The Landscape of Intersecting Brane Models

W. Taylor, MIT

M. Douglas, WT: hep-th/0606109

Outline

1. Motivation - predictions from string theory
2. Intersecting brane models
3. Proof of finiteness, estimates for \mathcal{N}_{G}
4. Distribution of generations
5. Conclusions

1. Motivation - predictions from string theory

- No nonpert. definition of string theory in general background (R-R fluxes, de Sitter, background independence)
\Rightarrow No dynamics, no hints for vacuum selection
- Extent of landscape of vacua undetermined
- \# Calabi-Yau, non-Kähler, nongeometric fluxes, ...
- Swampland versus landscape: which 4D theories lift?
\Rightarrow "Representative sample" currently out of reach
- Program: find "correlations in corners"

- Find family of vacua with computable EFT parameters X, Y, Z
- Program: find "correlations in corners"

- Find family of vacua with computable EFT parameters X, Y, Z
- Find constraints/correlations
- Look under all lamp posts, compare

2. Intersecting brane models on a toroidal orientifold

- IIA: Factorizable D6-branes with windings $\left(n_{i}, m_{i}\right)$
- IIB: Magnetized D9-branes with fluxes
- $\mathrm{U}(\mathrm{N})$ on multiple branes
- Chiral fermions on intersecting branes

$$
I=\prod_{i=1}^{3}\left(n_{i} \hat{m}_{i}-\hat{n}_{i} m_{i}\right)
$$

Most studied orientifold: $T^{6} / \mathbf{Z}_{2} \times \mathbf{Z}_{2}$

$\mathbf{Z}_{2} \times \mathbf{Z}_{2}$ orbifold action

$$
\begin{aligned}
& \left(z_{1}, z_{2}, z_{3}\right) \rightarrow\left(-z_{1},-z_{2}, z_{3}\right) \\
& \left(z_{1}, z_{2}, z_{3}\right) \rightarrow\left(z_{1},-z_{2},-z_{3}\right)
\end{aligned}
$$

Orientifold $z_{i} \rightarrow \bar{z}_{i}$

- Used to construct 3-generation models containing standard model gauge group
[Cvetic/Shiu/Uranga, Cvetic/Li/Liu, Cremades/Ibanez/Marchesano]
- Moduli not stabilized
but promising arena for real flux compactification [Marchesano/Shiu, ...]

Questions to address:

- How many intersecting brane models on fixed orientifold? finite/infinite?
- Distribution of gauge group G, \# generations, Yukawas, ... correlations/constraints?

Previous statistical analysis:
[Blumenhagen/Gmeiner/Honecker/Lust/Weigand]

- Based on one-year computer search
- Suggested gauge group, \# generations are fairly independent
- Suggests $\sim 10^{-9}$ of models have $S U(3) \times S U(2) \times U(1)$
and 3 generations of chiral fermions

Outline of basic results

Technical advances in hep-th/0606109:

- Analytic proof of finiteness
- Focus on models containing G
w/ possible extra ("hidden sector") branes

Physics results

- Analytic estimates for $\mathcal{N}_{G}=\#$ models containing G
- G, \# generations essentially independent (modulo some number theoretic features, + bound on G, large $G \Rightarrow$ bounds smaller \# generations)

3. Proof of finiteness, estimates for \mathcal{N}_{G}

Finding SUSY IBM models \sim partition problem

$$
\sum_{a}\left(P_{a}, Q_{a}, R_{a}, S_{a}\right)=(T, T, T, T)=(8,8,8,8)
$$

$$
\begin{aligned}
& P=n_{1} n_{2} n_{3} \\
& R=-m_{1} n_{2} m_{3} \\
& \hline
\end{aligned}
$$

SUSY conditions (when $P, Q, R, S>0$):

$$
\frac{1}{P}+\frac{j}{Q}+\frac{k}{R}+\frac{l}{S}=0, \quad P+\frac{1}{j} Q+\frac{1}{k} R+\frac{1}{l} S>0 .
$$

Why proof of finiteness is nontrivial

Can have negative tadpoles, e.g.

$$
\begin{aligned}
n & =(3,1,-1), \quad m=(1,1,-1) \\
& \Rightarrow(P, Q, R, S)=(-3,3,1,1)
\end{aligned}
$$

$$
\circ(8,8,8,8)
$$

3 kinds of branes (up to S_{4} symmetry):

$$
\mathbf{A}:-+++, \quad \mathbf{B}:++00, \quad \mathbf{C}:+000
$$

Proof of finiteness: example piece of proof

Take A-brane with $S_{a}<0$,

$$
\begin{aligned}
P_{a}+\frac{1}{j} Q_{a}+\frac{1}{k} R_{a}+\frac{1}{l} S_{a} & =P_{a}+\frac{Q_{a}}{j}+\frac{R_{a}}{k}-\frac{1}{\frac{1}{P_{a}}+\frac{j}{Q_{a}}+\frac{k}{R_{a}}} \\
& \geq \frac{2}{3}\left(P_{a}+\frac{1}{j} Q_{a}+\frac{1}{k} R_{a}\right)
\end{aligned}
$$

using

$$
\frac{1}{x}+\frac{1}{y}+\frac{1}{z}>\frac{3}{x+y+z}
$$

So for a general configuration positive tadpoles give

$$
\sum_{a+} P_{a}+\frac{1}{j} \sum_{a+} Q_{a}+\frac{1}{k} \sum_{a+} R_{a}+\frac{1}{l} \sum_{a+} S_{a} \leq \frac{3}{2} T\left(1+\frac{1}{j}+\frac{1}{k}+\frac{1}{l}\right)
$$

implies, assuming wlog $1 \leq j \leq k \leq l$

$$
\sum_{a+} P_{a} \leq 6 T .
$$

So negative P 's at most sum to $\mathcal{O}(T)$; similar arg for Q.

General results on scaling

$$
\begin{aligned}
1 \mathrm{~A}: & \sim\left(-T^{3}, T, T, T\right) \\
2 \mathrm{~A}: & \left.\sim \begin{array}{l}
\left(-T^{5}, T^{3}, T, T\right) \\
\left(T^{5},-T^{3}, T, T\right)
\end{array}\right\} \rightarrow\left(-T^{3}, T, T, T\right)
\end{aligned}
$$

Worst scaling $\sim\left(T^{5}, T^{3}, T, T\right)$
\Rightarrow Finite number of SUSY configurations
Also: can estimate numbers of configurations with fixed gauge group

Counting configurations with gauge subgroup G

- Expect $>\sim \mathcal{O}\left(e^{T}\right)$ solutions to partition problem
- Look at configurations given G undersaturating tadpole \Rightarrow polynomial number of solutions
e.g. $U(N)$ from N A-branes (allow "hidden sector" B, C's)

$$
\begin{gathered}
\sim\left(-T^{3} / N^{3}, T / N, T / N, T / N\right) \\
\mathcal{N}_{N A} \sim \frac{\pi^{6} T^{3}}{6^{4}(\zeta(3))^{3} N^{3}}
\end{gathered}
$$

e.g. $U(N) \times U(M)$ from $N \mathbf{A}+M \mathbf{B}$

$$
\begin{gathered}
A \sim\left(-T^{3} / N^{3}, T / N, T / N, T / N\right), \quad B \sim\left(T^{3} /\left(N^{2} M\right), T / M\right) \\
\mathcal{N}_{N A+M B} \sim \mathcal{O}\left(\frac{T^{7}}{N^{5} M^{2}}\right)
\end{gathered}
$$

Generally, $U(N)$ factor suppressed by $1 / N^{\nu}, \nu \geq 2$.
e.g., expect

$$
\mathcal{N}_{a a} \sim(T / N)^{6}, \quad \mathcal{N}_{a b} \sim(T / N)^{7}, \quad \mathcal{N}_{b b} \sim(T / N)^{4},
$$

$$
\text { at } T=8[U(1) \times U(1)]
$$

$$
\begin{aligned}
\mathcal{N}_{a a}(8) & =30,255 \\
\mathcal{N}_{a b}(8) & =434,775 \\
\mathcal{N}_{b b}(8) & =20,244
\end{aligned}
$$

$$
\text { at } T=4[U(2) \times U(2) \text { at } T=8]
$$

$$
\begin{aligned}
\mathcal{N}_{a a}(4) & =264 \\
\mathcal{N}_{a b}(4) & =3,029 \\
\mathcal{N}_{b b}(4) & =558
\end{aligned}
$$

Growth as expected (contains extra logs)

(Log of) number of type $\mathbf{A A}, \mathbf{A B}, \mathbf{B B}$ branes for varying T

$\underline{\text { Estimates for } \mathcal{N}_{G}}$

- Analytic estimates for \# configurations with gauge subgroup G
- Efficient algorithms to scan all valid configurations
- Expect

$$
\begin{aligned}
\mathcal{N}_{S U(3) \times S U(2) \times U(1)} & \sim 10^{10} \\
\mathcal{N}_{S U(4) \times S U(2) \times S U(2)} & \sim 10^{7}
\end{aligned}
$$

- Each configuration admits $\sim e^{\Delta T}$ hidden sectors

4. Distribution of generation numbers

Generations of chiral fermions between $(n, m),(\hat{n}, \hat{m})$ branes from

$$
I=\prod_{i=1}^{3}\left(n_{i} \hat{m}_{i}-\hat{n}_{i} m_{i}\right)
$$

Look at distribution of I

- Intersection \#'s for e.g. $U(N) \times U(N) \sim 10^{3} / N^{5} \mathrm{w} / \mathrm{o}$ extra A's generally expect $\sim(T / N)^{7}$
- Mild enhancement of composite I's
- Intersection numbers distributed quite independently
e.g. for $\mathbf{A B} \hat{\mathbf{B}}, T=3, \quad H\left(I_{a b}\right)=H\left(I_{a \hat{b}}\right)=4.553$
mutual entropy $2 H\left(I_{a b}\right)-H\left(I_{a b}, I_{a \hat{b}}\right) \sim 0.085$

Frequencies of small intersection numbers

Specific models

- For 3-generation $S U(3) \times S U(2) \times U(1), S U(4) \times S U(2) \times S U(2)$ expect $\mathcal{O}(10-100)$ models
- Parity constraint from image branes $I_{x y}+I_{x y^{\prime}} \equiv 0(\bmod 2)$
\Rightarrow odd generations only w/ C branes, discrete $B /$ skew tori
- $\mathcal{O}(10)$ models found in previous constructions
[Cvetic/Shiu/Uranga, Cvetic/Li/Liu, Cremades/Ibanez/Marchesano]
- We identified 2 additional models:
$4 \mathbf{A}: \quad n=(3,1,-1), \quad m=(1,1,-1), \quad(P, Q, R, S)=(-3,3,1,1)$
$2 \mathrm{C}: \quad R=1$
2C : $S=1$
+ two distinct hidden sector $\mathbf{A}+\cdots$ combinations

5. Summary

- Proved finiteness for IBM on toroidal orientifold
- Estimates for numbers of models with fixed gauge group
- Analyzed generation numbers, no significant correlations
- No strong constraints on $G, \#$ generations
- Expect $\mathcal{O}(10-100) 3$-generation $G_{\text {SM }}$ models for this orientifold, found 2 new

Future directions

- Look at other orientifolds, CY
- Find larger families $\left(10^{9}\right.$?) of 3 -generation $G_{S M}$ models
- Compute more detailed properties (Yukawas etc.), look for constraints
- Include fluxes, stabilize closed + open moduli
- Consider other corners
(RCFT, heterotic, M-theory, etc. - SVP)

