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dated to ensure sufficient efficacy against
newly emerging variants (7, 8). The World
Health Organization coordinates a global
influenza surveillance network, currently
consisting of 112 national influenza centers
and four collaborating centers for reference
and research. This network routinely char-
acterizes the antigenic properties of influ-
enza viruses using a hemagglutination in-
hibition (HI) assay (1). The HI assay is a
binding assay based on the ability of influ-
enza viruses to agglutinate red blood cells
and the ability of animal antisera raised
against the same or related strains to block
this agglutination (9). Additional surveil-
lance information is provided by sequenc-
ing the immunogenic HA1 domain of the
HA gene for a subset of these strains. The
combined antigenic, epidemiological, and
genetic data are used to select strains for
use in the vaccine.

Retrospective quantitative analyses of the
genetic data have revealed important insights
into the evolution of influenza viruses (10–
13). However, the antigenic data are largely
unexplored quantitatively because of difficul-
ties in interpretation, even though antigenic-
ity is a primary criterion for vaccine strain
selection and is thought to be the main driv-
ing force of influenza virus evolution. When
antigenic data have been analyzed quantita-
tively, it has usually been with the methods
of, or methods equivalent to, numerical tax-
onomy (14–16). These methods have pro-
vided insights (15–19); however, they
sometimes give inconsistent results, do not
properly interpret data that are below the
sensitivity threshold of the assay, and approx-
imate antigenic distances between strains in
an indirect way [discussed by (4, 16, 18)].
Lapedes and Farber (4 ) solved these prob-
lems with a geometric interpretation of bind-
ing assay data, in which each antigen and
antiserum is assigned a point in an “antigenic
map” [based on the theoretical concept of
“shape space” (20–23)], such that the dis-
tance between an antigen and antiserum in
the map directly corresponds to the HI mea-
surement. Lapedes and Farber used ordinal
multidimensional scaling (MDS) (24 ) to po-
sition the antigens and antisera in the map.

The method used in this manuscript is
based on the fundamental ideas described
by Lapedes and Farber (4 ) and, in particu-
lar, takes advantage of their observation
that antigenic distance is linearly related to
the logarithm of the HI measurement. Ex-
ploiting this observation allowed us to cre-
ate a new method that is parametric yet still
handles HI measurements that are beyond
the sensitivity of the HI assay (9). We use
a modification of metric MDS (25 ) to po-
sition the antigens and antisera in the map
(9). This new approach offers computation-
al advantages over the ordinal approach,

including reduced running time and fewer
local minima, making it tractable to run on
datasets the size of the one used in this
manuscript, and on larger datasets.
Antigenic map of human influenza A

(H3N2) virus. We applied this method to
mapping the antigenic evolution of human
influenza A (H3N2) viruses, which became
widespread in humans during the 1968 Hong
Kong influenza pandemic and have been a
major cause of influenza epidemics ever
since. Antigenic data from 35 years of influ-
enza surveillance between 1968 and 2003
were combined into a single dataset. We se-
quenced the HA1 domain of a subset of these
virus isolates (26, 27 ) and restricted the an-
tigenic analysis to these sequenced isolates to
facilitate a direct comparison of antigenic and
genetic evolution. The resulting antigenic
dataset consisted of a table of 79 postinfec-
tion ferret antisera by 273 viral isolates, with
4215 individual HI measurements as entries
in the table. Ninety-four of the isolates were
from epidemics in the Netherlands, and 179
were from elsewhere in the world.

We constructed an antigenic map from
this dataset to determine the antigenic evolu-
tion of influenza A (H3N2) virus from 1968
to 2003 (Fig. 1). Because antigen-antiserum
distances in the map correspond to HI values,
it was possible to predict HI values that were
missing in the original dataset and subse-
quently to measure those values using the HI
assay, so as to determine the resolution of the
map. We predicted and then measured 481
such HI values with an average absolute pre-
diction error of 0.83 (SD 0.67) units (each
unit of antigenic distance corresponds to a
twofold dilution of antiserum in the HI assay)
and a correlation between predicted and mea-
sured values of 0.80 (p !! 0.01). The accu-
racy of these predictions indicates that the
map has resolution higher than that previous-
ly considered available from HI data and
higher than the resolution of the assay. The
resolution of the map can be greater than the
resolution of the assay because the location of
a point in the map is fixed by measurements
to multiple other points, thereby averaging
out errors (9).

The map reveals high-level features of the
antigenic evolution of influenza A (H3N2)
virus. The strains tend to group in clusters
rather than to form a continuous antigenic
lineage, and the order of clusters in the map is
mostly chronological; from the original Hong
Kong 1968 (HK68) cluster, to the most recent
Fujian 2002 (FU02) cluster. The antigenic
distance from the HK68 cluster, through con-
secutive cluster centers, to the FU02 cluster is
44.6 units, and the average antigenic distance
between the centers of consecutive clusters is
4.5 (SD 1.3) units. The influenza vaccine is
updated between influenza seasons when
there is an antigenic difference of at least 2

units between the vaccine strain and the
strains expected to circulate in the next sea-
son; thus, not unexpectedly, we find at least
one vaccine strain in each cluster.

The ability to define antigenic clusters
allows us to identify the amino acid substitu-
tions that characterize the difference between
clusters (Table 1, fig. S1). Some of these
“cluster-difference” substitutions (9) will
contribute to the antigenic difference between
clusters, some may be compensatory muta-

Fig. 1. Antigenic map of influenza A (H3N2)
virus from 1968 to 2003. The relative positions
of strains (colored shapes) and antisera (uncol-
ored open shapes) were adjusted such that the
distances between strains and antisera in the
map represent the corresponding HI measure-
ments with the least error (9). The periphery of
each shape denotes a 0.5-unit increase in the
total error; thus, size and shape represent a
confidence area in the placement of the strain
or antiserum. Strain color represents the anti-
genic cluster to which the strain belongs. Clus-
ters were identified by a k-means clustering
algorithm (9) and named after the first vaccine-
strain in the cluster—two letters refer to the
location of isolation (Hong Kong, England, Vic-
toria, Texas, Bangkok, Sichuan, Beijing, Wuhan,
Sydney, and Fujian) and two digits refer to year
of isolation. The vertical and horizontal axes
both represent antigenic distance, and, because
only the relative positions of antigens and an-
tisera can be determined, the orientation of the
map within these axes is free. The spacing
between grid lines is 1 unit of antigenic dis-
tance—corresponding to a twofold dilution of
antiserum in the HI assay. Two units corre-
spond to fourfold dilution, three units to eight-
fold dilution, and so on.
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“and it i s  probable that there i s  some secret here 
which remains to be discovered.” (C. S .  Peirce) 

There is a story about two friends, who were classmates in high school, 
talking about their jobs. One of them became a statistician and was working 
on population trends. He showed a reprint to his former classmate, The 
reprint started, as usual, with the Gaussian distribution and the statistician 
explained to  his former classmate the meaning of the symbols for the actual 
population, for the average population, and so on. His classmate was a 
bit incredulous and was not quite sure whether the statistician was pulling 
his leg. “How can you know that?” was his query. “And what is this 
symbol iere?” “Oh,” said the statistician, “this is n.” “What is that?” 
“The ratio of the circumference of the circle to its diameter.” “Well, now 
you are pushing your joke too far,” said the classmate, “surely the pop- 
ulation has nothing to do with the circumference of the circle.” 

Naturally, we are inclined to smile about the simplicity of the classmate’s 
approach. Nevertheless, when I heard this story, I had to admit to an 
eerie feeling because, surely, the reaction of the classmate betrayed only 
plain common sense. I was even more confused when, not many days later, 
someone came to me and expressed his bewilderment1 with the fact that 
we make a rather narrow selection when choosing the data on which we 
test our theories. “How do we know that, if we made a theory which focusses 
its attention on phenomena we disregard and disregards some of the phe- 
nomena now commanding our attention, that we could not build another 
theory which has little in common with the present one but which, never- 
theless, explains just as many phenomena as the present theory.” It has 
to be admitted that we have not definite evidence that there is no such theory. 

The preceding two stories illustrate the two main points which are the 

‘The remark to be quoted was made by F. Werner when he was a student in Princeton. 
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A predictive fitness model for influenza
Marta Łuksza1,2 & Michael Lässig1

The seasonal human influenza A/H3N2 virus undergoes rapid evolution, which produces significant year-to-year
sequence turnover in the population of circulating strains. Adaptive mutations respond to human immune challenge
and occur primarily in antigenic epitopes, the antibody-binding domains of the viral surface protein haemagglutinin.
Here we develop a fitness model for haemagglutinin that predicts the evolution of the viral population from one year to
the next. Two factors are shown to determine the fitness of a strain: adaptive epitope changes and deleterious mutations
outside the epitopes. We infer both fitness components for the strains circulating in a given year, using population-genetic
data of all previous strains. From fitness and frequency of each strain, we predict the frequency of its descendent strains in
the following year. This fitness model maps the adaptive history of influenza A and suggests a principled method for
vaccine selection. Our results call for a more comprehensive epidemiology of influenza and other fast-evolving pathogens
that integrates antigenic phenotypes with other viral functions coupled by genetic linkage.

The evolution of influenza A/H3N2 is well documented by sequence
data of several thousand strains since 19681. Most of these data con-
tain the gene sequence of haemagglutinin (HA), which covers one of
eight segments of the influenza genome and is the primary locus of
interaction with the human immune system2. Consistent with this func-
tional role, antigenic changes in the HA epitopes carry the adaptive
evolution of the pathogen3–11.

Evolutionary analysis has a particular role for influenza: it serves
not only to reconstruct the dynamical process and its causes, but to
predict future changes3,4. Any prediction of evolution is essentially an
estimate of fitness differences between strains. It is these differences
that lead to deterministic changes in population frequency, which are
predictable if we know how fitness depends on genotype and host
environment. Predictability is limited by stochastic events, which range
from mutations in individual viral sequences to sampling in host-to-
host transmission. Predictions of influenza HA evolution can inform
vaccine selection if, despite this limitation, they are sufficiently accurate
from one year to the next. Currently, the selection of vaccine strains is
based primarily on haemagglutination inhibition assays, which are used
to map antigenic changes between viral strains12. But the fitness of a
strain is a complex phenotype, which integrates antigenic properties
with multiple other molecular functions, one of which is simply the
thermodynamic stability of proteins13,14. Because there is no recombina-
tion, the evolution of these functions is strongly coupled, at least within
each genomic segment9,10 (whereas genetic linkage between segments
is reduced by reassortment15). Here we show that this coupled dynamics
can be captured by a fitness model that predicts the evolution of influ-
enza from genomic data.

Clades as units of prediction
Our analysis is based on a sample of 3,944 unique HA coding sequences
obtained from influenza A/H3N2 isolates between 1968 and 2012 (ref. 1),
partitioned into half-year seasons (Methods). The HA sequences of a
given season differ from each other by several epitope and non-epitope
nonsynonymous point mutations. To quantify this diversity, we can
estimate the population frequencies of mutant alleles at individual RNA
sites, of combinations of mutant alleles at two or more sites, and of indi-
vidual strains. From an epidemiological point of view, the frequency of
a strain is simply the fraction of the infected host individuals corres-
ponding to that strain16. We infer the genealogy of these strains by an

ensemble of trees; see Methods for details of frequency estimation and
tree reconstruction. We can then trace the evolution of strain lineages
or clades, which are defined as sets of strains descending from a com-
mon ancestor (Fig. 1). Whereas strains are typically observed only in a
single season, clades have an evolutionary history that extends up to
about 5 years and ends with fixation or loss3. Clades destined for fixa-
tion originate on the so-called trunk of the tree; all other clades are destined

1Institute for Theoretical Physics, University of Cologne, Zülpicher Strasse 77, 50937 Köln, Germany. 2Biological Sciences, Columbia University, 607D Fairchild Center, New York, New York 10027, USA.
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Figure 1 | Evolution of influenza clades. The figure shows a partial influenza
strain tree, which is based on strains observed in years 2002 and 2003 (bullets
and circles). Each strain i has a frequency xi in its season’s strain population.
Our units of prediction are clades, which are defined as sets of strains
descending from recent last common ancestors. For one of these clades, we
mark its strain content in winter seasons t 5 2002 and t 1 1 (light-colour
bullets) and its last common ancestor (blue diamond). Each clade is linked by
a set of mutations to the last common ancestor of all strains in year t (black
diamond); codon position and target amino acid of these mutations are
indicated for the marked clade. A clade n observed in season t has a frequency
Xn(t), which is the sum of the frequencies of its strains in season t. The marked
clade grows substantially from Xn(t) 5 0.08 to Xn(tz1) 5 0.86.
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clone histories that we want to predict from one year to the next. A successful clone
di↵ers from its ancestor strain, because it gains diversity through subsequent mutations
during its expansion in the population. A clone may also di↵er in frequency from the
new mutations appearing in its ancestor, because the same mutations often originate
independently in di↵erent clones. It is specific combinations of mutations that distinguish
each clone from the other coexisting clones. We use these mutant haplotypes to tag clones
independently of a given strain tree. This enables us to make predictions by averaging
over the ensemble of equiprobable trees, which minimizes the e↵ects of tree reconstruction
ambiguities 1 (for details, see Methods). Trunk unique, i.e., common to all trees?

Our prediction is based on frequency and fitness data which depend only on informa-
tion actually available at that point in time. Consider a given clone ↵ containing a set
of strains i with frequencies x

i

in a given year t. The observed frequency of that clone
in year t is simply the sum of these strain frequencies, X

↵

(t) =
P

i:↵,t xi

. Each strain
has a Malthusian fitness or growth rate f

i

(measured in units of 1/year), which is to be
specified by our model. Given these initial data, we predict the frequency of that clone
in the following year,

X̂

↵

(t+ 1) =
X

i:↵,t

x

i

exp[f
i

], (1)

as illustrated in Fig. 1 (for details, see Supplementary Information). Equation (1) de-
scribes the large-scale population dynamics averaged over many transmission cycles and
should not be confounded with the viral dynamics within one host. At the current level of
sequencing depth, we restrict this prediction to clones with a frequency above xxx. These
clones are geographically well-mixed 14,15 and their frequencies can be reliably estimated;
smaller clones (and individual strains) are dominated by geographical bias and sampling
noise. We can check the quality of our method a posteriori by comparing the predicted
frequencies X̂

↵

(t + 1) with the actual frequencies X
↵

(t + 1). While yearly prediction in-
tervals are appropriate for our long-term dataset, the evolution equation (1) can readily
be generalized to more accurately timed strain data.

Our fitness model has two components, which describe the selection on non-epitope
and epitope HA genotypes, respectively. Non-epitope mutations are primarily under
purifying selection 7, because they a↵ect protein stability and other conserved molecular
functions 10,11. Here we describe these e↵ects by a simple mutational-load model: Each
strain incurs a fitness cost L(a

i

, a⇤) that is a weighted sum of its non-epitope mutations
away from the consensus genotype a⇤. Epitope changes are primarily under positive
selection 5–7, because they a↵ect the antigenic characteristics of a strain. At the population
level, we describe antigenic selection by an epidemiological model. In this type of models,
the strain growth rates f

i

depend on the population history of previously circulating
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frequency evolution to be more likely by a factor > 10250 under our fitness model compared
to a null model with constant frequencies (i.e., zero fitness) for all strains.

Our model provides a principled method to select strains for influenza vaccines. By
equation (2), vaccination based on a strain v reduces the fitness of each circulating strain i

proportionally to the cross-immunity amplitude C(ai, av). This causes a reduction in the
total number of infections that is proportional to the average cross-immunity between the
vaccine strain and the circulating strains in a given season, Cv(t) =

P
i:t xi C(ai, av) (see SI).

The optimal vaccine maximizes this reduction, which defines the cross-immunity center of
mass of the circulating strains. Equation (1) predicts next-year cross-immunity amplitudes
Ĉv(t+1) =

P
i:t xi exp(fi) C(ai, av), which can be compared a posteriori with the observed

amplitudes Cv(t+ 1). In Fig. 3, we compare the optimal vaccine strains predicted by our
model and actual vaccine strains used in the northern hemisphere 21 to the posterior center-
of-mass strains for the winter seasons from 1994 to 2012. In all years, the model-selected
vaccine strains have a smaller amino-acid distance from the cross-immunity center of mass
of the same season than the actual vaccine strains (insert of Fig. 3). This can be explained
in part by di↵erences between our sequence-based cross-immunity measure C(ai, aj) and
the HI-based antigenic distances currently used for vaccine selection. The latter are known
to evolve in a more punctuated way 10, but we observe distance di↵erences even in years
when vaccine strains have been updated. These results suggest that a fitness model-based
prediction of influenza evolution can contribute to vaccine strain selection; however, we
caution against premature conclusions before our prediction scheme is carefully tested with
HI data.

The fitness e↵ects underlying our predictions can be displayed in a quantitative map of
influenza’s adaptive history. As key quantity we use the cumulative fitness flux 22,23, which
measures the total amount of adaptation up to a given clade; this quantity is defined in
Methods and illustrated in Fig. S2. The map of Fig. 4 shows the fitness flux for 234 clades
on a tree between 2003 and 2008 (see Fig. S2 for fitness flux over a longer period). It
displays clades with multiple di↵erent values of fitness and fitness flux in each year. The
evolution of this distribution generates a traveling fitness flux wave, which links influenza
to recent theoretical models of asexual evolution 24–27. The advance of the wave is measured
by the population mean fitness flux, which is shown as black dashed line in Fig. 4. This
quantity measures correlations between fitness and actual frequency changes of clades.
It can be used to compare the predictive power of di↵erent fitness models. The best
epitope-only fitness model captures about 67%, and the best model with uniform selective
e↵ects about 72% of the cumulative fitness flux given by the full model; see Fig. S2. An
information-theoretic comparison of fitness models shows the same ranking (SI, Table S1).
These results indicate that non-epitope changes and inhomogeneities in selective e↵ects

5

Model-­‐based	
  selec'on	
  of	
  vaccine	
  strains:	
  maximize	
  predicted	
  overlap.	
  	
  

model-­‐based	
  vaccine	
  strains	
  

WHO	
  vaccine	
  strains	
  

Distance	
  to	
  the	
  posterior	
  centre	
  of	
  mass:	
  



§ 	
  	
  	
  A	
  joint	
  fitness	
  model	
  of	
  an'genic	
  and	
  deleterious	
  effects	
  successfully	
  predicts	
  the	
  	
  
	
  	
  	
  	
  	
  frequency	
  evolu'on	
  of	
  HA	
  sequence	
  clades	
  from	
  one	
  year	
  to	
  the	
  next.	
  
	
  
§  Our	
  results	
  call	
  for	
  a	
  more	
  comprehensive	
  epidemiology	
  of	
  influenza.	
  	
  	
  
	
  
	
  

§  The	
  predicBon	
  scheme	
  can	
  integrate	
  diverse	
  types	
  of	
  data.	
  	
  

	
  

§  The	
  model	
  provides	
  a	
  principled	
  method	
  for	
  vaccine	
  strain	
  selec'on.	
  	
  

§  The	
  predicBve	
  power	
  at	
  the	
  phenotypic	
  level	
  remains	
  to	
  be	
  tested.	
  	
  
	
  	
  

	
  	
  
	
  
	
  
	
  	
  	
  	
  

sequence	
  data	
  	
  
HAI	
  data	
  	
  
biophysical	
  data	
  	
  
regional	
  informaBon	
  

fitness	
  	
  
model	
  	
  

geneBc	
  predicBons	
  	
  

anBgenic	
  predicBons	
  

	
  	
  Conclusion	
  	
  



	
  	
  Conclusion	
  	
  

COMMUNICATIONS ON PURE AND APPLIED MATHEMATICS, VOL. XIII, 001-14 (1960) 

The Unreasonable Effectiveness of Mat hematics 
in the Natural Sciences 

Richard Courant Lecture in Mathematical Sciences delivered at New York University, 
May 11,  1959 

E U G E N E  P. WIGNER 
Princeton University 

“and it i s  probable that there i s  some secret here 
which remains to be discovered.” (C. S .  Peirce) 

There is a story about two friends, who were classmates in high school, 
talking about their jobs. One of them became a statistician and was working 
on population trends. He showed a reprint to his former classmate, The 
reprint started, as usual, with the Gaussian distribution and the statistician 
explained to  his former classmate the meaning of the symbols for the actual 
population, for the average population, and so on. His classmate was a 
bit incredulous and was not quite sure whether the statistician was pulling 
his leg. “How can you know that?” was his query. “And what is this 
symbol iere?” “Oh,” said the statistician, “this is n.” “What is that?” 
“The ratio of the circumference of the circle to its diameter.” “Well, now 
you are pushing your joke too far,” said the classmate, “surely the pop- 
ulation has nothing to do with the circumference of the circle.” 

Naturally, we are inclined to smile about the simplicity of the classmate’s 
approach. Nevertheless, when I heard this story, I had to admit to an 
eerie feeling because, surely, the reaction of the classmate betrayed only 
plain common sense. I was even more confused when, not many days later, 
someone came to me and expressed his bewilderment1 with the fact that 
we make a rather narrow selection when choosing the data on which we 
test our theories. “How do we know that, if we made a theory which focusses 
its attention on phenomena we disregard and disregards some of the phe- 
nomena now commanding our attention, that we could not build another 
theory which has little in common with the present one but which, never- 
theless, explains just as many phenomena as the present theory.” It has 
to be admitted that we have not definite evidence that there is no such theory. 

The preceding two stories illustrate the two main points which are the 

‘The remark to be quoted was made by F. Werner when he was a student in Princeton. 
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