(\overline{3}+1,1,2)$ |
| bc | $H$ | $(1,2,2)$ |
| bM | $L^{\prime}$ | $6\left(1,2,1 ; 2_{M}\right)$ |
| cM | $R^{\prime}$ | $6\left(1,1,2 ; 2_{M}\right)$ |

and one may get rid of the extra matter by performing a Higgsing of the form $U(2)_{M} \rightarrow S O(2)_{M}$

## Conclusions

## Conclusions

There is more than meets the eye: D6-branes need not be the only BPS objects of a Calabi-Yau compactification

We have shown this by explicitly constructing BPS coisotropic D8-branes, in the sense of Kapustin and Orlov, in a $\mathbf{Z}_{2} \times \mathbf{Z}_{2}$ orientifold

## Conclusions

There is more than meets the eye: D6-branes need not be the only BPS objects of a Calabi-Yau compactification
-
We have shown this by explicitly constructing BPS coisotropic D8-branes, in the sense of Kapustin and Orlov, in a $\mathbf{Z}_{2} \times \mathbf{Z}_{2}$ orientifold

- These D8-branes show interesting model building features, like producing $D=4$ chiral fermions when intersecting other D8 or D6-branes
- We have analyzed the effective theory of these D8's. Many features are similar to D6-branes, but others are new, like a superpotential involving Kähler moduli


## Conclusions

## Conclusions

We have constructed new examples of MSSM-like vacua by means of coisotropic D8's and intersecting D6's

## Conclusions

- We have constructed new examples of MSSM-like vacua by means of coisotropic D8's and intersecting D6's
- Recently a statistical analysis of semi-realistic models in the same $\mathbf{Z}_{2} \times \mathbf{Z}_{2}$ orientifold has been performed.

> Blumenhagen et al. 'O4
> Douglas \& Taylar'06

- This analysis did not take into account the presence of coisotropic D8-branes, so the statistical results could in principle be modified.

