Constructing 3 family models from the E(8)xE(8) heterotic string

Outline phenomenology orbifold GUTS heterotic string 4D Pati-Salam Discrete non-Abelian flavor sym's Mini-landscape search for MSSM

Phenomenology

- <u>charge quantization</u>
 gauge coupling unification
 Yukawa unification
- neutrino masses

 $q = \begin{pmatrix} u & u & u \\ d & d & d \end{pmatrix} \qquad \overline{u} = \begin{pmatrix} \overline{u} & \overline{u} & \overline{u} \end{pmatrix} \qquad \overline{d} = \begin{pmatrix} \overline{d} & \overline{d} & \overline{d} \end{pmatrix}$ $l = \begin{pmatrix} v \\ e \end{pmatrix} \quad \bar{e} \quad Q_{EM} = T_L^3 + \frac{Y}{2}$ $Q = \begin{pmatrix} u & u & u & v \\ d & d & d & e \end{pmatrix} \qquad \overline{Q} = \begin{pmatrix} u & u & u & v \\ \hline d & \overline{d} & \overline{d} & \overline{e} \end{pmatrix}$ $Y = (B - L) + 2T_R^3$ Pati-Salam $SU(4)_{C} x SU(2)_{L} x SU(2)_{P}$

$SU(5) \times U(1)$

 $SU(4) \times SU(2)_{L} \times SU(2)_{R}$ $10_{1} + \overline{5}_{-3} + 1_{5}$ $Q + \overline{Q}$

 $\frac{16}{16} = (\pm \frac{1}{2}, \pm \frac{1}{2}, \pm \frac{1}{2}, \pm \frac{1}{2}, \pm \frac{1}{2}, \pm \frac{1}{2}) \quad \text{even}/\text{odd} \text{ no. - signs}$ $45 = (\pm 1, \pm 1, 0, 0, 0)$ $10 = (\pm 1, 0, 0, 0, 0) \quad \text{Cartan-Weyl}$

Charge quantization						
State	Y	Color	Weak			
	$=\frac{2}{3}\Sigma(\mathbf{C}) - \Sigma(\mathbf{W})$	C spins	W spins			
$\overline{ u}$	0	+ + +	++			
ē	2	+ + +				
ur		-++	+-			
$\mathbf{d_r}$		-++	-+			
ub	<u>1</u> 3	+ - +	+-			
dь		+ - +	-+			
$\mathbf{u_y}$		++-	+-			
$\mathbf{d}_{\mathbf{y}}$		+ + -	-+			
$\overline{\mathbf{u}}_{\mathbf{r}}$		+	++			
$\overline{\mathbf{u}}_{\mathbf{b}}$	$-\frac{4}{3}$	- + -	++			
$\overline{\mathbf{u}}_{\mathbf{y}}$		+	++			
$\overline{\mathbf{d}}_{\mathbf{r}}$		+				
$\overline{\mathbf{d}}_{\mathbf{b}}$	23	- + -				
$\overline{d}_{\mathbf{y}}$		+				
ν	-1		+-			
е			-+			

spinor repsn. of SO(10)

Phenomenology

charge quantization
gauge coupling unification
Yukawa unification
neutrino masses

Gauge coupling unification

$M_G \approx 3 \times 10^{16}$ GeV

Phenomenology

charge quantization
 gauge coupling unification
 Yukawa unification
 neutrino masses

Yukawa unification

SU(5) $\lambda_{u} 10 10 H_{u} + \lambda_{d} 10 \overline{5} H_{d} + \lambda_{v} \overline{5} 1 H_{u}$

 $\lambda_{t} \neq \lambda_{b} \neq \lambda_{v}$

 $\frac{PS}{SO(10)}$

 $\lambda \overline{Q} H Q$ $\lambda_{t} = \lambda_{b} = \lambda_{\tau} = \lambda_{v} \equiv \lambda$

Phenomenology

charge quantization

- gauge coupling unification
- Yukawa unification
- <u>neutrino masses</u>

neutrino masses

Phenomenology

charge quantization
 gauge coupling unification
 Yukawa unification
 neutrino masses

SO(10) SUSY GUT W/ L.E. SUSY

Quark & Lepton masses and mixing

Hierarchical $\lambda q_3 \overline{u_3} H_u \qquad \lambda \sim O(1)$

 $q_i \ \overline{u_j} \ H_u \ \left(\frac{S}{M_P}\right)^{n(i,j)}$ Froggatt-Nielsen

Flavor symmetry breaking U(1) or non-Abelian SU(2), SU(3) $S_3 \approx D_3, D_4, A_4, \Delta(27), \Delta(54)$

SUSY flavor problem

~ 125 soft SUSY breaking parameters!

Solution 1. heavy 1st & 2nd generation scalars 2. degenerate squark & slepton at M_G 3. alignment of fermion/sfermions 2 & 3 non-Abelian Flavor sym.

Phenomenology (summary)

SO(10) SUSY GUT w/ L.E. SUSY

Discrete non-Abelian flavor symmetry

4 D GUT problems

GUT symmetry breaking

Higgs doublet - triplet splitting

Orbifold GUTS

All this first observed in heterotic string in 10D

- Higgs doublet-triplet splitting
- chiral gauge theory
- gauge symmetry breaking
- N=2 -> N=1 SUSY

Orbifold SUSY GUTS

$E_8 \times E_8$ heterotic string

Constructing MSSM / Caveats SUSY solution at Ma 100's moduli (geometric & more) gauge & Yukawa couplings fons. of moduli tune to desired values moduli stabilization & SUSY breaking ?? save for later

Kobayashi, SR, Zhang

Kobayashi, Nilles, Ploeger, SR & Ratz

LNRRRVW

Compactify GD on (T²)³ $G_2 \times SU_3 \times SO_4$ root lattice $-l_s - R$

Then mod by $Z_6 = (Z_3 \times Z_2)$ and Add Wilson lines

consistent with mod. inv. !

$$E_6 GUT$$

in 5D

$P \in E(8)$ $P = (n_1, n_2, ..., n_8), (n_1 + \frac{1}{2}, n_2 + \frac{1}{2}, ..., n_8 + \frac{1}{2})$ $n_i \in Z \quad (i = 1, ..., 8) \qquad \sum_{i=1}^8 n_i = 2Z$

Massless U sector $P^2 = 2$

GSO $V_6 = \frac{1}{6}(2, 2, 2, 0, 0, 0, 0, 0), V_3 = 2V_6$ $P \cdot V_3 - r \cdot v_3 \in Z, \quad r = (0, 1, 0, 0)$ $v_3 = \frac{1}{3}(1, -1, 0)$ twist

Consider $P \cdot V_3 = Z$

 $P = (0, 0, 0, \pm 1, \pm 1, 0, 0, 0)$ 45 16/16 $\pm (\frac{1}{2}, \frac{1}{2}, \frac{1}{2}, \pm \frac{1}{2})$ $(\pm 1, \pm 1, 0, 0, 0, 0, 0, 0)$ $V,\Sigma=78$ $E(6) \times SU(3)$ Similarly 27, 27 \in U₁, U₂

$$E_6 \longrightarrow SO(10) \longrightarrow SU(4)_X SU(2)_L X SU(2)_R$$

 $F_3 = (4,2,1), F_3^c = (4^c,1,2), H = (1,2,2)$

T, twisted sector

Vector-like exotics

gauge-Yukawa unification

 $\frac{g_5}{\sqrt{\pi R}} \int_0^\infty dy \,\overline{27}\Sigma 27 = gHF_3^c F_3$

Higgs for PS symmetry breaking

D4 family symmetry

$$D_{4} = \left\{ \pm 1, \pm \sigma_{1}, \pm \sigma_{3}, \mp i\sigma_{2} \right\}$$

$$\sigma_{1} = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} : f_{1} \leftrightarrow f_{2} \qquad \sigma_{3} = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix} : f_{2} \leftrightarrow -f_{2}$$

geometry space group sel. rule

Fermion mass hierarchy

PS breaking VEVs

$$O_i = \langle \chi^c_{\alpha} \ \bar{\chi}^c_i \rangle, \ i = 1, 2$$

• Fermion mass matrix [simple form]

$$(f_1 \ f_2 \ f_3) \ h \ \mathcal{M} \ \left(egin{array}{c} f_1^c \ f_2^c \ f_3^c \end{array}
ight)$$

$$\mathcal{M} = \begin{pmatrix} (O_2 \ \tilde{S}_e + S_e) & (O_2 \ \tilde{S}_o + S_o) & (O_1 \ O_2 \ \phi_e + \tilde{\phi}_e) \\ (O_2 \ \tilde{S}_o + S_o) & (O_2 \ \tilde{S}_e + S_e) & (O_1 \ O_2 \ \phi_o + \tilde{\phi}_o) \\ \phi'_e & \phi'_o & 1 \end{pmatrix}$$

Orbifolds preserving N=1 SUSY

(a) \mathbb{Z}_N

(b) $\mathbb{Z}_N \times \mathbb{Z}_M$

orbifold	twist	orbifold	v^1	v^2
\mathbb{Z}_3	(1, 1, -2)/3	$\mathbb{Z}_2 imes \mathbb{Z}_2$	(1, 0, -1)/2	(0, 1, -1)/2
\mathbb{Z}_4	(1, 1, -2)/4	$\mathbb{Z}_2 imes \mathbb{Z}_3$	(1, 0, -1)/2	(0, 1, -1)/3
\mathbb{Z}_6 -I	(1, 1, -2)/6	$\mathbb{Z}_2 imes \mathbb{Z}_4$	(1, 0, -1)/2	(0, 1, -1)/4
\mathbb{Z}_6 -II	(1, 2, -3)/6	$\mathbb{Z}_2 imes \mathbb{Z}_6$	(1, 0, -1)/2	(0, 1, -1)/6
\mathbb{Z}_7	(1, 2, -3)/7	$\mathbb{Z}_2 imes \mathbb{Z}_6'$	(1, 0, -1)/2	(1, 1, -2)/6
\mathbb{Z}_8 -I	(1, 2, -3)/8	$\mathbb{Z}_3 imes \mathbb{Z}_3$	(1, 0, -1)/3	(0, 1, -1)/3
\mathbb{Z}_8 -II	(1, 3, -4)/8	$\mathbb{Z}_3 imes \mathbb{Z}_6$	(1, 0, -1)/3	(0, 1, -1)/6
\mathbb{Z}_{12} -I	(1, 4, -5)/12	$\mathbb{Z}_4 imes \mathbb{Z}_4$	(1, 0, -1)/4	(0, 1, -1)/4
\mathbb{Z}_{12} -II	(1, 5, -6)/12	$\mathbb{Z}_6 imes \mathbb{Z}_6$	(1, 0, -1)/6	(0, 1, -1)/6

Table 1: (a) \mathbb{Z}_N and (b) $\mathbb{Z}_N \times \mathbb{Z}_M$ orbifold twists for 6D \mathbb{Z}_N orbifolds leading to N=1 SUSY.

Orbifold + Twisted Sectors

 $x^{i} = x^{i} + n_{a}e_{a}^{i}, \quad (i = 1, ..., d) \qquad T^{d} = \frac{R^{d}}{\Lambda} \quad \text{torus}$ $n_{a}e_{a}^{i} \subset \Lambda \quad \text{lattice} \qquad T^{d} = \frac{R^{d}}{\Lambda} \quad \text{torus}$ $\theta \Lambda = \Lambda \qquad \theta^{N} = 1 \qquad \frac{T^{d}}{\mathbb{Z}_{N}} \quad \text{orbifold}$

$$\begin{split} f = \left(\theta^k f\right) + \Lambda & \text{Fixed points, K^{\text{th}} twisted} \\ & \text{sector} \\ \left(1 - \theta^k\right) f = \left(1 - \theta^k\right) \Lambda \equiv \Lambda_k & \text{Conj. classes} \end{split}$$

T^2/Z_3 orbifold

$(1-\theta)\Lambda$ spanned by $3e_1, e_2-e_1$

81

02

2

0

fixed points

 $\begin{pmatrix} \theta, m_1 e_1 \end{pmatrix}$ $m_1 = 0, 1, 2$

Stringy Selection Rules

Eg. : Yukawa couplings of n states in first twisted sector

$$\prod_{i}^{n} \left(\theta, \ m_{1}^{(i)} e_{1} \right) = \left(\theta^{n}, \ \sum_{i} m_{1}^{(i)} e_{1} \right) = \left(1, \ \left(1 - \theta \right) \Lambda \right)$$

(I) $n = 3\mathbf{Z}$, (II) $\sum_{i} m_{1}^{(i)} = 0 \pmod{3}$ Space group selection rules

$$(I) \quad \begin{pmatrix} |(\theta,0)\rangle\\|(\theta,e_{1})\rangle\\|(\theta,2e_{1})\rangle \end{pmatrix} \Rightarrow \begin{pmatrix} \omega & 0 & 0\\ 0 & \omega & 0\\ 0 & 0 & \omega \end{pmatrix} \begin{pmatrix} |(\theta,0)\rangle\\|(\theta,e_{1})\rangle\\|(\theta,2e_{1})\rangle \end{pmatrix} \qquad \omega = e^{2\pi i/3}$$

$$(II) \quad \begin{pmatrix} |(\theta,0)\rangle\\|(\theta,e_{1})\rangle\\|(\theta,2e_{1})\rangle \end{pmatrix} \Rightarrow \begin{pmatrix} 1 & 0 & 0\\ 0 & \omega & 0\\ 0 & 0 & \omega^{2} \end{pmatrix} \begin{pmatrix} |(\theta,0)\rangle\\|(\theta,e_{1})\rangle\\|(\theta,2e_{1})\rangle \end{pmatrix} \qquad \Delta (54) = \\\mathbf{S}_{3} \oplus (\mathbb{Z}_{3} \times \mathbb{Z}_{3}^{*})$$

$$(III) \quad \begin{pmatrix} |(\theta,0)\rangle\\|(\theta,e_{1})\rangle\\|(\theta,2e_{1})\rangle \end{pmatrix} \Rightarrow \begin{pmatrix} 0 & 1 & 0\\ 0 & 0 & 1\\ 1 & 0 & 0 \end{pmatrix} \begin{pmatrix} |(\theta,0)\rangle\\|(\theta,e_{1})\rangle\\|(\theta,2e_{1})\rangle \end{pmatrix} \qquad \mathbf{S}_{3} \text{ perm's. geometry}$$

T^2/Z_2 orbifold $(D_4 \times D_4)/Z_2$ 4-plet

the state of the s

$\frac{T^{2}/Z_{4} \text{ orbifold } (\theta - \text{twisted sector})}{\left\{ |(\theta, 0)\rangle, |(\theta, e_{1})\rangle \right\}} \qquad (D_{4} \times Z_{4})/Z_{2}$

 (θ, e_1)

doublet

$\frac{\mathsf{T}^2/\mathsf{Z}_4}{\left|\left(\theta^2,0\right)\right\rangle}, \left|\left(\theta^2,e_1+e_2\right)\right\rangle, \left|\left(\theta^2,e_1\right)\right\rangle, \left|\left(\theta^2,e_2\right)\right\rangle\}$

T^2/Z_4 orbifold ($\theta + \theta^2 - twisted sectors$)

 $(D_4 \times Z_4)/Z_2$ combined \implies smaller sym. $\left\{ \left| \left(\theta^2, 0 \right) \right\rangle \pm \left| \left(\theta^2, e_1 + e_2 \right) \right\rangle, \left| \left(\theta^2, e_1 \right) \right\rangle \pm \left| \left(\theta^2, e_2 \right) \right\rangle \right\} \right\}$

 $\left\{ \left| (\theta, 0) \right\rangle, \left| (\theta, e_1) \right\rangle \right\}$ 4-singlets
+ doublet

T^2/Z_2 orbifold (SU(3) lattice)

 $z \rightarrow z + 1, \quad z \rightarrow -z$

 $z \rightarrow z + \gamma, \ \gamma = e^{i\pi/3}$

T^2/Z_2 orbifold (SU(3) lattice)

 $S: z \to z + \frac{1}{2}$

 $T: z \to \gamma^2 z$

Altarelli, Feruglio, Lin $S^2 = T^3 = (ST)^3 = 1$

54

$S_4 \oplus (Z_2 \times Z_2 \times Z_2)$

Search for MSSM Spectra in heterotic orbifolds

Buchmuller, Hamaguchi, Lebedev & Ratz Z₆-11 orbifold

Looked for and found SAA gauge group in 4D with 3 families and vector-like exotics

LNRRRVW - Mini-Landscape search

Mini-Landscape search Z₆-11 orbifold

1. V_6 breaks to SO(10) (or E(6)) 2. 2 families (16 (or 27)) in T, twisted sect. 3. Generate 2 Wilson lines W_3, W_2 4. Identify 'inequivalent' models 5. Select models with $G_{SM} \subset SU(5) \subset SO(10)$ 6. Select models with 3 net (3.2) 7. Select models with non-anom. $U_1(Y) \subset SU(5)$ 8. Select models with 3 SAA families + Higgses + vector-like exotics

Mini-Landscape search LNRRRVW preliminary

criterion	$V^{\mathrm{SO}(10),1}$	$V^{\mathrm{SO}(10),2}$	$V^{\mathrm{E}_6,1}$	$V^{\mathrm{E}_6,2}$
(4) inequivalent models with 2 Wilson lines				
(5) SM gauge group \subset SU(5) \subset SO(10) (\subset E ₆)				
(6) 3 net (3 , 2)				
(8) spectrum $= 3$ generations $+$ vector-like	128	90	3	2

Table 1: Statistics of \mathbb{Z}_6 -H orbifolds based on the shifts $V^{SO(10),1}, V^{SO(10),2}, V^{E_6,1}, V^{E_6,2}$ with two Wilson lines.

Mini-Landscape search LNRRRVW preliminary

criterion	$V^{\mathrm{SO}(10),1}$	$V^{\mathrm{SO}(10),2}$	$V^{\mathrm{E}_6,1}$	$V^{\mathrm{E}_6,2}$
(9) heavy top				
(10) exotics decouple at order 8	56			

 Fable 1: A subset of the MSSM candidates

Probability ~ 1/400 For MSSM-like models

Very 'fertile' patch in heterotic landscape

Future work

- 1. Check for D = F = 0 directions
- 2. Check all exotics get mass
- 3. Check fermion masses
- 4. Check R_{parity} conservation
- 5. Check neutrino masses (4 & 5 related)
- 6. SUSY breaking and lifting flat directions!

Conclusions

SO(10) SUSY GUT w/L.E. SUSY
 E(8) x E(8) heterotic string

 'fertile' patch of Landscape
 Find more 'fertile' patches
 Eg. Z₂ x Z₄ search (RVW in progress)

Conclusions

What's new ? Why 3 families? Previously: Z2 multiples of 3 fixed points problems : NO GUTS (wrong Y + chiral exotics) Z2 x Z2 3 twisted sectors + SO(10) GUT (OK) $Z_6 = Z_2 \times Z_3$ 3 = 2 + 1localized SO(10) GUT + fam. sym.