Complex/Symplectic Mirrors

Alessandro Tomasiello

KITP, Santa Barbara, Oct. 12, 2005 Mainly based on hep-th/0510042 [Chuang, Kachru, AT] with review of results from hep-th/0505212 [Graña, Minasian, Petrini, AT] hep-th/0311122 [Fidanza, Minasian, AT]

Introduction

"Mirror symmetry exchanges complex and Kahler moduli" symplectic

 $\operatorname{complex}(K=0)$ almost complex $(c_1 = 0)$ $\exists \ \Omega \ | \ \Omega \land \Omega \text{ nowhere zero; } d\Omega = \mathbf{0}$ $\exists \Omega \mid \Omega \land \overline{\Omega}$ nowhere zero (complex three-form) symplectic almost symplectic $\exists J \mid J \land J \land J$ $\exists J \mid J \land J \land J$ nowhere zero; dJ = 0nowhere zero (real two-form) with some almost complex + almost symplectic : SU(3) structure complex + symplectic : CY compatibility

c+as

SU(3)

Might it be almost symplectic + complex + symplectic ?

Evidence so far:

• Direct T-duality computations e.g. " $e^{iJ} \longleftrightarrow \Omega$ " $(\nabla J + H)_{ijk} \longleftrightarrow (\nabla J - H)_{i\bar{j}\bar{k}}$

Both results have direct interpretation in terms of Generalized complex geometry

 In particular, both symplectic and complex particular cases of the same condition:

both Ω and e^{iJ} are pure spinors for $T \oplus T^*$ (tangent + cotangent)

what allows them to happen in string theory is RR flux on the CY

• They come by construction in mirror pairs

Plan

- Review evidence
 - New vacua
 - Their geometrical interpretation; consequences for the general picture

Review of previous evidence									
• preserved $\mathcal{N} = 1$ (IIA	$(\mathbf{RR} \neq 0)$:	[Graña, Minasian, Petrini,AT] IIB							
$(d + H \wedge)(e^{2A - \phi}\Phi_+) = 0$ $(d + H \wedge)(e^{2A - \phi}\Phi) = d$	(d+1) (d+1) (d^2) (d^2)	$H \wedge (e^{2A-\phi} \Phi_+) = dA \wedge \Phi_+^*$ $-b^2 e^{\phi} F - i(a^2 + b^2) e^{\phi} F$							
$(a^{2} + H^{2})(e^{-1} + I^{2}) = 0$ $+(a^{2} - b^{2})e^{\phi}F - i(a^{2} + b^{2})e^{\phi}*F \qquad (d + H^{2})(e^{2A - \phi}\Phi_{-}) = 0$ For now $\Phi_{+} = e^{iJ} = \Phi_{-} = 0$ $A \text{ warping}$									
The two equations are exchanged by	Mirror map: IIA IIB $\Phi_+ \rightarrow i\Phi$ $\Phi \rightarrow -i\Phi_+$ $F \rightarrow iF$	ϕ dilaton a, b normalizations $\Phi_{\pm}^{\dagger} \wedge \Phi_{\pm} = ab \operatorname{vol}$ $a^2 - b^2 = c e^{-A}$ $a^2 + b^2 = c' e^{A}$							

Consequences:

 \hat{T}

(IIA)
$$(d + H \wedge)e^{iJ} = 0 \Rightarrow dJ = 0$$

(IIB) $(d + H \wedge)\Omega = 0 \Rightarrow d\Omega = 0$

SU(3) on
$$T \implies$$
 SU(3) on $T^* \implies$ SU(3)×SU(3)
on $T \oplus T^*$
can happen
more generally
 Φ more general than o^i

 $\frac{\Phi_{+}}{\Phi_{-}} \text{ more general than } e^{iJ}$

(Example: $\Phi_+ = e^{ij} \wedge (v + iw)$ 4d +2d mix)

For general Φ s: Generalized complex geometry

[Hitchin, Gualtieri, Witt...]

- same mathematical properties (pure spinor on $\,T\oplus T^*$)
- supersymmetry equations still valid!

• T-duality:
• assume SLag
$$T^3$$
 fibration $\rightarrow J$, Ω
• dualize the torus $\rightarrow \tilde{J}$, $\tilde{\Omega}$
• $(dJ, d\Omega) \leftrightarrow (d\tilde{J}, d\tilde{\Omega})$
Results are actually best summarized using e^{iJ} and Ω
 $"e^{iJ} \leftrightarrow \Omega"$
 $Compare: \Omega \leftrightarrow e^{B+iJ}\sqrt{Td}$ for branes on Calabi-Yau's
 $T \oplus T^* \stackrel{\circ}{\rightarrow}$
 $Compare: \Omega \leftrightarrow e^{B+iJ}\sqrt{Td}$ for branes on Calabi-Yau's
 $\Phi_{+} * * * \Phi_{-}$ in a "pure
 $* * * * \Phi_{+}$ in a "pure
 $* * * * \Phi_{+}$ in a "pure
 $* * * * \Phi_{-}$ in a "pure
 $* * * * \Phi_{+}$ in a "pure
 $* * * * \Phi_{-}$ in a "pure
 $* * * * \Phi_{+}$ in a "pure
 $* * * * \Phi_{-}$ in a "pure
 $* * * * \Phi_{-}$ in a "pure
 $* \Phi_{+} * \Phi_{-} = \Phi_{-} * \Phi_{-}$ in a "pure
 $* \Phi_{+} * \Phi_{-} * \Phi_{-$

symmetry more manifest.

rotates the diamond

Intermezzo: CY transitions [Candelas, Green, Hubsch...]

IIB: At a point $p \in \mathcal{M}_{cpl}$

 $h^{2,1}$ vector multiplets

 $h^{1,1}+1$ hypermultiplets

"F-term" $\sum_{a} Q^{a}{}_{b}B^{\dagger}_{a}\sigma^{\alpha}B_{a} = 0$

- N three-cycles B_a shrink
- they satisfy R relations in homology
- N new massless hypers B_a
- charged under vectors $\int_{B_a} C_4$
- but the charge matrix has kernel of dim. R
 - New vacua, $\mathcal{N} = 2$, $B_a \neq 0$

What is their 10d interpretation?

On the new branch:

- Higgs mechanism: lose N-R vectors
- gain N hypers; lose N-R

 $h^{2,1} - N + R$ vector multiplets $h^{1,1} + R$ hypermultiplets

Proposal: transitions (topologically: "surgery") replace the three-cycles with two-cycles

Flux gives new vacua

Only the cycle Let us now suppose no relations. To fix ideas: A_1 shrinks $B^{\dagger}\sigma^{\alpha}B = 0$: no branch with $B \neq 0$ But switch on $F_3 \mid \int_{B_1} F_3 = n^1 \longrightarrow$ contribution to the potential; vacuum only when A_1 shrinks At that point: new hyper Bthis time $B^{\dagger}\sigma^{\alpha}B = e^{2\phi}n^{1}\delta^{\alpha}{}_{3} \longrightarrow B = \begin{pmatrix} \sqrt{e^{2\phi}n^{1}} \\ 0 \end{pmatrix}$ New (Higgs) branch! [Polchinski,Strominger] what happens to the multiplets? • vectors: one becomes massive (A_1 shrinks) hypers: gain B; it + universal \longrightarrow one massless, one massive 0 $h^{2,1}(CY) - 1$ vector multiplets

 $h^{1,1}(CY) + 1$ hypermultiplets

+ one vector and one hyper have paired up and become massive

(IIB)

Interpretation of the vacua

 Counting of massless states consistent with the topological counting

 \bullet reasonable: going to the new branch only affects CY close to shrinking A_1

This last point is not automatical for IIA

 $b_2 = b_2 + R$

 $\frac{\tilde{b}_3}{2} = \frac{b_3}{2} - N + R$ R = 0

Example: with $F_6 \longrightarrow$ the whole (quantum) volume of M_6 shrinks

"Localized" cases: $\exists p \in \mathcal{M}_{spl}$ in which (e.g.) only one curve shrinks;

switch on F_4 and drive the CY to that point.

(example where p exists: elliptic fibration over \mathbb{F}_1)

This time we will have

$$\tilde{b}_2 = b_2 - N + R$$
$$\tilde{b}_3 = b_3 + R$$

ok for
$$\mathbf{R} = 0$$

[Chuang,Kachru,AT]

for

So the new vacua should come from $ilde{M}_6$

whose topology is given by surgery

B

Q: what about their differential-geometric properties? they cannot be CY.What else?

A: More generally than for CY			$\begin{array}{c} M_6 \\ \Rightarrow \tilde{M}_6 \end{array}$	complex complex	$\begin{array}{c} M_6 \\ \Rightarrow \tilde{M}_6 \end{array}$	symplectic symplectic	
[Smith,Thomas,Yau] [Freedman;Tian] [Werner]	S^3	\rightarrow	S^2	yes		if	R > 0
	S^2	\rightarrow	S^3	if	R > 0		yes

Why? first case: S^2 is holomorphic but trivial in homology $\int_B dJ = \int_{S^2} J = \operatorname{vol}(S^2) \neq 0$

For us, M_6 is CY (complex+ symplectic) M_6 is CY M_6 is CY Can we check this picture?

Try: find the fields which got a mass by Higgs directly on $ilde{M}_6$

- KK for 10d supergravity on \tilde{M}_6 . Should it work?
 - Actually, these vacua cannot be coming from 10d sugra (it is impossible without negative sources)
 - computation with brane hyper B is valid when S^2 is small

Let us compare anyway. Idea:

- On both sides we have an $\mathcal{N} = 2$ gauging, due to (IIB):
 - ullet on M_6 , to F_3
 - on $ilde{M}_6$, to dJ

massive

Vrite
$$\begin{array}{l} J=t_{
m mass}\,\omega_2+J_{
m harm}\\ \Omega=X_{
m mass}\,\omega_3+\Omega_{
m harm} \end{array}$$
 and use in $\int dJ\Omega$

Q: $\int dJ\Omega = -\int Jd\Omega = 0$?? remember: complex (K = 0) has $d\Omega = 0$ A: in fact, $d\Omega = 0$ only on the vacuum!

- ${\scriptstyle \bullet}\,$ required guessing properties of spectrum of Δ
- obscures the expected integrality of the gaugings

Is there a more "cohomological" understanding of dJ and $\int dJ \wedge \Omega$?

- We propose one should think of dJ as $\in H^3(\tilde{M}_6, S^2)$ relative cohomology $\int_B dJ = \operatorname{vol}(S^2)$ $(B, S^2) \in H_3(\tilde{M}_6, S^2)$ relative homology fixed by being a holomorphic curve
- also, $d\Omega \neq 0$ should be dual to a pair $(S^3, D) \in H_4(\tilde{M}_6, S^3)$
- a "linking number" between S^3 and S^2 would be the gauge charge $(\int dJ \wedge \Omega \text{ looks like a gen. Chern-Simons})$

• Reid's fantasy:

 many 19-dim. moduli spaces of algebraic K3's; later recognized as
 20-dim. moduli space of K3

something similar for three-folds?

 does string theory realize a version of this for complex and symplectic manifolds?

the massive fields we discussed lead us off-shell

Conclusions

- String theory has vacua on complex or symplectic manifolds
 - They follow patterns suggested by supergravity
 - Mirror symmetry still holds