Brane Inflation: Observational Signatures and Non-Gaussianities

Gary Shiu University of Wisconsin

Collaborators

- Reheating in D-brane inflation:
D.Chialva, GS, B. Underwood
- Non-Gaussianities in CMB:
X.Chen, M. Huang, S. Kachru, GS
- DBI Inflation in Warped Throats: S.Kecskemeti, J.Maiden, GS, B.Underwood

Two popular themes in String Phenomenology:

Q Construct realistic particle physics models:
Not enough (realistic) vacua
Q Landscape (statistics, wave function, swampland, ...):
Too many vacua.

String theory: great scenario generator!
SUSY, brane world, ...

... in the year 1BC

... in the year 1B

... in the year 1BLHC

WMAP3

Strong and growing evidence for inflation

Goals and Motivation

- Construct \& study well motivated inflationary scenarios (incorporate SM, reheating, ...)
- Look for distinctive observational signatures
- Building realistic models

Many interesting possibilities with branes and fluxes

Brane Inflation

Dvali and Tye

Animation by A. Miller
$D \bar{D}$ Inflation
[Burgess, Majumdar, Nolte, Quevedo, Rajesh, Zhang];[Dvali, Shafi, Solganik], [Kachru, Kallosh, Linde, Maldacena, McAllister, Trivedi] and many others.

Brane Inflation

- Is this scenario viable/robust?
e.g., number of e-folds, reheating, ...
- Observational signatures/constraints?
e.g., cosmic strings (Tye's talk), nonGaussianities, ...
- Model building?
constraints on compactification geometry?

Warped Throats

Hierarchies from fluxes
Giddings, Kachru, Polchinski
S^{3} size $e^{-\frac{K}{M g_{s}}}$
\downarrow
Strong dynamics scale

e.g., Klebanov, Strassler
"warped deformed conifold"

Warped Reheating

Reheating by DD annihilation

Inflationary

Shiu, Tye, Wasserman

Barnaby, Burgess, Cline Kofman and Yi
Chialva, Shiu, Underwood Frey, Mazumdar, Myers
Chen and Tye Langfelder

- Accommodate different hierarchies.
- Cosmic strings spatially separated from SM branes: not susceptible to breakage.
- Reheating via tunneling is efficient, can avoid overproduction of gravitational waves.

A Cartoon of Reheating

Annihilation
Massive Closed Strings
Sen; Lambert, Liu, Maldacena; ..

Tunneling

Warped Reheating

c.f. Dimopoulos, Kachru, Kaloper, Lawrence, Silverstein

- Production rate, interaction cross sections among KK modes enhanced relative to gravitons.
- For moderate warping of inflationary throat, KK preferably tunnel rather than decay to gravitons.

Is brane inflation robust?

Helps flatten the potential
Casual speed limit

e.g., KKLMMT, ...

Silverstein, Tong;
Alishahiha, Silverstein,Tong

- Derivative terms sum to a DBI action:

$$
\begin{gathered}
S=-\int d^{4} x a^{3}(t)\left[T(\phi) \sqrt{1-\dot{\phi}^{2} / T(\phi)}+V(\phi)-T(\phi)\right] \\
T(\phi)=T_{3} h^{4}(\phi)
\end{gathered}
$$

- Casual speed limit: $\quad \dot{\phi}^{2} \leq T(\phi) \quad$ warp factor

$$
\gamma=\frac{1}{\sqrt{1-\dot{\phi}^{2} / T(\phi)}}
$$

Relativistic even when $\dot{\phi}$ is small.

- Slow-roll + DBI : inflation is robust Shandera \& Tye

Non-Gaussianities

Non-Gaussianities

- Power spectrum: $\quad\left\langle\zeta_{\mathbf{k}_{1}} \zeta_{\mathbf{k}_{2}}\right\rangle \sim \delta^{3}\left(\mathbf{k}_{1}+\mathbf{k}_{2}\right) \frac{P_{k}^{\zeta}}{k_{1}^{3}}$
- Bi-spectrum contain much richer info:

$$
\left\langle\zeta_{\mathbf{k}_{1}} \zeta_{\mathbf{k}_{2}} \zeta_{\mathbf{k}_{3}}\right\rangle=(2 \pi)^{3} \delta^{3}\left(\mathbf{k}_{1}+\mathbf{k}_{2}+\mathbf{k}_{3}\right) F\left(\mathbf{k}_{1}, \mathbf{k}_{2}, \mathbf{k}_{3}\right)
$$

size $\sim f_{N L}$ and shape.

- Slow-roll: full functional form derived in Maldacena 02

$$
f_{N L} \sim \mathcal{O}(\epsilon)
$$

- DBI inflation for $\gamma \gg 1$:

Alishahiha, Silverstein, Tong Chen

$$
f_{N L} \sim 0.32 \gamma^{2}
$$

Non-Gaussianities

- For a general single field Lagrangian:

$$
\mathcal{L}(\phi, X) \quad \text { where } \quad X=\frac{1}{2} g_{\mu \nu} \partial^{\mu} \phi \partial^{\nu} \phi
$$

- Bi-spectrum depends on 5 parameters: [Chen, Huang, Kachru, GS]

$$
c_{s}^{2}=\frac{\mathcal{L}_{, X}}{\mathcal{L}_{, X}+2 X \mathcal{L}_{, X X}} \equiv \frac{1}{\gamma^{2}} \text { for DBI } \lambda / \Sigma=\frac{X^{2} \mathcal{L}_{, X X}+\frac{2}{3} X^{3} \mathcal{L}_{, X X X}}{X \mathcal{L}, X+2 X^{2} \mathcal{L}_{, X X}}
$$

and slow variation parameters:

$$
\begin{aligned}
\epsilon & =-\frac{\dot{H}}{H^{2}} \\
\eta & =\frac{\dot{\epsilon}}{\epsilon H} \\
s & =\frac{\dot{c}_{s}}{c_{s} H}
\end{aligned}
$$

Shape of Non-Gaussianities

$$
F\left(\mathbf{k}_{1}, \mathbf{k}_{2}, \mathbf{k}_{3}\right)=(2 \pi)^{4}\left(P_{k}^{\zeta}\right)^{2} \frac{1}{\prod_{i} k_{i}^{3}} \times\left(\mathcal{A}_{\lambda}+\mathcal{A}_{c}+\mathcal{A}_{\epsilon}+\mathcal{A}_{\eta}+\mathcal{A}_{s}\right)
$$

where

$$
\begin{aligned}
& \mathcal{A}_{\lambda}=\left(\frac{1}{c_{s}^{2}}-1-\frac{2 \lambda}{\Sigma}\right) \frac{3 k_{1}^{2} k_{2}^{2} k_{3}^{2}}{2 K^{3}}, \\
& \mathcal{A}_{c}=\left(\frac{1}{c_{s}^{2}}-1\right)\left(-\frac{1}{K} \sum_{i>j} k_{i}^{2} k_{j}^{2}+\frac{1}{2 K^{2}} \sum_{i \neq j} k_{i}^{2} k_{j}^{3}+\frac{1}{8} \sum_{i} k_{i}^{3}\right), \\
& \mathcal{A}_{\epsilon}=\frac{\epsilon}{c_{s}^{2}}\left(-\frac{1}{8} \sum_{i} k_{i}^{3}+\frac{1}{8} \sum_{i \neq j} k_{i} k_{j}^{2}+\frac{1}{K} \sum_{i>j} k_{i}^{2} k_{j}^{2}\right), \\
& \mathcal{A}_{\eta}=\frac{\eta}{c_{s}^{2}}\left(\frac{1}{8} \sum_{i} k_{i}^{3}\right) \\
& \mathcal{A}_{s}=\frac{s}{c_{s}^{2}}\left(-\frac{1}{4} \sum_{i} k_{i}^{3}-\frac{1}{K} \sum_{i>j} k_{i}^{2} k_{j}^{2}+\frac{1}{2 K^{2}} \sum_{i \neq j} k_{i}^{2} k_{j}^{3}\right) .
\end{aligned}
$$

and $K=k_{1}+k_{2}+k_{3}, \Sigma=X P_{, X}+2 X^{2} P_{, X X}, \lambda=X^{2} P_{, X X}+\frac{2}{3} X^{3} P_{, X X X}$.

Correction Terms

- Solution to the quadratic part of the action:

$$
\begin{aligned}
u_{k}(y) & \rightarrow-\frac{\sqrt{\pi}}{2 \sqrt{2}} \frac{H}{\sqrt{\epsilon c_{s}}} \frac{1}{k^{3 / 2}}\left(1+\frac{\epsilon}{2}+\frac{s}{2}\right) e^{i \frac{\pi}{2}\left(\epsilon+\frac{n}{2}\right)} y^{3 / 2} H_{\frac{3}{2}+\epsilon+\frac{n}{2}+\frac{s}{2}}^{(1)}((1+\epsilon+s) y) \\
\text { where } y & \equiv \frac{c_{s} k}{a H}
\end{aligned}
$$

- Slowly-varying parameters H, c_{s}, λ and ϵ

$$
\begin{aligned}
f(\tau) & \approx f\left(\tau_{K}\right) \\
& \rightarrow f\left(\tau_{K}\right)-\frac{\partial f}{\partial t} \frac{1}{H_{K}} \ln \frac{\tau}{\tau_{K}}+\mathcal{O}\left(\epsilon^{2} f\right)
\end{aligned}
$$

- The scale factor

$$
\begin{aligned}
a & \approx-\frac{1}{H_{K} \tau} \\
& \rightarrow-\frac{1}{H_{K} \tau}-\frac{\epsilon}{H_{K} \tau}+\frac{\epsilon}{H_{K} \tau} \ln \left(\tau / \tau_{K}\right)+\mathcal{O}\left(\epsilon^{2}\right)
\end{aligned}
$$

Final Results

$$
\begin{aligned}
F\left(\mathbf{k}_{1}, \mathbf{k}_{2}, \mathbf{k}_{3}\right) & =(2 \pi)^{4}\left(\tilde{P}_{K}^{\zeta}\right)^{2} \frac{1}{\prod_{i} k_{i}^{3}} \times\left(\mathcal{A}_{\lambda}+\mathcal{A}_{c}+\mathcal{A}_{o}+\mathcal{A}_{\epsilon}+\mathcal{A}_{\eta}+\mathcal{A}_{s}\right) \\
\mathcal{A}_{\lambda} & =\left(\frac{1}{c_{s}^{2}}-1-\frac{\lambda}{\Sigma}\left[2-\left(3-2 \mathbf{c}_{1}\right) l\right]\right)_{K} \frac{3 k_{1}^{2} k_{2}^{2} k_{3}^{2}}{2 K^{3}}, \\
\mathcal{A}_{c} & =\left(\frac{1}{c_{s}^{2}}-1\right)_{K}\left(-\frac{1}{K} \sum_{i>j} k_{i}^{2} k_{j}^{2}+\frac{1}{2 K^{2}} \sum_{i \neq j} k_{i}^{2} k_{j}^{3}+\frac{1}{8} \sum_{i} k_{i}^{3}\right), \\
\mathcal{A}_{o} & =\left(\frac{1}{c_{s}^{2}}-1-\frac{2 \lambda}{\Sigma}\right)_{K}\left(\epsilon F_{\lambda \epsilon}+\eta F_{\lambda \eta}+s F_{\lambda s}\right) \\
& +\left(\frac{1}{c_{s}^{2}}-1\right)_{K}\left(\epsilon F_{c \epsilon}+\eta F_{c \eta}+s F_{c s}\right), \\
\mathcal{A}_{\epsilon} & =\epsilon\left(-\frac{1}{8} \sum_{i} k_{i}^{3}+\frac{1}{8} \sum_{i \neq j} k_{i} k_{j}^{2}+\frac{1}{K} \sum_{i>j} k_{i}^{2} k_{j}^{2}\right), \\
\mathcal{A}_{\eta} & =\eta\left(\frac{1}{8} \sum_{i} k_{i}^{3}\right), \\
\mathcal{A}_{s} & =s F_{s} .
\end{aligned}
$$

Experimental Bound

- WMAP ansatz for the primordial non-Gaussianities

$$
\zeta(x)=\zeta_{g}(x)-\frac{3}{5} f_{N L}\left(\zeta_{g}(x)^{2}-\left\langle\zeta_{g}^{2}(x)\right\rangle\right.
$$

here $\zeta_{g}(x)$ is purely Gaussian with vanishing three point functions.

- The size of non-Gaussianities is measured by the parameter $f_{N L}$ in the above ansatz. Current experimental bound (from WMAP3) is

$$
-54<f_{N L}<114 \text { at } 95 \% \text { C.L. }
$$

Future experiments can eventually reach the sensitivity of $f_{N L} \lesssim 20$ (WMAP) and $f_{N L} \lesssim 5$ (PLANCK).

- However, the experimental bound depends on the shape of $F\left(\mathbf{k}_{1}, \mathbf{k}_{2}, \mathbf{k}_{3}\right)$.
- Due to the symmetry and scaling property of $F\left(\mathbf{k}_{1}, \mathbf{k}_{2}, \mathbf{k}_{3}\right)$, all info about the shape can be viewed by plotting [Babich, Creminelli, Zaldarriaga]

$$
F\left(1, k_{2}, k_{3}\right) k_{2}^{2} k_{3}^{2}
$$

- For the WMAP ansatz:

$$
F\left(\mathbf{k}_{1}, \mathbf{k}_{2}, \mathbf{k}_{3}\right) \sim f_{N L}\left(P_{k}^{\zeta}\right)^{2} \frac{k_{1}^{3}+k_{2}^{3}+k_{3}^{3}}{k_{1}^{3} k_{2}^{3} k_{3}^{3}}
$$

Slow Roll Shapes

The relevant shapes are $F\left(k_{1}, k_{2}, k_{3}\right) \sim \frac{1}{\prod_{i} k_{i}^{3}} \mathcal{A}\left(k_{1}, k_{2}, k_{3}\right)$ where

$$
\begin{aligned}
\mathcal{A}_{\epsilon} & =\frac{\epsilon}{c_{s}^{2}}\left(-\frac{1}{8} \sum_{i} k_{i}^{3}+\frac{1}{8} \sum_{i \neq j} k_{i} k_{j}^{2}+\frac{1}{K} \sum_{i>j} k_{i}^{2} k_{j}^{2}\right), \\
\mathcal{A}_{\eta} & =\frac{\eta}{c_{s}^{2}}\left(\frac{1}{8} \sum_{i} k_{i}^{3}\right) \\
\mathcal{A}_{s} & =\frac{s}{c_{s}^{2}}\left(-\frac{1}{4} \sum_{i} k_{i}^{3}-\frac{1}{K} \sum_{i>j} k_{i}^{2} k_{j}^{2}+\frac{1}{2 K^{2}} \sum_{i \neq j} k_{i}^{2} k_{j}^{3}\right) .
\end{aligned}
$$

Consistency Condition

- In the "squeeze triangle limit": one momentum mode is much smaller than the other two:

$$
k_{3} \ll k_{1}, k_{2} \quad \mathbf{k}_{1} \sim-\mathbf{k}_{2}
$$

- During inflation, the comoving Hubble scale decreases with time. The long wavelength mode k_{3} crosses the horizon much earlier than the other two modes k_{1}, k_{2}.
- After horizon crossing, the long wavelength mode k_{3} acts as background whose effect is to introduce a time variation at which $k_{1,2}$ cross the horizon.

$$
\left\langle\zeta_{\mathbf{k}_{1}} \zeta_{\mathbf{k}_{\mathbf{2}}} \zeta_{\mathbf{k}_{3}}\right\rangle \sim\left\langle\zeta_{\mathbf{k}_{3}} \zeta_{-\mathbf{k}_{3}}\right\rangle \frac{d}{d \ln k_{1}}\left\langle\zeta_{\mathbf{k}_{1}} \zeta_{\mathbf{k}_{2}}\right\rangle \sim\left(n_{s}-1\right) \frac{1}{k_{1}^{3}} \frac{1}{k_{3}^{3}}
$$

DBI Shape

- Non-Gaussianities are generically quite large

$$
f_{N L} \sim \frac{1}{c_{s}^{2}} \sim \gamma^{2}
$$

- The shape of non-Gaussianities vanishes in the squeeze triangle limit $k_{3} \ll k_{1}, k_{2}$, as required by Maldacena's consistency relation:

$$
F\left(k_{1}, k_{2}, k_{3}\right) k_{1}^{3} k_{3}^{3} \sim n_{s}-1
$$

This contradicts that the non-Gaussianities are large, unless the shape vanishes in the squeeze limit.

- The shape of non-Gaussianities for DBI inflation

- Peak at the equilateral triangle limit and vanishes in the squeeze limit.
- If non-Gaussianities of this shape is measured, gives interesting constraint on $m^{2} \phi^{2}$ term and in turn 4-cycles of CY.
[Baumann, Dymarsky, Klebanov, Maldacena, McAllister, and Murugan] Also: [Berg, Haack, Kors]

More Shapes

Not realized in D-brane inflation. Similar to the DBI inflation but with an opposite sign.

$$
\mathcal{A}_{\lambda}=\left(\frac{1}{c_{s}^{2}}-1-\frac{2 \lambda}{\Sigma}\right) \frac{3 k_{1}^{2} k_{2}^{2} k_{3}^{2}}{2\left(k_{1}+k_{2}+k_{3}\right)^{3}}
$$

Confronting Data

$$
\begin{aligned}
& \frac{\ddot{a}}{a}=H^{2}\left(1-\epsilon_{D}\right) \\
& \epsilon_{D} \equiv \frac{2 M_{p}^{2}}{\gamma}\left(\frac{H^{\prime}(\phi)}{H(\phi)}\right)^{2} \quad r=\frac{16 \epsilon_{D}}{\gamma} \\
& \eta_{D} \equiv \frac{2 M_{p}^{2}}{\gamma}\left(\frac{H^{\prime \prime}(\phi)}{H(\phi)}\right) \quad f_{N L} \leq 0.3 \gamma^{2} \\
& \kappa_{D} \equiv \frac{2 M_{p}^{2}}{\gamma}\left(\frac{H^{\prime} \gamma}{H} \frac{\gamma^{\prime}}{\gamma}\right) \quad \\
& n_{s}-1 \sim\left(1+\epsilon_{D}+\kappa_{D}\right)\left(-4 \epsilon_{D}+2 \eta_{D}-2 \kappa_{D}\right) . \\
& \text { If } \text { saturates the observational bound, } \\
& \text { non-Gaussianity is small. }
\end{aligned}
$$

Warped Deformed Conifold

$$
\begin{gathered}
\sum_{i=1}^{4} z_{i}^{2}=\varepsilon^{2} \\
d s_{10}^{2}=h^{-1 / 2}(\tau) d x_{n} d x_{n}+h^{1 / 2}(\tau) d s_{6}^{2}
\end{gathered}
$$

$$
d s_{6}^{2}=\frac{1}{2} \varepsilon^{4 / 3} K(\tau)\left[\frac{1}{3 K^{3}(\tau)}\left(d \tau^{2}+\left(g^{5}\right)^{2}\right)+\cosh ^{2}\left(\frac{\tau}{2}\right)\left[\left(g^{3}\right)^{2}+\left(g^{4}\right)^{2}\right]\right.
$$

$$
h(\tau)=\alpha \frac{2^{2 / 3}}{4} I(\tau)=\left(g_{s} M \alpha^{\prime}\right)^{2} 2^{2 / 3} \varepsilon^{-8 / 3} I(\tau)
$$

$$
\left.+\sinh ^{2}\left(\frac{\tau}{2}\right)\left[\left(g^{1}\right)^{2}+\left(g^{2}\right)^{2}\right]\right]
$$

$$
I(\tau) \equiv \int_{\tau}^{\infty} d x \frac{x \operatorname{coth} x-1}{\sinh ^{2} x}(\sinh (2 x)-2 x)^{1 / 3}
$$

where

$$
K(\tau)=\frac{(\sinh (2 \tau)-2 \tau)^{1 / 3}}{2^{1 / 3} \sinh \tau}
$$

DBI ultra-relativistic region

$$
\begin{array}{ll}
f_{N L} \simeq\left(\frac{m}{M_{p}}\right)^{2}\left(\frac{M_{p}}{m_{s} h_{A}}\right)^{4} \simeq 10^{-12} \frac{1}{\left(G \mu_{s}\right)^{2}} \\
\frac{m_{s}}{M_{p}}>10^{-2} & N_{A} \sim 10^{14} \\
\frac{m}{M_{p}} \simeq 10^{-6} & h_{A} \sim 10^{-1}-10^{-2}
\end{array}
$$

To fit a KS-like throat inside the bulk: $\quad \frac{m_{s}}{M_{p}} \sim 10^{-12}$
M. Alishahiha, E. Silverstein and D. Tong, hep-th/0404084
S. Kecskemeti, J. Maiden, G. Shiv, B. Underwood, hep-th/0605189

Need a long narrow throat:

- other warped throats?
$-Z_{\bar{p}}$ orbifold the KS-like throat?

Red or blue tilt in DBI?

$$
h^{4}(\phi) \simeq \frac{\left(\phi^{2}+b\right)^{2}}{\lambda} \quad \text { Red tilt }
$$

KS throat?

$$
h^{4}(\phi) \simeq \frac{\phi^{4}}{\lambda} \quad \text { A small blue tilt }
$$

Red or blue tilt in DBI?

$$
n_{s}-1=\frac{2 M_{p}^{2}}{\gamma}\left[-4\left(\frac{H^{\prime}}{H}\right)^{2}+2 \frac{H^{\prime \prime}}{H}+2 \frac{H^{\prime}}{H}\left|\frac{\gamma^{\prime}}{\gamma}\right|\right]
$$

red (small) blue

Tip from the Sky?

Red or blue tilt in DBI-KS?

$$
n_{s}-1=\frac{2 M_{p}^{2}}{\gamma}\left[-4\left(\frac{H^{\prime}}{H}\right)^{2}+2 \frac{H^{\prime \prime}}{H}+2 \frac{H^{\prime}}{H}\left|\frac{\gamma^{\prime}}{\gamma}\right|\right]
$$

For example, if $h_{t i p} \geq 10^{-2}$ and $M_{s} \sim 10^{-2} M_{P}$ red tilt dominates for KS throat

Summary

- Brane inflation is robust: number of e-foldings, reheating, ...
- Interesting signatures: can lead to large tensorscalar ratio r, or large non-Gaussianities, cosmic strings ...
- Data probe warped geometry.
[c.f. talks of Giddings, Hebecker]
Large influx of data from Cosmology + LHC!

