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TeI. Introductiont

A. Example of non-geometric “T-fold” backgrounds
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Compactify string theory to d = 7 via NS-NS fields as follows:

Compactification to d = 8 on a T 2. Data:

• Complex structure τ

• Complexified volume ρ = b + i
√

G, b =
∫

T 2 B12. b has period 1.

Symmetries of string compactification on T 2:

• Isometries: SL(2, Z)τ :

τ →
aτ + b

cτ + d
; a, b, c, d ∈ Z ; ad − bc = 1

• Stringy symmetries: SL(2, Z)ρ. Includes b → b+1, T-duality ρ → −1

ρ
.

• Mirror symmetry τ ↔ ρ. This is a T-duality transformation R → 1/R
on one cycle of torus.

• (τ, ρ) → (−τ ∗,−ρ∗)
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Compactify string theory to d = 7 via NS-NS fields as follows:

Compactification to d = 8 on a T 2. Data:

• Complex structure τ

• Complexified volume ρ = b + i
√

G, b =
∫

T 2 B12. b has period 1.

Symmetries of string compactification on T 2:

• Isometries: SL(2, Z)τ :

τ →
aτ + b

cτ + d
; a, b, c, d ∈ Z ; ad − bc = 1

• Stringy symmetries: SL(2, Z)ρ. Includes b → b+1, T-duality ρ → −1

ρ
.

• Mirror symmetry τ ↔ ρ. This is a T-duality transformation R → 1/R
on one cycle of torus.

• (τ, ρ) → (−τ ∗,−ρ∗)

1



Compactify to d = 7 on an additional S1 with radius R, coordinate x ≡

x + 2πR.

ρ ≡ ρ(x)

τ ≡ τ(x)

As x → x + 2πR, (τ, ρ) must return to selves up to symmetry of d = 8
compactification.

Shifts b → b + n, n ∈ Z lead to ”magnetic” NS-NS flux:

H = dB,
∫

T 3 H = n.

Shifts in SL(2, Z)τ isometries lead to manifolds. ”Geometric flux”.

T-duality shifts such as ρ → −1

ρ
, ρ ↔ τ lead to nongeometric compactifica-

tions. ”Nongeometric flux”.
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Compactify to d = 7 on additional S1

R, coordinate x ≡ x + 2πR.

ρ ≡ ρ(x)

τ ≡ τ(x)

As x → x + 2πR, (τ, ρ) must return to selves up to symmetry of d = 8
compactification. The symmetry action is called a ”monodromy”.

Shifts b → b + n, n ∈ Z lead to ”magnetic” NS-NS flux:

H = dB,
∫

T 3 H = n.

Shifts in SL(2, Z)τ isometries lead to manifolds. ”Geometric flux”.

T-duality shifts such as ρ → −1

ρ
, ρ ↔ τ lead to nongeometric

compactifications. ”Nongeometric flux”.

1. ρ ↔ τ at every z: magnetic flux → geometric flux.

2. ρ → −1

ρ
at every z: magnetic flux → nongeometric flux
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Compactify string theory to d = 7 via NS-NS fields as follows:

Compactification to d = 8 on a T 2. Data:

• Complex structure τ
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Symmetries of string compactification on T 2:

• Isometries: SL(2, Z)τ :

τ →
aτ + b

cτ + d
; a, b, c, d ∈ Z ; ad − bc = 1

• Stringy symmetries: SL(2, Z)ρ. Includes b → b+1, T-duality ρ → −1

ρ
.

• Mirror symmetry τ ↔ ρ. This is a T-duality transformation R → 1/R
on one cycle of torus.

• (τ, ρ) → (−τ ∗,−ρ∗)
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Kachru, Schulz, Tripathy, Trivedi;
Tomasiello; Shelton,Taylor,Wecht

KSTT; Hellerman, McGreevy, Williams; 
Hull; STW.

Compactify to d = 7 on additional S1

R, coordinate x ≡ x + 2πR.

ρ ≡ ρ(x)

τ ≡ τ(x)

As x → x + 2πR, (τ, ρ) must return to selves up to symmetry of d = 8
compactification.

Shifts b → b + n, n ∈ Z lead to ”magnetic” NS-NS flux:

H = dB,
∫

T 3 H = n.

Shifts in SL(2, Z)τ isometries lead to manifolds. ”Geometric flux”.

T-duality shifts such as ρ → −1

ρ
, ρ ↔ τ lead to nongeometric compactifica-

tions. ”Nongeometric flux”.
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As x → x + 2πR, (τ, ρ) must return to selves up to symmetry of d = 8
compactification.

Shifts b → b + n, n ∈ Z lead to ”magnetic” NS-NS flux:
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T 3 H = n.

Shifts in SL(2, Z)τ isometries lead to manifolds. ”Geometric flux”.

T-duality shifts such as ρ → −1

ρ
, ρ ↔ τ lead to nongeometric

compactifications. ”Nongeometric flux”.
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3.

Classification by monodromy



Fiberwise T-duality (with rectangular T   )

Compactify to d = 7 on additional S1

R, coordinate x ≡ x + 2πR.

ρ ≡ ρ(x)

τ ≡ τ(x)

As x → x + 2πR, (τ, ρ) must return to selves up to symmetry of d = 8
compactification.

Shifts b → b + n, n ∈ Z lead to ”magnetic” NS-NS flux:

H = dB,
∫

T 3 H = n.

Shifts in SL(2, Z)τ isometries lead to manifolds. ”Geometric flux”.

T-duality shifts such as ρ → −1

ρ
, ρ ↔ τ lead to nongeometric

compactifications. ”Nongeometric flux”.

1. ρ ↔ τ at every z: magnetic flux → geometric flux.

2. ρ → −1

ρ
at every z: magnetic flux → nongeometric flux

2

KSTT,STW,LSW
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More general story:

1. T  fibres: GL(n,Z) monodromies lead to 
geometric models.  O(n,n;Z) monodromies 
lead to non-geometric compactifications

2. More general manifolds: T  fibration over 
more general base manifold B.

a. Geometric: GL(n,Z) transition functions

b. Non-geometric: O(n,n;Z)   

n

n



Motivation

1. Magnetic fluxes useful for model building

2. More general class includes “nongeometric fluxes”

3. Will argue: important for understanding SUSY 
breaking

4. Nongeometric compactifications intrinsically 
interesting!

GKP,KKLT

STW



II. D-branes on “T-folds”

A. Motivation
1. Add open strings to nongeometric flux models

2. Wrapped D-branes: nonperturbative objects 
(solitons, instantons)

3. D-branes are probes of L~g l : potentially 
useful for understanding exotic 
compactifications

s s

Shenker; Kabat&Pouliot; Douglas, 
Kabat, Pouliot & Shenker



B. Questions

1. What are allowed D-brane configurations?

2. What is geometry or topology of moduli space/ 
low-energy configuration space of D-branes?



C. D-branes and monodromy

1. T-duality along a cycle exchanges Dirichlet 
and Neumann

a. D0 --> D1 along cycle

b. D1 along cycle --> D0

c. D1 along dual cycle --> D2

d. D2 --> D1 along dual cycle

2. b --> b+1 takes D2 --> D2 + D0

D-branes transform nontrivially under O(n,n;Z)
Example: T2

3
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A T 2 fibration with ρ → −1

ρ
monodromy

4

D. Allowed D-brane configurations
D-brane wrapping base circle: fibre directions 
must be invariant under monodromy g  : 
else it does not close on itself. 

D-branes at points on the base are all allowed

If fibre directions (and brane orientation) are 
invariant under g  , it may be wrapped n times 
around the base.

This example
is not allowed

n
1.

2.

n



Other examples

1. T  with H-flux: D3 brane not allowed

2. Non-geometric flux: D1-branes or D3-branes 
wrapping base not allowed.

Conditions can be stated elegantly using Hull’s
“doubled torus” formalism



E. “D-topology” of T-folds

Transport D0-brane around S

g: D0 --> D2
g  : D0 --> D0

Configuration space of D0 is 
geometric double cover of T-fold

=

S
1

3

A T 2 fibration with ρ → −1

ρ
monodromy

4

1

2



Conjectures:

1. Configuration space of D-branes at point on 
base is always a geometric n-fold cover of “T-
fold”

2. If g  does not preserve D-brane for any n, 
there is a potential on the configuration 
space (else an infinite degeneracy of D-brane 
states), or brane is otherwise unstable.

(Hellerman, private correspondence)



III. Nongeometric fluxes and SUSY
A. Fluxes and soft SUSY breaking

Consider type IIB on a Calabi-Yau with D-branes. 
Lagrangian for open strings (gauge bosons, 
charged matter) depends on closed strings

1. Perturbative superpotential for open string chiral scalar 
superfields: couple to complex structure moduli

2. FI D-terms, tree-level gauge couplings: couple to Kahler moduli

3. Kahler potential for open string scalars: couple to all moduli

Brunner, Douglas, Lawrence & Romelsberger; 
Douglas; Lawrence & McGreevy



Auxiliary components of closed string fields:
soft SUSY-breaking terms in open string Lagrangian

Closed string modes descend from N=2 multiplets.

1.

A T 2 fibration with ρ → −1

ρ
monodromy

Expand N = 2 superfield in SU(2)R doublet (θ, θ̂) of superspace variables.

Vector multiplets are chiral in (θ, θ̂). SU(2)R triplet of auxiliary fields:

V = w + θλ + θ̂λ̂ + θ2D++ + θ̂2D−− + θαθ̂βεαβ

(

D+− + σµν
αβFµν

)

+ . . .

Hypermultiplets are ”twisted chiral” :

H = t + θψ + ˆ̄θ ˆ̄ψ + θ2y + ˆ̄θ2ȳ + θα ˆ̄θβ̇σµ

αβ̇
Fµ + . . .

where t, y, ȳ, Fµ = ∂µφ are complex.

4

2.

3.

Grimm, Sohnius & West; de Wit & van Holten; de Roo, 
van Holten, de Wit & van Proeyen

Berkovits & Siegel

A T 2 fibration with ρ → −1

ρ
monodromy

Expand N = 2 superfield in SU(2)R doublet (θ, θ̂) of superspace variables.

Vector multiplets are chiral in (θ, θ̂). SU(2)R triplet of auxiliary fields:

V = w + θλ + θ̂λ̂ + θ2D++ + θ̂2D−− + θαθ̂βεαβ

(

D+− + σµν
αβFµν

)

+ . . .

Here Dab are auxiliary fields.

Hypermultiplets are ”twisted chiral” :

H = t + θψ + ˆ̄θ ˆ̄ψ + θ2y + ˆ̄θ2ȳ + θα ˆ̄θβ̇σµ

αβ̇
Fµ + . . .

where t, y, ȳ, Fµ = ∂µφ are complex. Here y, ȳ are auxiliary fields.
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H = t + θψ + ˆ̄θ ˆ̄ψ + θ2y + ˆ̄θ2ȳ + θα ˆ̄θβ̇σµ

αβ̇
Fµ + . . .

where t, y, ȳ, Fµ = ∂µφ are complex. Here y, ȳ are auxiliary fields.

4



Only certain auxiliary fields are understood

Type IIB vector multiplets

A T 2 fibration with ρ → −1
ρ

monodromy

Expand N = 2 superfield in SU(2)R doublet (θ, θ̂) of superspace variables.

Vector multiplets are chiral in (θ, θ̂). SU(2)R triplet of auxiliary fields:

V = w + θλ + θ̂λ̂ + θ2D++ + θ̂2D−− + θαθ̂βεαβ

(

D+− + σµν
αβFµν

)

+ . . .

Here Dab are auxiliary fields.

Hypermultiplets are ”twisted chiral” :

H = t + θψ + ˆ̄θ ˆ̄ψ + θ2y + ˆ̄θ2ȳ + θα ˆ̄θβ̇σµ

αβ̇
Fµ + . . .

where t, y, ȳ, Fµ = ∂µφ are complex. Here y, ȳ are auxiliary fields.

• w: complex structure deformations.

• Jµ
ν : almost complex structure; ω = gµλJλ

νdxµ ∧ dxν .

• D±±: built from dω and NS-NS 3-form field strength H ,
both ∈ H(2,1) ⊕ H(1,2).

• D+− are built from RR 3-form F in H(2,1) ⊕ H(1,2).

t are complex structure deformations. y, ȳ are built from dω and NS-NS
3-form field strength H , both ∈ H(2,1) ⊕ H(1,2).

4

Type IIA hypermultiplets

A T 2 fibration with ρ → −1
ρ

monodromy

Expand N = 2 superfield in SU(2)R doublet (θ, θ̂) of superspace variables.

Vector multiplets are chiral in (θ, θ̂). SU(2)R triplet of auxiliary fields:

V = w + θλ + θ̂λ̂ + θ2D++ + θ̂2D−− + θαθ̂βεαβ

(

D+− + σµν
αβFµν

)

+ . . .

Here Dab are auxiliary fields.

Hypermultiplets are ”twisted chiral” :

H = t + θψ + ˆ̄θ ˆ̄ψ + θ2y + ˆ̄θ2ȳ + θα ˆ̄θβ̇σµ

αβ̇
Fµ + . . .

where t, y, ȳ, Fµ = ∂µφ are complex. Here y, ȳ are auxiliary fields.

• w: complex structure deformations.

• Jµ
ν : almost complex structure; ω = gµλJλ

νdxµ ∧ dxν .

• D±±: built from dω and NS-NS 3-form field strength H ,
both ∈ H(2,1) ⊕ H(1,2).

• D+− are built from RR 3-form F in H(2,1) ⊕ H(1,2).

• t are complex structure deformations.

• y, ȳ built from dω, H ∈ H(2,1) ⊕ H(1,2).

4

What about IIB hypermultiplets, IIA vectormultiplets?

Vafa; 
Lawrence 
&McGreevy

Lawrence 
&McGreevy



Mirror symmetry for NS-NS flux?

1. Mirror symmetry exchanges IIA and IIB, 
Kahler and complex structure moduli.

2. y, y in IIB should be “mirrors of NS flux”

3. Mirror symmetry is a form of T-duality for 
most Calabi-Yau compactifications

4. T-duality applied to H-flux: geometric, 
non-geometric fluxes

Strominger, Yau & Zaslowxt



A T 2 fibration with ρ → −1
ρ

monodromy

Expand N = 2 superfield in SU(2)R doublet (θ, θ̂) of superspace variables.

Vector multiplets are chiral in (θ, θ̂). SU(2)R triplet of auxiliary fields:

V = w + θλ + θ̂λ̂ + θ2D++ + θ̂2D−− + θαθ̂βεαβ

(

D+− + σµν
αβFµν

)

+ . . .

Here Dab are auxiliary fields.

Hypermultiplets are ”twisted chiral” :

H = t + θψ + ˆ̄θ ˆ̄ψ + θ2y + ˆ̄θ2ȳ + θα ˆ̄θβ̇σµ

αβ̇
Fµ + . . .

where t, y, ȳ, Fµ = ∂µφ are complex. Here y, ȳ are auxiliary fields.

• w: complex structure deformations.

• Jµ
ν : almost complex structure; ω = gµλJλ

νdxµ ∧ dxν .

• D±±: built from dω and NS-NS 3-form field strength H ,
both ∈ H(2,1) ⊕ H(1,2).

• D+− are built from RR 3-form F in H(2,1) ⊕ H(1,2).

• t are complex structure deformations.

• y, ȳ built from dω, H ∈ H(2,1) ⊕ H(1,2).

• Ω ∈ H(3,0) is holomorphic 3-form which (together with ω determines
metric.

• y, ȳ built from H with all holomorphic indices and dΩ with 2 holomor-
phic indices. (= Particular class of ”intrinsic torsion”.)

4

Worldsheet calculation in sigma model limit

1. How does this relate to nongeometric flux? Does that emerge 
globally?

2. y, y in IIA allow for spacetime SUSY in supergravity approximation. y, 
y in IIB do not.

Puzzles

Vafa; Gurrieri. Louis, Micu & 
Waldram; Gurrieri & Micu; 
Fidanza, Minasian & Tomasiello; 
LMSSWText

Answer: worldsheet instantons correct IIB SUSY 
conditions in the presence of y, y

LMSSW



1. Nongeometric compactifications lead to interesting 
modification of stringy topology

2. Nongeometric “flux” is generic and important in 
type II models with reduced/broken SUSY

3. Worldsheet instantons always crucial for mirror 
symmetry

Conclusions


