Predicting the evolution of human influenza
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1. Predictability in (evolutionary) biology



Repeatability

A physics experiment

Repeatability requires
e control over initial conditions

* the existence of deterministic dynamical laws.




Repeatability

Evolutionary processes

Repeatability is limited because all biological systems are complex.
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Repeatability

Evolutionary processes
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Repeatability is limited because all biological systems are complex:

* All deterministic equations of motion are governed by interactions.



Repeatability

Evolutionary processes
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Repeatability is limited because all biological systems are complex:

* All deterministic equations of motion are governed by interactions.

* Adaptive mutations alter the system’s dynamics.
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influenza A (H3N2) strain tree



Repeatability

Evolutionary processes
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Repeatability is limited because all biological systems are complex.

* All deterministic equations of motion are governed by interactions.
* Adaptive mutations alter the system’s dynamics.

* There are large-scale stochastic effects.



Repeatability

Adaptive evolution of E. coli in the mouse gut
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shows mutational randomness but repeatable phenotypes
[Barroso-Batista PLoS Genetics 2014, see Isabel Gordo‘s talk].

This can be explained as a generic consequence of quantitative trait evolution
[A. Nourmohammad, T. Held, M.L., Current Opinion in Genetics and Development, 2014].



Repeatability

Adaptive evolution of influenza

viral epitopes

influenza
haemagglutinin

human
antibody

repeatably targets HA epitope sites

and leads to antigenic drift
[Smith et al. Science 2004].



Predictability

Physics theory

Predictability requires

e control over initial conditions

* learnable deterministic dynamical laws.



Predictability

Physics theory
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Predictability
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Is there a learnable fithess model?
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Learnability decreases with increasing complexity
[see Mehran Kardar’s talk].
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1. Predictability in (evolutionary) biology

2. Influenza’s mode of evolution



Modes and predictability of adaptive evolution

Punctuated selection:
selective sweeps are rare and independent.

fithess

mutational distance

=» predictions are limited by monitoring.



Modes and predictability of adaptive evolution

Influenza shows clonal interference:
competition of co-existing beneficial variants [N. Strelkowa, M.L. , Genetics 2012 ].

fitness el

m  mutational distance

=» predictions require modeling.



Sequence evolution of influenza

Evolution of human influenza

Strain tree based on
hemagglutinin sequences of
influenza strains since 1969

synonymous mutations,
allows inference of

nonsynonymous

non-epitope mutations,

nonsynonymous
epitope mutations.
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Selection on hemagglutinin mutations

Analysis of frequency time-series
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time time
trunk mutations are destined off-trunk mutations are destined
for fixation for loss

Epitope amino acid changes have an increased relative fixation probability:

g/g,=2.3 =» positive selection on most epitope changes,
evidence for clonal interference

Non-epitope amino acid changes have a decreased relative fixation probability:

g/8,=0.3 = negative selection

[N. Strelkowa, M.L., Genetics 2012 ]



1. Predictability in (evolutionary) biology
2. Influenza’s mode of evolution

3. Year-to-year prediction of influenza A (H3N2)



The prediction problem

Does the strain content up to a given time predict future prevalent strains?

b
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epitope mutations non-epitope mutations

What can be predicted?
— how the tree will grow in the following season.
— distribution of frequencies in the future population.

[M.t, M.L. Nature 2014 ]



Units of prediction

Strain frequencies x; correspond to fractions of the
infected host population corresponding to a given strain.

Clades
- are sets of strains with a common ancestor
- are destined for fixation or loss
- have frequency time-series

Xa(t) = Z X;
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- are suitable units of prediction.




Fitness model for influenza HA

Fitness of a hemagglutinin genotype
depends on non-epitope and epitope sequence

fi=fo—L(a)— Y =;Clai,ay)
J:t;<t;
non-epitope mutations: epitope mutations:
increase mutational load decrease cross-immunity load

22



Fitness model for influenza HA

Fitness of a hemagglutinin genotype
depends on non-epitope and epitope sequence

fi=fo—L(a)— Y =;Clai,ay)
J:t;<t;
non-epitope mutations:
increase mutational load decrease cross-immunity load

‘ % Sequence distance-based approximation:
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Fitness model for influenza HA

Fitness of a hemagglutinin genotype
depends on non-epitope and epitope sequence

fi=fo—L(a)— Y =;Clai,ay)
J:t;<t;
non-epitope mutations:
increase mutational load decrease cross-immunity load

Sequence distance-based approximation:
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Fitness model for influenza HA

Fitness of a hemagglutinin genotype
depends on non-epitope and epitope sequence

fi=fo—L(a)— Y =;Clai,ay)
J:t;<t;
non-epitope mutations:
increase mutational load decrease cross-immunity load
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‘ Epistatic and inhomogeneous effects for

% clades are inferred from accumulation of
synonymous mutations.




Prediction scheme
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1. Model training from past 4 — 8 years

2. Clade frequency prediction from one year to the next

XOé(t) : Zi:a,txi E— Xa(t + 1) — sz eXp[fi]a

1ot

3. Validation from posterior clade frequencies in the following year.



Prediction results for human A/H3N2

Clade frequency evolution between consecutive years
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Epitope and non-epitope mutations carry predictive information.



Prediction results for human A/H3N2

Regional fitness effects TEe
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Fitness predictions confirm the particular role of East and Southeast Asia in seeding
antigenic variants [Russell et al. Science 2008].



Vaccine strain selection

Cross-immunity overlap of a vaccine strain with circulating strains
Cv(t) — Zi:t X; C(a,-, av)

Maximization defines the cross-immunity center of mass.
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Model-based selection of vaccine strains: maximize predicted overlap.
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Conclusion

A joint fitness model of antigenic and deleterious effects successfully predicts the

frequency evolution of HA sequence clades from one year to the next.

Our results call for a more comprehensive epidemiology of influenza.

The prediction scheme can integrate diverse types of data.

sequence data —_—>
HAI data —
biophysical data —_—

regional information —0—

fithess
model

—> genetic predictions
——> antigenic predictions

The model provides a principled method for vaccine strain selection.

The predictive power at the phenotypic level remains to be tested.



Conclusion
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