#### Unification in Intersecting Brane Models

#### Kang-Sin Choi University of Bonn

#### based on

- ▶ KSC, J. E. Kim, hep-th/0508149
- KSC, hep-th/0603186, hep-th/06090nn

#### contents

- 1. group unification, adjoint embedding
- 2. recombination between different SUSY vacua
- 3. coupling unification

String Phenomenology 2006 KITP, Santa Barbara, August 31, 2006

# Intersecting brane world

The origin of MSSM can be explained by intersecting brane world? Open string  $\rightarrow$  gauge theory, chiral fermions [Berkooz, Douglas, Leigh] Typical setup: D6s on  $T^6$  wrapping 3-cycle = 3 + (3+1)D



*ex.* 2 families of quarks (3, 2) under  $SU(3) \times SU(2)$ 

- # families = # intersections
- Yukawa hierarchy

Unification?

- Gauge group and representation
- Gauge coupling  $g_{YM}^2 \propto V_{cycle}^{-1}$   $-\frac{1}{4g^2} \int d^{p+1} x F^2 \rightarrow -\frac{V_{p-3}}{4g^2} \int d^4 x F^2$

Must be!

- Spontaneous symmetry breaking from the first principle (unified theory)
- Running gauge coupling from EW scale

# Adjoint embedding

*T*-dual: tilted brane  $\leftrightarrow$  magnetic flux  $A_1 = 0, A_2 = F_{12}X^1 = X'^2$ (partial) bound states of various D-branes "toron" ['t Hooft].[Guralnik, Ramgoolam]

- ▶ D1-D1 intersec.: D0-D2 bound state,
- D2-D2 intersec.: D0-D4 bound states, marginal
- ▶ D3-D3 intersec.: D0-D0-D0-D4 bound states *cf.* no D0-D6 bound state

$$\bigoplus(n^a, m^a) \leftrightarrow F_{12} = \begin{pmatrix} \frac{m^1}{n^1} \mathbf{1}_{n^1} & & \\ & \ddots & \\ & & \frac{m^k}{n^k} \mathbf{1}_{n^k} \end{pmatrix}$$

$$n = \sum n^a, m = \int \operatorname{Tr} F_{12} = \sum_a c_1^a$$

moduli space, gauge group U(p), p = gcd(n, m) embedded in U(n)



Specified by torus moduli + Chern #

- No moduli for cycles
- ► SUSY replace higher order Chern # with lower order ones

# Bifundamentals

chiral bifundamental rep [Berkooz, Douglas, Leigh] from adjoint



due to the property of Dirac Op.

multiplicity 
$$I_{ab} = \operatorname{index}_{\mathcal{Q},ab} = \frac{1}{3!(2\pi)^3} \int \operatorname{Tr}_{\mathcal{Q},ab} F^3$$

*cf.* SUSY determined by bosonic sector Branching under  $U(p_a + p_b) \rightarrow U(p_a) \times U(p_b)$ 

$$\left(p_a+p_b\right)^2 = \left(p_a^2,1\right) + (1,p_b^2) + \left(p_a,p_b\right) \quad (\overline{p}_a,\overline{p}_b) \text{ is } \textit{CPT conj.}$$

*cf.* Dual to *M* theory on  $G_2$  manifold:  $A_{p_a+p_b-1} \rightarrow A_{p_a-1} + A_{p_b-1}$  singularities Further projection associated with orbifold action

# DBI energy

Given a SUSY intersecting brane model (nonabelian) DBI energy = BPS relation [Marino, Minasian, Moore, Strominger]

$$\tau_{9} \operatorname{Tr} \sqrt{(\mathbf{1} + f_{45}^{2})(\mathbf{1} + f_{67}^{2})(\mathbf{1} + f_{89}^{2})} = \tau_{9} V_{45} V_{67} V_{89} \sum_{a} (\operatorname{Tr} \mathbf{1}_{N^{a}} + \tau_{9} (\operatorname{Tr} f_{45,a} f_{67,a} + \operatorname{Tr} f_{67,a} f_{89,a} + \operatorname{Tr} f_{89,a} f_{45,a}))$$

$$= \tau_{9} V_{45} V_{67} V_{89} \sum_{a} N_{a} + \tau_{5} (V_{89} \sum_{a} c_{2,a}^{89} + V_{45} \sum_{a} c_{2,a}^{45} + V_{67} \sum_{a} c_{2,a}^{67}).$$

$$f = 2\pi \alpha' F, \quad \tau_{5} = (4\pi^{2} \alpha')^{2} \tau_{9}, \quad V_{45} V_{67} \operatorname{Tr} f_{45} F_{67} = N \frac{m_{1} m_{2}}{m_{1} n_{2}} = c_{2}$$

$$(1)$$

tadpole condition: RR charge sum(s) to be 32 (incl. O-images), depending on the # orientifolds

- ▶  $\mathbf{Z}_M$  with M odd 1, with M even 2 [Gimon, Polchinski]
- $\mathbf{Z}_M \times \mathbf{Z}_N$  with M,N even 4 [Berkooz, Leigh]
- maximal rank 16 for each

Every SUSY setup has the same total energy with

type I compactification

vacua connected?

# Recombination of BPS cycles



•  $\theta_1 \neq \theta_2$  unstable tachyon

► 
$$\theta_1 = \theta_2 \leftrightarrow F_{12} = F_{34}$$
  
  $\leftrightarrow$  local Cauchy–Riemann condition — Any complex curves in C<sup>2</sup> is sLag

1/4 BPS = stable SUSY = minimal vol.



- ► marginal deformation, same volume [CKS, Kim] [Erdminger et al] [Douglas, Zhou]
- T-dual to D4-D0 bound state
- ► U-dual to (F,Dp) bound state = string junction [CKS, Kim]

charged scalar VEV also induces recombination = Higgs mech [Cremedes, Ibanez, Marchesano] 1/8-cycle recombination is also marginal due to SUSY.

# Type I compactification on orientifolds

[Cvetic, Shiu, Uranga 01] (intersecting) = [Berkooz, Leigh 96] (parallel)

- IIA on  $T^6/(\mathbb{Z}_2 \times \mathbb{Z}_2) 4$  O6 planes
- All cycles are 1/4-BPS, with O6-image

above 1/4 recombination!

Deformable

By brane recombinations and parallel translation

all can be on top of O6s

- Final group  $Sp(8)^4 \in SO(32)^4$ , branching  $496 \rightarrow 136 + 3 \cdot 120$
- ►  $T_{579}$ -dual: 4 O6s  $\rightarrow$  1 O9 and 3 O5s  $\Omega$ ,  $\theta\Omega$ ,  $\omega\Omega$ ,  $\omega\theta\Omega$ , orbifold group *P* invariant or become asymmetric  $\hat{P}$

All are type I compactification on P

- ▶ requiring SUSY: Dp-D(p-4) bound states *T*-dual to D9-D5
- ▶ all become D6/O6 by some *T*-dualities, *cf. M*-theory on *G*<sub>2</sub> manifold
- ► on a symmetric or asymmetric orbifold. [Blumenhagen, Gorlich, Kors, Lust]
- branching + projection assoc. w/ orbifold
- Many SUSY vacua are connected

# Gauge coupling

fluctuation around D-brane background [A. Hashimoto, Taylor], [Denef, Sevrin, Troost]

$$A_m = \langle A_m \rangle + \delta A_m$$

$$\operatorname{STr}\sqrt{\operatorname{det}(1+f)}\sqrt{-\operatorname{det}(1+(1-f^2)^{-1}\delta F - f(1-f^2)^{-1}\delta F)}$$
  
= STr $\sqrt{\operatorname{det}(1+f)}$ ((tension) + (YM with "metric"  $(1-f^2)^{-1}$ ) + (topological) +  $\mathcal{O}(\alpha' F)^4$ )

• expansion nonlocal 
$$(\mathbf{1} - f^2)^{-1}$$

▶ no moduli for cycles: specified by Kähler moduli + quantized flux

$$\mathbf{1} + f^{2} = \begin{pmatrix} (1 + (\frac{m^{1}}{n^{1}})^{2})\mathbf{1}_{N^{1}} & & \\ & (1 + (\frac{m^{2}}{n^{2}})^{2})\mathbf{1}_{N^{2}} & \\ & & \ddots & \\ & & & (1 + (\frac{m^{k}}{n^{k}})^{2})\mathbf{1}_{N^{k}} \end{pmatrix}$$

Although there is a single unified YM coupling above  $M_U$  low energy coupling may be different

- ▶ Recombination occurs at O(α'f): change the wrapping volume, thus the coupling
- From low energy: a large threshold correction from f

# Weak mixing angle

U(1) parts 
$$A_{\mu,U(1)} = \frac{1}{N} \text{Tr} A_{\mu,U(N)}, \quad g_{U(1)}^2 = \frac{2}{N} g_{U(N)}^2.$$
  
*e.g.* Madrid model  
 $Q_Y = \frac{1}{3} Q_C - Q_L - Q_R,$ 

From normalization of these gauge kinetic terms  $\frac{1}{g_Y^2} = \sum_i \frac{N_i C_i^2}{2} \frac{1}{g_i^2}$ 

$$\frac{1}{g_Y^2} = \frac{1}{6} \frac{1}{g_C^2} + \frac{1}{g_L^2} + \frac{1}{2} \frac{1}{g_R^2} = \frac{5}{3} \frac{1}{g^2},$$

In the unified coupling limit,  $g = g_L = g_R = g_C$ , we have weak mixing angle at  $M_U$ 

$$\sin^2 \theta_W = \frac{1}{g_Y^2/g^2 + 1} = \frac{3}{8}$$

This is because  $U(1)_{B-L} \times U(1)_R \subset SO(10)$ 

$$Q_Y = Q_B - Q_L - Q_R = \frac{1}{3}Q_C - Q_L - Q_R,$$

For USp(2) rather than SU(2),  $\sin^2 \theta_W = \frac{6}{13}$ . cf. no spinorial **16**. A structure  $SO(10) \subset SO(32)$ .

### Conclusions

For intersecting brane models wrapping on compact orbifolds.

- All the representations, including bifundamental, are embedded into an adjoint.
- Tadpole cancellation constrains these as SO(32) adjoint(s).
- Symmetry breaking is done via brane separations and recombinations.
- SUSY vacua are connected to type I compactification
- A unified gauge coupling can become different for subgroups below  $M_U \sim \alpha'^{-1/2}$ .
- Weak mixing angle  $\sin \theta_W^2 = 3/8$ .