Complex/Symplectic Mirrors

Alessandro Tomasiello

Mainly based on
hep-th/0510042 [Chuang, Kachru, AT]
with review of results from
hep-th/0505212 [Graña, Minasian, Petrini,AT]
hep-th/0311122 [Fidanza, Minasian, AT]

Introduction

"Mirror symmetry exchanges complex and Rater moduli" symplectic
complex ($K=0$)
$\exists \Omega \mid \Omega \wedge \bar{\Omega}$ nowhere zero; $d \Omega=0$ (complex three-form)

symplectic

$\exists J \mid J \wedge J \wedge J$ nowhere zero; $d J=0$ (real two-form)
almost complex $\left(c_{1}=0\right)$
$\exists \Omega \mid \Omega \wedge \bar{\Omega}$ nowhere zero
$\exists J \mid J \wedge J \wedge J$
nowhere zero
almost complex + almost symplectic $: \mathrm{SU}(3)$ structure

Might it be
 almost complex + symplectic

Evidence so far:

- $\mathcal{N}=1$ RR vacua

IIA $\quad d e^{i J}=0 \quad d \Omega=F$
llB $\quad d \Omega=0 \quad d e^{i J}=F$

$$
e^{i J}=1+i J-\frac{1}{2} J \wedge J-\frac{i}{6} J \wedge J \wedge J
$$

- Direct T-duality computations

$$
\text { e.g. " } e^{i J} \longleftrightarrow \Omega^{\prime \prime} \quad(\nabla J+H)_{i j k} \longleftrightarrow(\nabla J-H)_{i \bar{j} \bar{k}}
$$

Both results have direct interpretation in terms of
Generalized complex geometry

- In particular, both symplectic and complex particular cases of the same condition:
both Ω and $e^{i J}$ are pure spinors for $T \oplus T^{*}$ (tangent + cotangent)

We want to produce examples.

- Method: transitions
symplectic
(+almost complex)
(CY:) complex + symplectic

what allows them to happen in string theory is RR flux on the CY
- Resulting vacua are not from IOd supergravity; but still

- They come by construction in mirror pairs

Plan

- Review evidence
- New vacua
- Their geometrical interpretation; consequences for the general picture

Review of previous evidence

- preserved $\mathcal{N}=1 \quad(R R \neq 0)$:
$(d+H \wedge)\left(e^{2 A-\phi} \Phi_{-}\right)=d A \wedge \Phi_{-}^{*}$
$+\left(a^{2}-b^{2}\right) e^{\phi} F-i\left(a^{2}+b^{2}\right) e^{\phi} * F$
[Graña, Minasian, Petrini,AT] IIB

$$
(d+H \wedge)\left(e^{2 A-\phi} \Phi_{+}\right)=0
$$

$$
(d+H \wedge)\left(e^{2 A-\phi} \Phi_{+}\right)=d A \wedge \Phi_{+}^{*}
$$

$$
+\left(a^{2}-b^{2}\right) e^{\phi} F-i\left(a^{2}+b^{2}\right) e^{\phi_{*}} * F
$$

$$
(d+H \wedge)\left(e^{2 A-\phi} \Phi_{-}\right)=0
$$

For now $\quad \Phi_{+}=e^{i J}, \quad \Phi_{-}=\Omega$
Mirror map:
The two equations are exchanged by

$$
\begin{gathered}
\text { IIA } \text { IIB } \\
\Phi_{+} \rightarrow i \Phi_{-} \\
\Phi_{-} \rightarrow-i \Phi_{+} \\
F \rightarrow i F
\end{gathered}
$$

A warping
ϕ dilaton
a, b normalizations

$$
\begin{gathered}
\Phi_{ \pm}^{\dagger} \wedge \Phi_{ \pm}=a b \mathrm{vol} \\
a^{2}-b^{2}=c e^{-A} \\
a^{2}+b^{2}=c^{\prime} e^{A}
\end{gathered}
$$

Consequences:
$(\mathrm{IIA})(d+H \wedge) e^{i J}=0 \Rightarrow d J=0$
(IIB) $(d+H \wedge) \Omega=0 \Rightarrow d \Omega=0$
$\mathrm{SU}(3)$ on $T \Longrightarrow \mathrm{SU}(3)$ on $T^{*} \Longrightarrow \mathrm{SU}(3) \times \mathrm{SU}(3)$ on $T \oplus T^{*}$

Correspondingly: $\begin{aligned} & \Phi_{+} \text {more general than } e^{i J} \\ & \Phi_{-} \text {more general than } \Omega\end{aligned}$
(Example: $\Phi_{+}=e^{i j} \wedge(v+i w) 4 \mathrm{~d}+2 \mathrm{~d}$ mix $)$
For general $\Phi \mathrm{s}$:
Generalized complex geometry
[Hitchin, Gualtieri,Witt...]

- same mathematical properties (pure spinor on $T \oplus T^{*}$)
- supersymmetry equations still valid!
- T-duality:
- assume SLag T^{3} fibration $\rightarrow J, \Omega$
- dualize the torus $\rightarrow \tilde{J}, \tilde{\Omega}$
- $(d J, d \Omega) \longleftrightarrow(d \tilde{J}, d \tilde{\Omega})$
(not obvious a priori: $J \stackrel{?}{\longleftrightarrow} \Omega$) (intrinsic $\Omega\llcorner d J$
torsions) $(d J)_{\text {prim }}^{2,1} \longrightarrow$?

Results are actually best summarized using $e^{i J}$ and Ω

$$
T \oplus T^{*} S
$$

Compare: $\Omega \leftrightarrow e^{B+i J} \sqrt{T d}$ for branes on Calabi-Yau's
> expand $(d+H \wedge) \Phi_{ \pm}$ in a "pure Hodge diamond": More covariant intrinsic torsion:

$$
\begin{gathered}
\left\langle\Phi_{+},(d+H \wedge) \Phi_{-}\right\rangle \\
\left\langle\left(d x^{m} \wedge+J^{m n} \iota_{n}\right) \Phi_{-},(d+H \wedge) \Phi_{-}\right\rangle \\
\ldots
\end{gathered}
$$

Pairs $\left(\Phi_{+}, \Phi_{-}\right)$make mirror symmetry more manifest.

Action of T-duality rotates the diamond

Intermezzo: CY transitions

[Candelas,Green,Hubsch...]

IIB: At a point $p \in \mathcal{M}_{\mathrm{cpl}}$
$h^{2,1}$ vector multiplets
$h^{1,1}+1$ hypermultiplets

- N three-cycles B_{a} shrink
- they satisfy R relations in homology
- N new massless hypers B_{a}
- charged under vectors $\int_{B_{\alpha}} C_{4}$
- but the charge matrix has kernel of dim. R

$$
\sum_{a}{ }^{\text {"F-term" }}{ }^{a}{ }_{b} B_{a}^{\dagger} \sigma^{\alpha} B_{a}=0
$$

$$
\text { New vacua, } \mathcal{N}=2, B_{a} \neq 0
$$

What is their IOd interpretation?
On the new branch:

- Higgs mechanism: lose $N-R$ vectors
- gain N hypers; lose $N-R$
$h^{2,1}-N+R$ vector multiplets
$h^{1,1}+R \quad$ hypermultiplets

Proposal: transitions (topologically:"surgery")

 replace the three-cycles with two-cycles$$
M_{6} \rightarrow \tilde{M}_{6}
$$

noncompact case:

compact case (with relations):

- Q: If M_{6} is CY ; is $\tilde{M}_{6} \mathrm{CY}$ too?

A: when $R \neq 0$
[Werner]
compact case (no relations):

In general:

$$
\begin{aligned}
& \tilde{b}_{2}=b_{2}+R \\
& \frac{\tilde{b}_{3}}{2}=\frac{b_{3}}{2}-N+R
\end{aligned}
$$

- agrees with the multiplets

New branch: IIB on \tilde{M}_{6}

Flux gives new vacua

Let us now suppose no relations. To fix ideas:

$$
B^{\dagger} \sigma^{\alpha} B=0: \text { no branch with } B \neq 0
$$

Only the cycle
A_{1} shrinks

But switch on $F_{3} \mid \int_{B_{1}} F_{3}=n^{1} \rightarrow$ contribution to the potential;
At that point: new hyper B vacuum only when A_{1} shrinks

New (Higgs) branch!

$$
\text { this time } B^{\dagger} \sigma^{\alpha} B=e^{2 \phi} n^{1} \delta^{\alpha}{ }_{3} \longrightarrow B=\binom{\sqrt{e^{2 \phi} n^{1}}}{0}
$$

what happens to the multiplets?

- vectors: one becomes massive (A_{1} shrinks)
- hypers: gain B; it + universal \longrightarrow one massless, one massive

$$
h^{2,1}(\mathrm{CY})-1 \text { vector multiplets }
$$

+ one vector and one hyper have $h^{1,1}(\mathrm{CY})+1$ hypermultiplets paired up and become massive

Interpretation of the vacua

[Chuang,Kachru,AT]

- Counting of massless states consistent with the topological counting
- reasonable: going to the new branch

$$
\begin{array}{l|c}
\tilde{b}_{2}=b_{2}+R & \text { for } \\
\frac{\tilde{b}_{3}}{2}=\frac{b_{3}}{2}-N+R & R=0
\end{array}
$$ only affects CY close to shrinking A_{1}

This last point is not automatical for IIA

Example: with $F_{6} \longrightarrow$ the whole (quantum) volume of M_{6} shrinks "Localized" cases: $\exists p \in \mathcal{M}_{s p l}$ in which (e.g.) only one curve shrinks; switch on F_{4} and drive the CY to that point.
(example where p exists: elliptic fibration over \mathbb{F}_{1})
This time we will have

$$
\begin{gathered}
\tilde{b}_{2}=b_{2}-N+R \\
\tilde{b}_{3}=b_{3}+R
\end{gathered}
$$

So the new vacua should come from \tilde{M}_{6}
whose topology is given by surgery
Q : what about their differential-geometric properties? they cannot be CY.What else?

A: More generally than for CY		M_{6} complex $\Rightarrow \tilde{M}_{6}$ complex	$M_{6} \quad$ symplectic $\Rightarrow \tilde{M}_{6}$ symplectic
[Smith,Thomas, Yau] [Freedman;Tian] [Werner]	$S^{3} \rightarrow S^{2}$	yes	if $\quad R>0$
	$S^{2} \rightarrow S^{3}$	if $\quad R>0$	yes

Why? first case: S^{2} is holomorphic but trivial in homology

$$
\int_{B} d J=\int_{S^{2}} J=\operatorname{vol}\left(S^{2}\right) \neq 0
$$

For us,
M_{6} is CY
(complex+ symplectic)

IIB: complex (almost symplectic)
IIA: symplectic (almost complex)

Can we check this picture?

Try: find the fields which got a mass by Higgs directly on \tilde{M}_{6}

- KK for IOd supergravity on \tilde{M}_{6}. Should it work?
- Actually, these vacua cannot be coming from IOd sugra (it is impossible without negative sources)
- computation with brane hyper B is valid when S^{2} is small

Let us compare anyway. Idea:

- On both sides we have an $\mathcal{N}=2$ gauging, due to (IIB):
- on M_{6}, to F_{3}
- on \tilde{M}_{6}, to $d J$
$\mathcal{N}=2$ 4d supergravity "moment map" \mathcal{P}^{α}
Rigid limit, $\mathcal{N}=1$ subalgebra
gaugings
\longrightarrow $\mathcal{P} \sim \mathcal{W}$ superpotential

$$
\begin{gathered}
\text { On } M_{6} \\
\mathcal{P}^{3}=B^{\dagger} \sigma^{3} B+\int_{M_{6}} F_{3} \wedge \Omega \\
\text { can expand using } \\
\text { harmonic forms }
\end{gathered}
$$

On \tilde{M}_{6}
 $$
\mathcal{P}^{3}=\int_{\tilde{M}_{6}} d J \wedge_{\mathrm{uh} ?} \Omega
$$
 Prescription:
 [Gurrieri,Louis,Micu,Waldram; Grana,Louis,Waldram]

- (J, Ω) determine a metric $\left(g_{i \bar{j}}=-i J_{i \bar{j}}\right)$

In our case: there should be a mass level determined by S^{2}

- use it to find eigenforms $\Delta \omega=m^{2} \omega$
- $[d, \Delta]=0 \Rightarrow d$ acts on a given mass level as a finite matrix
$d \omega_{2}=m \omega_{3}$
Write $\begin{aligned} J & =t_{\text {mass }} \omega_{2}+J_{\text {harm }} \\ \Omega & =X_{\text {mass }} \omega_{3}+\Omega_{\text {harm }}\end{aligned}$ and use in $\int d J \Omega$

Q: $\int d J \Omega=-\int J d \Omega=0$?? remember: complex $(K=0)$ has $d \Omega=0$
A: in fact, $d \Omega=0$ only on the vacuum!

$$
\begin{array}{cc}
\text { on } M_{6} \\
\int_{A_{1}} \Omega & X^{1} \leftrightarrow X_{\text {mass }}
\end{array} \quad \text { on } \tilde{M}_{6}
$$

vacuum at $X^{1}=0$:
A_{1} cycle shrinks
vacuum at $X_{\text {mass }}=0$:

$$
d \Omega=0
$$

massive hyper:

$$
J=t_{\mathrm{mass}} \omega_{2}+J_{\mathrm{harm}}
$$

massive combination of g_{s} and B

- This method
- required guessing properties of spectrum of Δ
- obscures the expected integrality of the gaugings

Is there a more "cohomological" understanding of $d J$ and $\int d J \wedge \Omega$?

- We propose one should think of $d J$ as $\in H^{3}\left(\tilde{M}_{6}, S^{2}\right)$ relative cohomology

$$
\int_{B} d J=\operatorname{vol}\left(S^{2}\right) \quad\left(B, S^{2}\right) \in H_{3}\left(\tilde{M}_{6}, S^{2}\right) \begin{gathered}
\text { relative } \\
\text { homology }
\end{gathered}
$$

fixed by being a holomorphic curve

- also, $d \Omega \neq 0$ should be dual to a pair $\left(S^{3}, D\right) \in H_{4}\left(\tilde{M}_{6}, S^{3}\right)$
- a "linking number" between S^{3} and S^{2} would be the gauge charge ($\int d J \wedge \Omega$ looks like a gen. Chern-Simons)

- Reid's fantasy:
- many 19-dim. moduli spaces of algebraic K3's; later recognized as \subset 20-dim. moduli space of K3
something similar for three-folds?
- does string theory realize a version of this for complex and symplectic manifolds?
the massive fields we discussed lead us off-shell

Conclusions

- String theory has vacua on complex or symplectic manifolds
- They follow patterns suggested by supergravity
- Mirror symmetry still holds

