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Behaviour (e.g., real-time dynamics) of strongly-coupled QCD
plasma is of interest for RHIC and early universe cosmology

Theoretical tools to study such strongly-coupled
systems are very limited (e.g., nonexistent)
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Gauge/gravity duality provides simple tools to study
some strongly-coupled guage theories, e.g.,

Type llIb stoi sugra
on AdS, X S5 ﬁ D=4 N=4 U(N.)
with RR flux N super-Yang-Mills

limited to: large N and large 't Hooft coupling




QCD N=4 SYM

~ confinement, conformal,
T=0 discrete spectrum, continuous spectrum,
scattering, . . .. no S-matrix, SUSY, . . ..

very different !!

strongly-coupled plasma strongly-coupled plasma

T>Te of gluons & adjoint matter of gluons & fundamental matter
deconfined, screening, deconfined, screening,
finite corr. lengths, . .. finite corr. lengths, . ..

very similar !!

T>>T. runs to weak coupling remains strongly-coupled
very different !!
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[lattice results reviewed in: nucl-th/0405013]




N=4 U(N.) super-Yang-Mills contains only adjoint fields!

_ (Karch and Katz)
Fundamental fields:

Decoupling limit of N, D3-branes with N, D7-branes
Low-energy limit with o/E?,L?/a/ — 0O

—— U(N,) adjoint
U(N.) super-Yang-Mills
coupled to N; massive hypermultiplets

fund. in U(N,)
& global U(N,)

Field theory:

(SUSY:N=4 — N =2)

Gravity theory:

AdS, X S° with N units of RR flux
containing N; D7 probe branes




Gauge/qgravity dictionary:

supergravity modes: hypp <~ T

D7-brane modes:
Al o T T Pl + ' DD |

Probe approximation: N, /N, — O

The above construction does not take into account the
“gravitational” back-reaction of the D7-branes!

— considering large-N, limit with N, fixed

(see, however: Burrington et al; Kirsch & Vaman;
Casero, Nunez & Paredes)



Geometry:

equator
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Free quarks appear with mass:
L

Mg = 2xa/ pole



Geometry:

equator

= o —

“Mesons”, bound states of fundamental fields,
dual to open string states supported by D7-brane pole




Gauge/Gravity thermodynamics with probe branes:

Witten
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Babington, Erdmenger, Evans, Guralnik and Kirsch (hep-th/0306018)
Kirsch PhD thesis (hep-th/0406274)

D7-brane embedding in black D3-background:

Numerical solutions:

2.5;

R = pcosé

Minkowski embeddings: close off smoothly

Black hole embeddings: fall through horizon

BH horizon: p = 1o

. X =pSing
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D7-brane embedding in black D3-background:
L

mq = m , <QZ¢> 2\/— \/_NCT3~
Numerical solutions: _ -3
2.5 R= pcosd Brane bending: dR(p) ~ p—%E
2 A
, ¥ Roo = L
1.5

BH horizon: p = 1o

A = psiné
J P



Numerical solutions:
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physical properties of thermal ——> free energy determines

system are multi-valued physical configuration
I/ ( free energy ~ Euclidean brane action )
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(Phases do not join “smoothly” rather spiral in on critical solution)
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Brane enerqgy:




Brane enerqgy:
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Comments:

» most striking feature is meson spectrum:

Minkowski: | black hole:

discrete stable states continuous gapless excitations

* 1st order transition —> robust
===p persist with 1/N_, 1/A, N/N, corrections

» feature of QCD ?7?
Consider strange quarks: heavy but strongly coupled

M(®) = 1020 MeV —>| Ty, ~ <222 M(®) = 125 MeV

Fs

Compare: T.~175MeV =

study robustness with lattice simulations ??




Transport properties:

« Gauge/gravity duality relates hydrodynamic properties of
strongly-coupled plasma to dynamics of AdS black hole

dgvigtion_s from ¢ 3 gravitationa.l
equilibrium in plasma probes/fluctuations

* variety of transport coefficients:
——> shear viscosity, bulk viscosity, charge diffusion, . . ..

Shear viscosity: [Policastro, Son & Starinets]
g o= lim oo [t e ([T (), Tuy O))

- evaluated as particular gravity correlator: (hay (x)hay(0))
[Son & Starinets; Herzog & Son]



following: Kovtun, Son & Starinets (hep-th/0309213)

Diffusion of flavor charge (in BH phase)

- conserved current: 9, J* =0
Ji o T [y + @' Dudd| o Al

- with appropriate bc, Fick's law:  J% = — D 8,J°
- hydrodynamic mode: 9pJ° = —iD 82J°—> w = —iD ¢°
1

matches KSS result for R-charge: D = ——

J o | | 27T
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Shear viscosity:
n o= 0im o= [ dte e ([T (), Ty (0))

w—0 2w

- evaluated as particular gravity correlator: (hay (x)hay(0))
[Son & Starinets; Herzog & Son]

« “diffusion constant” for conserved stress-energy
[Policastro, Son & Starinets]

- gravity result: 7 = g N2 T3
N2 T3
A21log(1/))

* “small” — compare perturbative results: 7 ~
— compare RHIC results

* universal result for all known theories with gravity dual:

n/s=1/4x

[Kotvun, Son & Starinets; Buchel & Liu; Saremi; . . . . ]

(correction at O(A=?) increases ratio [Buchel, Liu & Starinets])



Shear viscosity: extend to calculate contributions of
fundamental matter A
* probe brane does not disturb universal result: n/s=1/4rn

—> calculated for limit M ;=0 and general arguments

* leading order contribution:

A N T
n = ~N273(1 I m
8 1672 N. — \ Mg/

| | | : N, 1 1 N2
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Conclusions/Outlook:

« D3/D7 system: interesting framework to study quark/meson
contributions to strongly-coupled nonAbelian plasma

* first order phase transition appears as universal feature of
holographic theories with fundamental matter (T,> T)

* how robust is this transition?
—> should survive finite 1/N, 1/A, N/N_ corrections
— interesting question for lattice investigations

* hydrodynamic transport properties: (in progress )
—> shear viscosity still universal: /s = 1/4x
—> thermal spectral functions

« adding chemical potential/finite baryon density



