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Four observable dimensions

SU(3) x SU(2) x U(1) Chirality

Gauge coupling constants

Yukawa couplings

3 Quarks & Leptons generations Spontaneous EWSB

and more...
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D=4 N=1 gravity & MSSM sector + SUSY source
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D-brane Model-Building
D=4 gravity           

U(N) theory

Chiral fermions

compactification on 
 

Dp-brane wrapping 
a submanifold                .Πp−3 ⊂ X6

M4 × X6

(Na, Nb) from  

4M

gluon

QL

W

CY3

BPS
CY3Sugra

multiplets

SYM

Π
a
p−3 ∩ Π

b
p′
−3

N=1
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D6-brane Model-Building

D6-branes wrap 3-cycles            

Each intersection gives rise to a D=4 chiral fermion

Chiral spectrum:                            

q 1
q 2 q 3

Π
a

3 ⊂ CY3

Iab = [Πa
3 ] ◦ [Πb

3] (Na, Nb)

Matter replication

Berkooz et al.’96

Blumenhagen et al.’00
Aldazábal et al.’00
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SUSY conditions          

Gauge kinetic function

Yukawa couplings                           

F − flatness F + iJ |Π3
= 0 Lagrangian

D − flatness Im Ω|Π3
= 0 Special Lagrangian

Volume

RR potential

Qi

q j

Hk
H

Q

q

k
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e−φRe Ω + iC3
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Aldazábal et al.’00
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There are three kinds of space-filling D-branes in type IIA          

D4-branes

D6-branes

D8-branes

If we consider D4-branes, they should be wrapping a     
1-cycle     . However, in generic CY’s           , so the 
Chern-Simons action

vanishes 






Π1 b1 = 0

⇓ No central charge ⇓ No BPS D4-brane

∫
M4×Π1

C5
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What about D8-branes?
Naively, the same argument works for D8-branes:       

                                    is homologically trivial

     

However, D8-branes can carry internal worldvolume 
fluxes                                 , and so the CS action   
reads

The second term will not vanish iff there is a dissolved 
D6-brane charge on our D8-brane

b1 = b5 = 0 ⇒ Π5∫
M4×Π5

C9 = 0

∫
M4×Π5

C9 +

∫
M4×Π5

C7 ∧ F

Fµν = Bµν + 2πα
′
Fµν

F

Douglas’95



What about D8-branes?
Idea:  we can have a D8-brane with 

Trivial D8-brane charge

Non-trivial induced D6-brane charge

 So, in principle, we can also have BPS D8-branes !!!

3

induced D6

D8 CY

F
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In terms of topological strings, having BPS D8-branes 
implies that there are A-branes which are not Lagrangian

Such possibility was pointed out by Kapustin and Orlov. 
In a         we can have 

Typical A-branes: Lagrangian n-cycle, 

Exotic A-branes: Coisotropic (n+2k)-cycle, 

We are interested in the case n=3, which means that 
coisotropic A-branes must wrap 5-cycles with 

Because those 5-cycles are trivial in homology, they are 
difficult to construct. No examples in the coisotropic 
literature

CYn

F = 0

F != 0

F != 0
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The BPS conditions for A-branes read

F-flatness

D-flatness

D6-branes

F + iJ |Π3
= 0

Im Ω|Π3
= 0

D8-branes

(F + iJ)2|Π5
= 0

F ∧ Im Ω|Π5
= 0

Kapustin & Orlov’01
Kapustin & Li’03



Going Coisotropic

The BPS conditions for A-branes read

Let us consider the case where                 , and       to 
be the Poincaré dual of          .  Then the BPS conditions 
suggest

So      looks like an special Lagrangian 3-cycle in 

F-flatness

D-flatness

D6-branes

F + iJ |Π3
= 0

Im Ω|Π3
= 0

D8-branes

(F + iJ)2|Π5
= 0

F ∧ Im Ω|Π5
= 0

Π
F

3 CY3

J |ΠF

3

= 0 ∼ F ∧ J |Π5
= 0

Im Ω|ΠF

3

= 0 ∼ F ∧ Im Ω|Π5
= 0

[F/2π]
F = 2πα

′
F [ΠF

3 ]

Kapustin & Orlov’01
Kapustin & Li’03
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The BPS conditions read

D-term  Trivial

F-term     


{

Jc ∧ F = 0

J2
c

+ F 2 = 0 ⇐⇒ T2T3 = 1

Jc = B + iJ Tj = Aj + iBj

A toroidal example
Let us consider                       and the D8-braneT

2
× T

2
× T

2

Π5 = (1, 0)1 × (T2)2 × (T2)3
F/2π = dx2

∧ dx3
− dy2

∧ dy3

3
2

2 (T )21
2(T ) (T )

F = 0 F = 0

T2T3 = 1



Notice that 

and so the D6-brane charge is not of the form              
(1-cycle) x (1-cycle) x (1-cycle), like for CFT D6-branes

A toroidal example
Let us consider                       and the D8-braneT

2
× T

2
× T

2

Π5 = (1, 0)1 × (T2)2 × (T2)3
F/2π = dx2

∧ dx3
− dy2

∧ dy3

1
2(T ) (T )2 2 (T )2 3

3
F

!

[ΠF

3 ] = [(1, 0)(1, 0)(1, 0)] + [(1, 0)(0, 1)(0,−1)]
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D8-branes on Z  x Z 
Notice that                  , so finding BPS D8-branes is not 
that surprising.

Let us set            by orbifolding our theory by              :             

2 2

b1 = 0

D8 D6 D4

D8 [Π5] [ΠF

3 ] [ΠF
2

1 ]

q D8 −[Π5] [ΠF

3 ] −[ΠF
2

1 ]

Z2 × Z2

!

! !

!! !!

b1(T
6) != 0
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Na[Πa
3 ] +

∑

b∈D8

Nb[Π
Fb

3
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Tadpoles
Because is the only surviving one, D8-branes contribute 
to RR tadpoles via its induced D6-brane charge

SUSY guarantees the cancellation of NSNS tadpoles, 
which are related to D-branes tensions. These tensions 
are also related to the gauge coupling constants:

In fact, the gauge kinetic function reads

∑

a∈D6

Na[Πa
3 ] +

∑

b∈D8

Nb[Π
Fb

3
] = 4[ΠO6

3 ]

1

g2
b

=

∫
Πb

5

e−φ Fb

2π
∧ Re Ω =

∫
Π

Fb

3

e−φ
Re Ω

fb =

∫
Π

Fb

3

e−φRe Ω + iC3
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a(F ! F )b
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a     b a     b
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ab
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T x  T
2 2

2 2
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a

a

b

b
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1 1 1

1 1 1 1
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magnetization mechanisms, as in type IIB 
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a(F ! F )b
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(n m ! m n )a     b a     b

a     b a     b

2

2

  ab

ab
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T x  T
2 2

2 2

2

D8 ! D8

D8 ! D8

a

a

b

b

D8 !  D6a b

1

1 1 1

1 1 1 1

1

Chirality
Chirality arises from a mixture of intersection and 
magnetization mechanisms, as in type IIB 

 However, the net number of chiral fermions is given by

Iab = [ΠD8a

3
] ◦ [ΠD8b

3
] or Iab = [ΠD6a

3
] ◦ [ΠD8b

3
]
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Yukawa couplings
For D6-branes Yukawas arise from worldsheet instantons

For D8-branes both instantons and overlapping 
wavefunctions may be at work 

 New kinds of textures...

D6:

T T T
2 2 2

T T T

D8:

2 2 2

Cremades et al.’04

Cremades et al.’03
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Superpotential
The supersymmetry conditions can be understood from 
the effective scalar potential

A D8-brane contribution is given by

VNSNS =
∑

a

TD6a
+

∑

b

TD8b
− 4TO6

2Re f8 VD8 = (

∫
Π5

F ∧ Im Ω)2 + e−2φ||li||
2(

∫
T4

(F + iJ)2)2



Superpotential
The supersymmetry conditions can be understood from 
the effective scalar potential

A D8-brane contribution is given by

D-term  Same as for D6-branes

VNSNS =
∑

a

TD6a
+

∑

b

TD8b
− 4TO6

2Re f8 VD8 = (

∫
Π5

F ∧ Im Ω)2 + e−2φ||li||
2(

∫
T4

(F + iJ)2)2



Superpotential
The supersymmetry conditions can be understood from 
the effective scalar potential

A D8-brane contribution is given by

D-term  Same as for D6-branes

F-term   Can be derived from the superpotential

open string field (location + Wilson line)

VNSNS =
∑

a

TD6a
+

∑

b

TD8b
− 4TO6

2Re f8 VD8 = (

∫
Π5

F ∧ Im Ω)2 + e−2φ||li||
2(

∫
T4

(F + iJ)2)2

W = Xi(TjTk − n)

Xi :

n = n
xy

n
yx

− n
xx

n
yy
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Kähler moduli are stabilized because of the D8-brane. 
There could be extra open string moduli, coupled as

just like happens for D6-branes.
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Superpotential
This kind of open-closed superpotentials are very 
attractive for moduli fixing.

However, one should be careful before concluding that 
Kähler moduli are stabilized because of the D8-brane. 
There could be extra open string moduli, coupled as

just like happens for D6-branes.

 In this case the F-flatness condition reads

and only a combination of open and closed string moduli 
is fixed (like for D-term potentials).

Wopen = XiXjXk

∂W

∂Xi
= (TjTk + XjXk − n) = 0

Douglas’98
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Very similar to the previous D6-model... Cremades et al.’03

F.M,& Shiu ’04
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the following set of D8 and D6-branes 

 LR MSSM spectrum

Z2 × Z2

D8

D6D6
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An MSSM-like model
We can introduce additional D-branes to cancel tadpoles:
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An MSSM-like model
We can introduce additional D-branes to cancel tadpoles:

The D6-brane charge induced on the D8-branes is

Many more variants may be built...

D8Z NZ = 1 (0, 1)1(0,−1,−1, 0)23

D6M NM = 2 (−2, 1)1(−3, 1)2(−3, 1)3

D6F NF = 4 (1, 0)1(1, 0)2(1, 0)3

xx xy yx yy

D8a : (1, 0)1 × (1, 3,−3,−10)23 = (1, 0)1 × [(3, 1)(3,−1) + (1, 0)(1, 0)]

D8Z : (0, 1)1 × (0,−1,−1, 0)23 = (0, 1)1 × [(1, 0)(0,−1) + (0,−1)(1, 0)]



An MSSM-like model
The chiral spectrum of this model is quite minimal

and one may get rid of the extra matter by performing a 
Higgsing of the form 

sector Matter Representation
ab QL + L 3 (3 + 1, 2, 1)

ac QR + R 3 (3 + 1, 1, 2)

bc H (1, 2, 2)

bM L
′ 6 (1, 2, 1; 2M )

cM R
′ 6 (1, 1, 2; 2M )

U(2)M → SO(2)M
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Conclusions
There is more than meets the eye: D6-branes need not 
be the only BPS objects of a Calabi-Yau compactification

We have shown this by explicitly constructing BPS 
coisotropic D8-branes, in the sense of Kapustin and 
Orlov, in a              orientifold 

These D8-branes show interesting model building 
features, like producing D=4 chiral fermions when 
intersecting other D8 or D6-branes

We have analyzed the effective theory of these D8’s. 
Many features are similar to D6-branes, but others are 
new, like a superpotential involving Kähler moduli

Z2 × Z2
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by means of coisotropic D8’s and intersecting D6’s



Conclusions
We have constructed new examples of MSSM-like vacua 
by means of coisotropic D8’s and intersecting D6’s

Recently a statistical analysis of semi-realistic models in 
the same               orientifold has been performed. 

This analysis did not take into account the presence of 
coisotropic D8-branes, so the statistical results could in 
principle be modified.

Z2 × Z2

Blumenhagen et al.’04
Douglas & Taylor’06


