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Die extrusion of polydisperse suspensions 
Many ceramic products are formed by the extrusion of dense, 
polydisperse suspensions through a die. It is important that the 
suspension remains well mixed during this process for the ceramic, or 
the product will be prone to failure. 
 
Clogging (figure 2a) and size segregation (figure 2b) of large and small 
particles are two common problems in channel flow. These phenomena 
cannot be captured with existing models of extrusion, which treat the 
different phases as continua. A particle level understanding is required 
for an accurate model. 

Hard spheres – a useful model system 
This project aims to understand these and other 
microscopic phenomena using PMMA model hard 
spheres. A confocal microscope coupled to a cone-
plate rheometer is used to visualize the flow of dyed 
particles. The particle coordinates can be tracked and 
the flow reconstructed in 3-d. This provides a way to 
link microscopic phenomena to bulk rheological 
behaviour. Flow through a glass capillary can be 
studied in a similar way [1]. By mixing together 
different particle batches the particle size distribution 
can be controlled, allowing the effect of 
polydispersity on flow to be studied systematically. 

Typical suspensions contain Brownian (d<2 
micron) and non-Brownian (d>2 micron) 
particles. As a starting point, rheology of 
monodisperse large (d=4.5 micron) and 
small (d=300 micron) spheres at a volume 
fraction of a 58% have been studied in the 
cone-plate geometry. It is useful to study 
the flow properties in  this constant stress 
environment before considering the more 
complicated case of capillary flow. 

Size segregation 

Clogging 

Size matters: not all hard spheres are equivalent 

Brownian Non-
Brownian 
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300 nm spheres 
• Up/down flow curves overlap 
• Suspension homogeneous at all shear rates 
• Rheology insensitive to protocol 

 
4500 nm spheres 
• Shear thickening and jamming, even at low 

shear rates 
• Rheology shows strong history dependence and 

is highly irreproducible 
• Evidence of shear banding from imaging 
• Sedimentation important 

 
 

Small particle yield stresses rescale like hard spheres 

Large particle yield stresses do not rescale like hard spheres 
 
At a given volume fraction, the dynamic yield stress        of hard sphere suspensions with 
different particle sizes should agree when rescaled by kBT/d3. Rescaled yield stresses for 
particles < 2micron diameter lie on a master curve which agrees with theoretical 
predictions for hard spheres (white circles, mode coupling theory [2] ). Rescaled yield 
stresses for 4.5 micron spheres are several orders of magnitude greater than small 
spheres  at the same volume fraction. This could be due to sedimentation, 
hydrodynamic interactions or increased effective particle hardness.  It  suggests that the 
particle size is no longer the only relevant length scale for suspensions of large hard 
spheres. 
 
 
 
 

Dynamic yield stress rescaling 

Figure 1 - particle size distribution for a bimodal suspension 
of PMMA spheres, obtained by TEM. Brownian motion 
becomes less important for particles with diameter da2 
micron 

PHSA-stabilised PMMA colloids behave 
as hard spheres in an appropriate 
solvent (e.g. decalin) 

Figure 2 – steady shear rheology measured in the cone-plate 
rheometer. Particles suspended in a mixture of tetralin and 
decalin.       is the dynamic yield stress. 

Figure 3 – reduced dynamic yield stress                           vs volume fraction . The 
spread in the data for small particles can be accounted for by a 3% uncertainty 
in volume fraction.  Uncertainty in  4500 nm particle yield stresses is around 
half a decade from repeat measurements. 
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Conclusion: Rheology of monodisperse hard spheres has a non-
trivial dependence on particle diameter. This emphasises the 
importance of the particle size distribution and the need for particle-
level modelling in paste extrusion.  
Future work: What happens to the rheology when we mix large and 
small spheres? Use rheo-imaging to systematically study the effect 
of PSD on flow properties. 
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Rheology comparison of 300 nm and 4500 nm spheres 

300 nm 58% down

4500 nm 58 % up

4500 nm 58% down

300 nm 58% up

Herschel-Bulkley fit



• Hard particles with 

• Non-Brownian (              ) 

• Viscous flow (negligible particle 
and fluid inertia)

Granular dispersions: simple, right?

d & 2 µm
d

⌘f

Expectation: universal, Newtonian rheology:

Pe ! 1

⌘ = ⌘ff(�)Dimensional analysis



Reality:

Experimental phenomenology is capricious
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Reality:

Experimental phenomenology is capricious
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In most cases, explanations are bespoke
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De-aggregation

… and highly debated
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Non-Newtonian  
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Granular dispersion rheology is about making 
and breaking of constraints with stress



Wyart and Cates theory:
constraint-driven version
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Reformulated phenomenological WC theory (3-d)

# force/torque balance equations 
per particle

Isostaticity:

Minimum number of contacts per sphere     for mechanical stabilityZ

= # force/torque degrees of freedom
per particle

Frictionless

Frictional

Z = 6

Z = 4 Constrains sliding



Reformulated phenomenological WC theory (3-d)
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Dry packing Sheared suspension

2

FIG. 2. constraints and the jamming volume fraction. ‘Fric-
tion’ inhibits sliding, ‘adhesion’ inhibits rolling; both together
also inhibit twisting. nF independent forces and nT torques
act at a contact; E equations/particle specify mechanical
equilibrium. Isostaticity requires (nF + nT)Z�2 = E. (i) Nei-
ther friction nor adhesion: single normal reaction n⊥F = 1,
EF = 3 specifying zero net force. Z = 6. (ii) Friction only: ad-

ditional n∥F = 2 contact forces resisting sliding; nF = n⊥F +n∥F =
3. ET = 3 specifying zero net torque, E = EF +ET = 6. Z = 4
(iii) Adhesion only: n⊥F = 1 remains; n∥T = 2 contact torques
resisting rolling; E = 6. Z = 4. (iv) Friction and adhesion: all
relative motions are resisted, nF = nT = 3. E = 6. Z = 2. The
two curves together show Eq. 1 for �J(Z).

with ⌘
0

the solvent viscosity. WC writes �
J

= �
J

[f(�)]:
jamming is a function of the stress-dependent fraction of
particles in frictional contact, f(�), which goes from 0 to
1 as � increases past �∗, taking �

J

from RCP to RLP.
We reformulate this by writing �

J

= �
J

[Z(�)]. Shear
thickening is now a �-driven transition from a frictionless
(µ = 0) state with Z = 6 to an infinite-friction (µ → ∞)
state with Z = 4. (See SI for finite µ.) Between these two
limits, we use WC’s f(�) in a simple linear interpolation:

Z = 6 − 2f(�), with (3)

f(�) = e−(�∗��)� , (4)

where previously [3], � = 1. Finally, Z(�) relates to �
J

via Eq. (1), so that in a system with both sliding (µ = 0)
and rolling (µ → 0) contacts, �

J

is determined by the
average number of constraints per particle (see SI).

Together, Eq. (1-4) give ⌘r = ⌘
⌘0
= ⌘r[�,�;{�∗,�, C}].

Using � = 0.7, �∗ = 8 Pa and C = 3.35 (⇒ '(4)
J

= 0.54

and '(6)
J

= 0.64), we can describe ‘classical’ shear thick-
ening in a model system [3] (system S0), Fig. 3(a) (lines).
The ‘Z-centric’ physics picture is as follows. At � � �∗,
all contacts are lubricated, f = 0, Eq. (4) and Fig. 3(b)
(black curve), so that Z = 6, Eq. (3) and Fig. 3(b) (grey
curve). As � increases beyond �∗, frictional contacts are
made and Z decreases from 6, reaching 4 at � � �∗.
The form of �

J

(�), given by Eq. (1), (3) and (4), reflects

Z(�), Fig. 3(c), dropping from �(6)
J

to �(4)
J

as � increases.
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FIG. 3. Rheology of system S0: 3.78 µm sterically-stabilised
poly-methylmethacrylate (PMMA) particles in cyclhexylbro-
mide+decalin (�A��∗ = 0; data taken from [3]). (a) Mea-
sured ⌘(�)�⌘0 (symbols) at � = 0.19,0.41,0.47,0.51,0.54,0.56
and 0.58 (bottom to top). Solid lines, theory (see text for
parameters), with DST predicted along grey portions. (b)
f(�) (black) and Z(�) (grey) (c) Black/red solid curve, �-

dependent jamming volume fraction �J[Z(�)], with �(6)J and

�(4)J marked by horizontal dashed lines. At � = �1, states
along the �J(�) curve below the line � = �1 are jammed
(red); other states (black) are flowing. (d) Full curve: onset of
shear jamming, �sj(�). Dashed curve, onset of discontinuous
shear thickening (unsteady flow), �DST(�), corresponding to
d log ⌘�d log� = 1 in (a). Colour scheme: white, steady flow;
grey, unsteady flow (DST); red, jammed (no flow possible).

As � increases at some � = �
0

< �(4)
J

, we traverse the
� = �

0

contour in Fig. 3(c). The distance to jamming,��
0

− �
J

(�)�, is initially constant, then decreases, reach-
ing a (smaller) constant value at high �. The viscosity
reflects the distance to jamming according to Eq. 2, so
that ⌘r increase from one Newtonian plateau to another.

At a higher � = �
1

> �(4)
J

, Fig. 3(c), ⌘r thickens con-
tinuously from a low-shear Newtonian plateau until �
reaches the point where the � = �

1

contour intersects
�
J

(�), and ⌘ →∞ (Eq. 2). For all higher � at this �, flow
is impossible (red curve, Fig. 3(c)). Figure 3(d) (solid
line) shows the full shear-jamming boundary, �

sj

(�).
When d log ⌘�d log� → 1 in Fig. 3(a), discontinuous

shear thickening (DST) occurs: the associated �(�̇) plot
goes vertical. As in WC [1], we predict that this occurs at
�
DST

(�) < �
sj

(Fig. 3(d), dashed curve). Above �
DST

(�)
(Fig. 3(d), grey), experiments observe unsteady flow [17].
Above �

sj

(�), which is inaccessible to our imposed �̇ pro-
tocol, the system will be fully jammed (Fig. 3(d), red).
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FIG. 2. constraints and the jamming volume fraction. ‘Fric-
tion’ inhibits sliding, ‘adhesion’ inhibits rolling; both together
also inhibit twisting. nF independent forces and nT torques
act at a contact; E equations/particle specify mechanical
equilibrium. Isostaticity requires (nF + nT)Z�2 = E. (i) Nei-
ther friction nor adhesion: single normal reaction n⊥F = 1,
EF = 3 specifying zero net force. Z = 6. (ii) Friction only: ad-

ditional n∥F = 2 contact forces resisting sliding; nF = n⊥F +n∥F =
3. ET = 3 specifying zero net torque, E = EF +ET = 6. Z = 4
(iii) Adhesion only: n⊥F = 1 remains; n∥T = 2 contact torques
resisting rolling; E = 6. Z = 4. (iv) Friction and adhesion: all
relative motions are resisted, nF = nT = 3. E = 6. Z = 2. The
two curves together show Eq. 1 for �J(Z).

with ⌘
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the solvent viscosity. WC writes �
J

= �
J

[f(�)]:
jamming is a function of the stress-dependent fraction of
particles in frictional contact, f(�), which goes from 0 to
1 as � increases past �∗, taking �
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from RCP to RLP.
We reformulate this by writing �

J

= �
J

[Z(�)]. Shear
thickening is now a �-driven transition from a frictionless
(µ = 0) state with Z = 6 to an infinite-friction (µ → ∞)
state with Z = 4. (See SI for finite µ.) Between these two
limits, we use WC’s f(�) in a simple linear interpolation:

Z = 6 − 2f(�), with (3)

f(�) = e−(�∗��)� , (4)

where previously [3], � = 1. Finally, Z(�) relates to �
J

via Eq. (1), so that in a system with both sliding (µ = 0)
and rolling (µ → 0) contacts, �

J

is determined by the
average number of constraints per particle (see SI).

Together, Eq. (1-4) give ⌘r = ⌘
⌘0
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Using � = 0.7, �∗ = 8 Pa and C = 3.35 (⇒ '(4)
J

= 0.54

and '(6)
J

= 0.64), we can describe ‘classical’ shear thick-
ening in a model system [3] (system S0), Fig. 3(a) (lines).
The ‘Z-centric’ physics picture is as follows. At � � �∗,
all contacts are lubricated, f = 0, Eq. (4) and Fig. 3(b)
(black curve), so that Z = 6, Eq. (3) and Fig. 3(b) (grey
curve). As � increases beyond �∗, frictional contacts are
made and Z decreases from 6, reaching 4 at � � �∗.
The form of �
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(�), given by Eq. (1), (3) and (4), reflects
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to �(4)
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FIG. 3. Rheology of system S0: 3.78 µm sterically-stabilised
poly-methylmethacrylate (PMMA) particles in cyclhexylbro-
mide+decalin (�A��∗ = 0; data taken from [3]). (a) Mea-
sured ⌘(�)�⌘0 (symbols) at � = 0.19,0.41,0.47,0.51,0.54,0.56
and 0.58 (bottom to top). Solid lines, theory (see text for
parameters), with DST predicted along grey portions. (b)
f(�) (black) and Z(�) (grey) (c) Black/red solid curve, �-

dependent jamming volume fraction �J[Z(�)], with �(6)J and

�(4)J marked by horizontal dashed lines. At � = �1, states
along the �J(�) curve below the line � = �1 are jammed
(red); other states (black) are flowing. (d) Full curve: onset of
shear jamming, �sj(�). Dashed curve, onset of discontinuous
shear thickening (unsteady flow), �DST(�), corresponding to
d log ⌘�d log� = 1 in (a). Colour scheme: white, steady flow;
grey, unsteady flow (DST); red, jammed (no flow possible).
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FIG. 2. constraints and the jamming volume fraction. ‘Fric-
tion’ inhibits sliding, ‘adhesion’ inhibits rolling; both together
also inhibit twisting. nF independent forces and nT torques
act at a contact; E equations/particle specify mechanical
equilibrium. Isostaticity requires (nF + nT)Z�2 = E. (i) Nei-
ther friction nor adhesion: single normal reaction n⊥F = 1,
EF = 3 specifying zero net force. Z = 6. (ii) Friction only: ad-

ditional n∥F = 2 contact forces resisting sliding; nF = n⊥F +n∥F =
3. ET = 3 specifying zero net torque, E = EF +ET = 6. Z = 4
(iii) Adhesion only: n⊥F = 1 remains; n∥T = 2 contact torques
resisting rolling; E = 6. Z = 4. (iv) Friction and adhesion: all
relative motions are resisted, nF = nT = 3. E = 6. Z = 2. The
two curves together show Eq. 1 for �J(Z).
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FIG. 3. Rheology of system S0: 3.78 µm sterically-stabilised
poly-methylmethacrylate (PMMA) particles in cyclhexylbro-
mide+decalin (�A��∗ = 0; data taken from [3]). (a) Mea-
sured ⌘(�)�⌘0 (symbols) at � = 0.19,0.41,0.47,0.51,0.54,0.56
and 0.58 (bottom to top). Solid lines, theory (see text for
parameters), with DST predicted along grey portions. (b)
f(�) (black) and Z(�) (grey) (c) Black/red solid curve, �-

dependent jamming volume fraction �J[Z(�)], with �(6)J and

�(4)J marked by horizontal dashed lines. At � = �1, states
along the �J(�) curve below the line � = �1 are jammed
(red); other states (black) are flowing. (d) Full curve: onset of
shear jamming, �sj(�). Dashed curve, onset of discontinuous
shear thickening (unsteady flow), �DST(�), corresponding to
d log ⌘�d log� = 1 in (a). Colour scheme: white, steady flow;
grey, unsteady flow (DST); red, jammed (no flow possible).

As � increases at some � = �
0

< �(4)
J

, we traverse the
� = �

0

contour in Fig. 3(c). The distance to jamming,��
0

− �
J

(�)�, is initially constant, then decreases, reach-
ing a (smaller) constant value at high �. The viscosity
reflects the distance to jamming according to Eq. 2, so
that ⌘r increase from one Newtonian plateau to another.

At a higher � = �
1

> �(4)
J

, Fig. 3(c), ⌘r thickens con-
tinuously from a low-shear Newtonian plateau until �
reaches the point where the � = �

1

contour intersects
�
J

(�), and ⌘ →∞ (Eq. 2). For all higher � at this �, flow
is impossible (red curve, Fig. 3(c)). Figure 3(d) (solid
line) shows the full shear-jamming boundary, �

sj

(�).
When d log ⌘�d log� → 1 in Fig. 3(a), discontinuous

shear thickening (DST) occurs: the associated �(�̇) plot
goes vertical. As in WC [1], we predict that this occurs at
�
DST

(�) < �
sj

(Fig. 3(d), dashed curve). Above �
DST

(�)
(Fig. 3(d), grey), experiments observe unsteady flow [17].
Above �

sj

(�), which is inaccessible to our imposed �̇ pro-
tocol, the system will be fully jammed (Fig. 3(d), red).
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Real particles are usually sticky!

(e.g., due to van der Waals interactions)
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WC-like theory
a(�) = 1� e�(�A/�)Fraction of adhesive contacts

�A = Characteristic adhesive stress

Z = 6� 2f � 2a
3

Adhesion, like friction, alters Z by constraining mo-
tion [18]. We now define frictional and adhesive contacts
as follows, Fig. 2: no sliding (friction alone), no rolling
(adhesion alone), and neither sliding, rolling nor twisting
(friction and adhesion). In tribology, the failure of such
contacts are known as modes II, I and III respectively
[19]. We discuss their microscopic physics later.

The fraction of adhesive contacts, a, should decrease
as � increases; we take

a(�) = 1 − e−(�A��) , (5)

where �
A

is a characteristic adhesive stress. When a =
1, none of the particles are free to rotate. Constraint
counting gives four limits, Fig. 2: (i) (a, f) = (0,0), Z = 6;
(ii) (a, f) = (0,1), Z = 4; (iii) (a, f) = (1,0), Z = 4 and
(iv) (a, f) = (1,1), Z = 2, We extend Eq. 3 to (see SI):

Z(a, f) = 6 − 2f(�) − 2a(�). (3′)
Equations (1), (2), (3′), (4) and (5) form a closed set for
⌘r[�,�;{�∗,�,�A

,, C}]. The interplay between the fric-
tional onset stress, �∗, the characteristic adhesive stress,
�
A

, and the two stretch exponents,  and �, generates
a rich phenomenology. The underlying physics is about
the breaking and making of adhesive and frictional con-
tacts as � increases, Eqs. (5) and (4), which determine Z,
Eq. (3′) and changes the jamming point, �

J

(Z), Eq. (1),
thus determining ⌘(�), Eq. 2. The details are sensitive to
�
A

��∗ and ��. If adhesion is strictly absent, �A��∗ = 0,
Eq. (3′) reduces to Eq. 3 and we recover the purely repul-
sive case 0 in Fig. 3. Otherwise, three regimes exist: case
1, �A��∗ � 1, case 2, �A��∗ ≈ 1, and case 3, �A��∗ � 1.
We now show experimental data (see SI for materials and
methods) that demonstrate these regimes.

Case 1, �A��∗ � 1, was realised using a suspension of
cornstarch in glycerol/water (system S1). At � ≤ 0.36,
continuous thickening to a Newtonian plateau following
thinning, Fig. 4(a). At � � 0.4, thinning is pronounced,
suggesting a (dynamic) yield stress, �y, which we esti-
mate as the stress at the lowest accessible shear rate
(�̇ = 0.01 s−1). Each suspension with a finite �y also show
DST at high stress, manifested as unsteady flow [17] and
d log ⌘�d log� → 1 in the flow curve. We plot the yield
stress, �y(�) (�), and the onset of DST, �

DST

(�) (�),
in Fig. 4(d). As � increases, the window of steady flow,
�
DST

(�) < � < �y(�), shrinks, and vanishes at � ≈ 049.
Our theory with �A = 0.1 Pa, �∗ = 2.7 Pa, � = 0.8,

 = 0.5 and C = 6.03 (⇒ �(4)J = 0.40 and �(6)J = 0.50)
accounts for these observations, Fig. 4(a). The physics is
revealed in Fig. 4(b,c). At � < �A � �∗, all contacts are
purely adhesive, (a, f) = (1,0), so that Z = 4 (Fig. 2(iii)).
As � exceeds �A, a(�) slowly decreases, while f(�) does
not start to increase until � reaches ≈ �∗ � �A, giving rise
to a peak in Z(�). Finally, at � � �∗ � �A, Z drops
back down to 4, corresponding to adhesionless (a = 0)
frictional (f = 1) contacts (Fig. 2(ii)).
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FIG. 4. Rheology of system S1 (case 1, �A��∗ � 1). (a) Sym-
bols, ⌘(�)�⌘0 data at � = 0.341, 0.355, 0.418, 0.427, 0.437,
0.447/, 0.467, 0.477 and 0.482 (bottom to top); dashed lines
connect sample points showing DST. Solid lines, theory pre-
dictions (see text for parameters). (b) f(�) and Z(�) (c)
Key/colors as in Fig. 3(c). Now, there are up to two inter-
sections of �0 contours with �J. The lower intersection gives
the yield stress �y; the higher intersection, �sj, gives the onset
of shear-jamming. (d) Solid line: lower part = �y(�), upper
part = �sj(�). Read from (a): � = �(�̇ = 0.01 s−1) versus �;� = onset of d log ⌘�d log� → 1. Dot-dashed line: rheometer
low-� limit. Color scheme as in Fig. 3.

The form of �
J

(�), Fig. 4(c), resembles Z(�). For

� < '(4)
J

, ⌘(�) thins as �
J

increases, reaches a mini-
mum at the peak of �

J

, then thickens as �
J

decreases;

at � � �∗, �
J

→ '(4)
J

and ⌘ tends to a constant, equiv-
alent to the purely-repulsive shear-thickened state. At

� > '(4)
J

, each constant-� contour intersects �
J

(�) twice.
Thus, at (say) �

0

= 0.44, the system is jammed at low
�, where �

0

> �
J

(�), unjams above a yield stress, �y(�),
and re-jams again at �

sj

(�). We plot the boundary of
jammed states, given by the set of solutions of � = �

J

(�),
in Fig. 4(d) (solid line). The lower portion of the solid
line, �y(�), is consistent with our measured yield stress.
The upper portion, �

sj

(�), is inaccessible with our im-
posed �̇ protocol, because it lies above the onset of DST.
The predicted boundary for the latter, Fig. 4(d) (dotted
curve), agrees well with experiments.
Note that flow curves similar to Fig. 4(a) could be gen-

erated by adding a suitable attractive potential, U(r), to
a friction-only system, Fig. 1(a), in which thinning is
purely of colloidal (i.e., Brownian) origin [20]. In this
case, the simultaneous emergence of a yield stress and
DST at the same �, Fig. 4(d), would be entirely for-
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Adhesion, like friction, alters Z by constraining mo-
tion [18]. We now define frictional and adhesive contacts
as follows, Fig. 2: no sliding (friction alone), no rolling
(adhesion alone), and neither sliding, rolling nor twisting
(friction and adhesion). In tribology, the failure of such
contacts are known as modes II, I and III respectively
[19]. We discuss their microscopic physics later.

The fraction of adhesive contacts, a, should decrease
as � increases; we take

a(�) = 1 − e−(�A��) , (5)

where �
A

is a characteristic adhesive stress. When a =
1, none of the particles are free to rotate. Constraint
counting gives four limits, Fig. 2: (i) (a, f) = (0,0), Z = 6;
(ii) (a, f) = (0,1), Z = 4; (iii) (a, f) = (1,0), Z = 4 and
(iv) (a, f) = (1,1), Z = 2, We extend Eq. 3 to (see SI):

Z(a, f) = 6 − 2f(�) − 2a(�). (3′)
Equations (1), (2), (3′), (4) and (5) form a closed set for
⌘r[�,�;{�∗,�,�A

,, C}]. The interplay between the fric-
tional onset stress, �∗, the characteristic adhesive stress,
�
A

, and the two stretch exponents,  and �, generates
a rich phenomenology. The underlying physics is about
the breaking and making of adhesive and frictional con-
tacts as � increases, Eqs. (5) and (4), which determine Z,
Eq. (3′) and changes the jamming point, �

J

(Z), Eq. (1),
thus determining ⌘(�), Eq. 2. The details are sensitive to
�
A

��∗ and ��. If adhesion is strictly absent, �A��∗ = 0,
Eq. (3′) reduces to Eq. 3 and we recover the purely repul-
sive case 0 in Fig. 3. Otherwise, three regimes exist: case
1, �A��∗ � 1, case 2, �A��∗ ≈ 1, and case 3, �A��∗ � 1.
We now show experimental data (see SI for materials and
methods) that demonstrate these regimes.

Case 1, �A��∗ � 1, was realised using a suspension of
cornstarch in glycerol/water (system S1). At � ≤ 0.36,
continuous thickening to a Newtonian plateau following
thinning, Fig. 4(a). At � � 0.4, thinning is pronounced,
suggesting a (dynamic) yield stress, �y, which we esti-
mate as the stress at the lowest accessible shear rate
(�̇ = 0.01 s−1). Each suspension with a finite �y also show
DST at high stress, manifested as unsteady flow [17] and
d log ⌘�d log� → 1 in the flow curve. We plot the yield
stress, �y(�) (�), and the onset of DST, �

DST

(�) (�),
in Fig. 4(d). As � increases, the window of steady flow,
�
DST

(�) < � < �y(�), shrinks, and vanishes at � ≈ 049.
Our theory with �A = 0.1 Pa, �∗ = 2.7 Pa, � = 0.8,

 = 0.5 and C = 6.03 (⇒ �(4)J = 0.40 and �(6)J = 0.50)
accounts for these observations, Fig. 4(a). The physics is
revealed in Fig. 4(b,c). At � < �A � �∗, all contacts are
purely adhesive, (a, f) = (1,0), so that Z = 4 (Fig. 2(iii)).
As � exceeds �A, a(�) slowly decreases, while f(�) does
not start to increase until � reaches ≈ �∗ � �A, giving rise
to a peak in Z(�). Finally, at � � �∗ � �A, Z drops
back down to 4, corresponding to adhesionless (a = 0)
frictional (f = 1) contacts (Fig. 2(ii)).
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FIG. 4. Rheology of system S1 (case 1, �A��∗ � 1). (a) Sym-
bols, ⌘(�)�⌘0 data at � = 0.341, 0.355, 0.418, 0.427, 0.437,
0.447/, 0.467, 0.477 and 0.482 (bottom to top); dashed lines
connect sample points showing DST. Solid lines, theory pre-
dictions (see text for parameters). (b) f(�) and Z(�) (c)
Key/colors as in Fig. 3(c). Now, there are up to two inter-
sections of �0 contours with �J. The lower intersection gives
the yield stress �y; the higher intersection, �sj, gives the onset
of shear-jamming. (d) Solid line: lower part = �y(�), upper
part = �sj(�). Read from (a): � = �(�̇ = 0.01 s−1) versus �;� = onset of d log ⌘�d log� → 1. Dot-dashed line: rheometer
low-� limit. Color scheme as in Fig. 3.

The form of �
J

(�), Fig. 4(c), resembles Z(�). For

� < '(4)
J

, ⌘(�) thins as �
J

increases, reaches a mini-
mum at the peak of �

J

, then thickens as �
J

decreases;

at � � �∗, �
J

→ '(4)
J

and ⌘ tends to a constant, equiv-
alent to the purely-repulsive shear-thickened state. At

� > '(4)
J

, each constant-� contour intersects �
J

(�) twice.
Thus, at (say) �

0

= 0.44, the system is jammed at low
�, where �

0

> �
J

(�), unjams above a yield stress, �y(�),
and re-jams again at �

sj

(�). We plot the boundary of
jammed states, given by the set of solutions of � = �

J

(�),
in Fig. 4(d) (solid line). The lower portion of the solid
line, �y(�), is consistent with our measured yield stress.
The upper portion, �

sj

(�), is inaccessible with our im-
posed �̇ protocol, because it lies above the onset of DST.
The predicted boundary for the latter, Fig. 4(d) (dotted
curve), agrees well with experiments.
Note that flow curves similar to Fig. 4(a) could be gen-

erated by adding a suitable attractive potential, U(r), to
a friction-only system, Fig. 1(a), in which thinning is
purely of colloidal (i.e., Brownian) origin [20]. In this
case, the simultaneous emergence of a yield stress and
DST at the same �, Fig. 4(d), would be entirely for-
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3

Adhesion, like friction, alters Z by constraining mo-
tion [18]. We now define frictional and adhesive contacts
as follows, Fig. 2: no sliding (friction alone), no rolling
(adhesion alone), and neither sliding, rolling nor twisting
(friction and adhesion). In tribology, the failure of such
contacts are known as modes II, I and III respectively
[19]. We discuss their microscopic physics later.

The fraction of adhesive contacts, a, should decrease
as � increases; we take

a(�) = 1 − e−(�A��) , (5)

where �
A

is a characteristic adhesive stress. When a =
1, none of the particles are free to rotate. Constraint
counting gives four limits, Fig. 2: (i) (a, f) = (0,0), Z = 6;
(ii) (a, f) = (0,1), Z = 4; (iii) (a, f) = (1,0), Z = 4 and
(iv) (a, f) = (1,1), Z = 2, We extend Eq. 3 to (see SI):

Z(a, f) = 6 − 2f(�) − 2a(�). (3′)
Equations (1), (2), (3′), (4) and (5) form a closed set for
⌘r[�,�;{�∗,�,�A

,, C}]. The interplay between the fric-
tional onset stress, �∗, the characteristic adhesive stress,
�
A

, and the two stretch exponents,  and �, generates
a rich phenomenology. The underlying physics is about
the breaking and making of adhesive and frictional con-
tacts as � increases, Eqs. (5) and (4), which determine Z,
Eq. (3′) and changes the jamming point, �

J

(Z), Eq. (1),
thus determining ⌘(�), Eq. 2. The details are sensitive to
�
A

��∗ and ��. If adhesion is strictly absent, �A��∗ = 0,
Eq. (3′) reduces to Eq. 3 and we recover the purely repul-
sive case 0 in Fig. 3. Otherwise, three regimes exist: case
1, �A��∗ � 1, case 2, �A��∗ ≈ 1, and case 3, �A��∗ � 1.
We now show experimental data (see SI for materials and
methods) that demonstrate these regimes.

Case 1, �A��∗ � 1, was realised using a suspension of
cornstarch in glycerol/water (system S1). At � ≤ 0.36,
continuous thickening to a Newtonian plateau following
thinning, Fig. 4(a). At � � 0.4, thinning is pronounced,
suggesting a (dynamic) yield stress, �y, which we esti-
mate as the stress at the lowest accessible shear rate
(�̇ = 0.01 s−1). Each suspension with a finite �y also show
DST at high stress, manifested as unsteady flow [17] and
d log ⌘�d log� → 1 in the flow curve. We plot the yield
stress, �y(�) (�), and the onset of DST, �

DST

(�) (�),
in Fig. 4(d). As � increases, the window of steady flow,
�
DST

(�) < � < �y(�), shrinks, and vanishes at � ≈ 049.
Our theory with �A = 0.1 Pa, �∗ = 2.7 Pa, � = 0.8,

 = 0.5 and C = 6.03 (⇒ �(4)J = 0.40 and �(6)J = 0.50)
accounts for these observations, Fig. 4(a). The physics is
revealed in Fig. 4(b,c). At � < �A � �∗, all contacts are
purely adhesive, (a, f) = (1,0), so that Z = 4 (Fig. 2(iii)).
As � exceeds �A, a(�) slowly decreases, while f(�) does
not start to increase until � reaches ≈ �∗ � �A, giving rise
to a peak in Z(�). Finally, at � � �∗ � �A, Z drops
back down to 4, corresponding to adhesionless (a = 0)
frictional (f = 1) contacts (Fig. 2(ii)).
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FIG. 4. Rheology of system S1 (case 1, �A��∗ � 1). (a) Sym-
bols, ⌘(�)�⌘0 data at � = 0.341, 0.355, 0.418, 0.427, 0.437,
0.447/, 0.467, 0.477 and 0.482 (bottom to top); dashed lines
connect sample points showing DST. Solid lines, theory pre-
dictions (see text for parameters). (b) f(�) and Z(�) (c)
Key/colors as in Fig. 3(c). Now, there are up to two inter-
sections of �0 contours with �J. The lower intersection gives
the yield stress �y; the higher intersection, �sj, gives the onset
of shear-jamming. (d) Solid line: lower part = �y(�), upper
part = �sj(�). Read from (a): � = �(�̇ = 0.01 s−1) versus �;� = onset of d log ⌘�d log� → 1. Dot-dashed line: rheometer
low-� limit. Color scheme as in Fig. 3.

The form of �
J

(�), Fig. 4(c), resembles Z(�). For

� < '(4)
J

, ⌘(�) thins as �
J

increases, reaches a mini-
mum at the peak of �

J

, then thickens as �
J

decreases;

at � � �∗, �
J

→ '(4)
J

and ⌘ tends to a constant, equiv-
alent to the purely-repulsive shear-thickened state. At

� > '(4)
J

, each constant-� contour intersects �
J

(�) twice.
Thus, at (say) �

0

= 0.44, the system is jammed at low
�, where �

0

> �
J

(�), unjams above a yield stress, �y(�),
and re-jams again at �

sj

(�). We plot the boundary of
jammed states, given by the set of solutions of � = �

J

(�),
in Fig. 4(d) (solid line). The lower portion of the solid
line, �y(�), is consistent with our measured yield stress.
The upper portion, �

sj

(�), is inaccessible with our im-
posed �̇ protocol, because it lies above the onset of DST.
The predicted boundary for the latter, Fig. 4(d) (dotted
curve), agrees well with experiments.
Note that flow curves similar to Fig. 4(a) could be gen-

erated by adding a suitable attractive potential, U(r), to
a friction-only system, Fig. 1(a), in which thinning is
purely of colloidal (i.e., Brownian) origin [20]. In this
case, the simultaneous emergence of a yield stress and
DST at the same �, Fig. 4(d), would be entirely for-
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FIG. 5. Rheology of system S2 (case 2, �A�
∗ ≈ 1 (a) ⌘(�)�⌘0

at � = 0.37,0.43,0.45 and 0.48, from bottom to top. Symbols
and lines for (b), (c) and (d) the same as in Fig.4.

tuitous, requiring careful tuning of parameters. In our
theory, this is a strong prediction, applicable whenever
�A � �∗, being a consequence of the fact that Z = 4 for
both purely adhesive and purely frictional states states.
Shear thinning in our case arises because dZ�d� > 0.

Next we examine case 2, �A ≈ �∗, realised experimen-
tally by system S2: a suspension of 45 µm stericallyu-
stabilised PMMA spheres in a density-matching solvent.
Flow curves, Fig. 5, are Newtonian at � ≤ 0.37, but de-
velop a pronounced peak at �

peak

≈ 0.1 Pa at � ≥ 0.43.
Our model with the parameter set �

A

= �∗ = 0.02Pa,
� = 1,  = 0.4 and C = 3.6 (⇒ �

J

(2) = 0.36,�
J

(4) =
0.53 and �

J

(6) = 0.63) captures the observed behavior.
When �A ≈ �∗, �� plays a key role. Here,  < �, so
that adhesive contacts break more slowly than frictional
contacts form as � increases pass �A = �∗, giving rise to
a minimum in Z(�) at � ≈ �

peak

, Fig. 5(b).
A � contours that does not intersect �

J

(�) gives rise
to an ⌘(�) that first thickens as the system moves closer
to jamming, before thinning as it moves away again, pro-
ducing a peaked flow curve. At higher �, which our ex-
periments did not access, �-contours have up to two inter-
sections with the concave �

J

(�). At � � '(4), we predict
shear-jamming, followed by re-entrant yielding at higher
�: the system forms frictional contacts rapidly before all
adhesive contacts are broken, jams, but eventually un-
jams when, finally, all adhesive contacts are broken. The
�-� state diagram , Fig. 5(d), is complex and exquisitely
sensitive to �� (see SI for other possibilities).

Peaked flow curves have also been reported for 43 µm
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glass spheres suspended in corn syrup + glycerin [21].
The thickening part of the peak was attributed to a small
amount of ‘viscous resuspension’, but no explanation was
o↵ered for the subsequent thinning. These flow curves are
well captured by our theory (see SI).
Case 3, �A��∗ � 1, is widely seen in granular dis-

persions. We realise it with system S3: a suspension
of cornstarch in sunflower oil with lecithin added as a
dispersent. Flow curves, Fig. 6(a), shear thin to a New-
tonian plateau at all concentrations probed. At � ≥ 0.28,
the system plausibly has a yield stress, which we again es-
timate as the stress at the lowest accessible �̇ = 0.02 s−1,
Fig. 6(d) (symbols). The yield stress grows rapidly at
high �, diverging at �

max

≈ 0.62. Beyond �
max

, attempts
at dispersion always resulted in matt granules.
Our model with �A = 1.3 Pa, �∗ → 0, � = 1.0,  =

1.1 and C = 2.3 (→ �(2)
J

= 0.47,�(4)
J

= 0.63 and �(6)
J

=
0.72) captures the experimental phenomenology (except
for the yield stress threshold, for which see later). The
onset stress is always exceeded in practice (�∗ → 0) and
f = 1, Fig. 6(b). Z(�) increases from 2 (both friction
and adhesion, Fig. 2(iv)), to 4 (friction only, state (ii)).
�
J

(�) has a similar, sigmoidal, form, and intersects each

�-contours once at '(2)
J

≤ � ≤ '(4)
J

. Thus, increasing �
brings yielding from a jammed to a flowing state, followed
by shear thinning as the distance to jamming increases.
The predicted yield stress, �y(�), Fig. 6(d) (solid line),

diverges at '(4)
J

and captures our data well in this limit.
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tuitous, requiring careful tuning of parameters. In our
theory, this is a strong prediction, applicable whenever
�A � �∗, being a consequence of the fact that Z = 4 for
both purely adhesive and purely frictional states states.
Shear thinning in our case arises because dZ�d� > 0.

Next we examine case 2, �A ≈ �∗, realised experimen-
tally by system S2: a suspension of 45 µm stericallyu-
stabilised PMMA spheres in a density-matching solvent.
Flow curves, Fig. 5, are Newtonian at � ≤ 0.37, but de-
velop a pronounced peak at �

peak

≈ 0.1 Pa at � ≥ 0.43.
Our model with the parameter set �

A

= �∗ = 0.02Pa,
� = 1,  = 0.4 and C = 3.6 (⇒ �

J

(2) = 0.36,�
J

(4) =
0.53 and �

J

(6) = 0.63) captures the observed behavior.
When �A ≈ �∗, �� plays a key role. Here,  < �, so
that adhesive contacts break more slowly than frictional
contacts form as � increases pass �A = �∗, giving rise to
a minimum in Z(�) at � ≈ �

peak

, Fig. 5(b).
A � contours that does not intersect �

J

(�) gives rise
to an ⌘(�) that first thickens as the system moves closer
to jamming, before thinning as it moves away again, pro-
ducing a peaked flow curve. At higher �, which our ex-
periments did not access, �-contours have up to two inter-
sections with the concave �

J

(�). At � � '(4), we predict
shear-jamming, followed by re-entrant yielding at higher
�: the system forms frictional contacts rapidly before all
adhesive contacts are broken, jams, but eventually un-
jams when, finally, all adhesive contacts are broken. The
�-� state diagram , Fig. 5(d), is complex and exquisitely
sensitive to �� (see SI for other possibilities).

Peaked flow curves have also been reported for 43 µm
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glass spheres suspended in corn syrup + glycerin [21].
The thickening part of the peak was attributed to a small
amount of ‘viscous resuspension’, but no explanation was
o↵ered for the subsequent thinning. These flow curves are
well captured by our theory (see SI).
Case 3, �A��∗ � 1, is widely seen in granular dis-

persions. We realise it with system S3: a suspension
of cornstarch in sunflower oil with lecithin added as a
dispersent. Flow curves, Fig. 6(a), shear thin to a New-
tonian plateau at all concentrations probed. At � ≥ 0.28,
the system plausibly has a yield stress, which we again es-
timate as the stress at the lowest accessible �̇ = 0.02 s−1,
Fig. 6(d) (symbols). The yield stress grows rapidly at
high �, diverging at �

max

≈ 0.62. Beyond �
max

, attempts
at dispersion always resulted in matt granules.
Our model with �A = 1.3 Pa, �∗ → 0, � = 1.0,  =

1.1 and C = 2.3 (→ �(2)
J

= 0.47,�(4)
J

= 0.63 and �(6)
J

=
0.72) captures the experimental phenomenology (except
for the yield stress threshold, for which see later). The
onset stress is always exceeded in practice (�∗ → 0) and
f = 1, Fig. 6(b). Z(�) increases from 2 (both friction
and adhesion, Fig. 2(iv)), to 4 (friction only, state (ii)).
�
J

(�) has a similar, sigmoidal, form, and intersects each

�-contours once at '(2)
J

≤ � ≤ '(4)
J

. Thus, increasing �
brings yielding from a jammed to a flowing state, followed
by shear thinning as the distance to jamming increases.
The predicted yield stress, �y(�), Fig. 6(d) (solid line),

diverges at '(4)
J

and captures our data well in this limit.

�A ⇡ �⇤
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(sterically-stabilised 45 µm PMMA in hydrocarbons)Case 2:
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at � = 0.37,0.43,0.45 and 0.48, from bottom to top. Symbols
and lines for (b), (c) and (d) the same as in Fig.4.

tuitous, requiring careful tuning of parameters. In our
theory, this is a strong prediction, applicable whenever
�A � �∗, being a consequence of the fact that Z = 4 for
both purely adhesive and purely frictional states states.
Shear thinning in our case arises because dZ�d� > 0.

Next we examine case 2, �A ≈ �∗, realised experimen-
tally by system S2: a suspension of 45 µm stericallyu-
stabilised PMMA spheres in a density-matching solvent.
Flow curves, Fig. 5, are Newtonian at � ≤ 0.37, but de-
velop a pronounced peak at �

peak

≈ 0.1 Pa at � ≥ 0.43.
Our model with the parameter set �

A

= �∗ = 0.02Pa,
� = 1,  = 0.4 and C = 3.6 (⇒ �

J

(2) = 0.36,�
J

(4) =
0.53 and �

J

(6) = 0.63) captures the observed behavior.
When �A ≈ �∗, �� plays a key role. Here,  < �, so
that adhesive contacts break more slowly than frictional
contacts form as � increases pass �A = �∗, giving rise to
a minimum in Z(�) at � ≈ �

peak

, Fig. 5(b).
A � contours that does not intersect �

J

(�) gives rise
to an ⌘(�) that first thickens as the system moves closer
to jamming, before thinning as it moves away again, pro-
ducing a peaked flow curve. At higher �, which our ex-
periments did not access, �-contours have up to two inter-
sections with the concave �

J

(�). At � � '(4), we predict
shear-jamming, followed by re-entrant yielding at higher
�: the system forms frictional contacts rapidly before all
adhesive contacts are broken, jams, but eventually un-
jams when, finally, all adhesive contacts are broken. The
�-� state diagram , Fig. 5(d), is complex and exquisitely
sensitive to �� (see SI for other possibilities).

Peaked flow curves have also been reported for 43 µm
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glass spheres suspended in corn syrup + glycerin [21].
The thickening part of the peak was attributed to a small
amount of ‘viscous resuspension’, but no explanation was
o↵ered for the subsequent thinning. These flow curves are
well captured by our theory (see SI).
Case 3, �A��∗ � 1, is widely seen in granular dis-

persions. We realise it with system S3: a suspension
of cornstarch in sunflower oil with lecithin added as a
dispersent. Flow curves, Fig. 6(a), shear thin to a New-
tonian plateau at all concentrations probed. At � ≥ 0.28,
the system plausibly has a yield stress, which we again es-
timate as the stress at the lowest accessible �̇ = 0.02 s−1,
Fig. 6(d) (symbols). The yield stress grows rapidly at
high �, diverging at �

max

≈ 0.62. Beyond �
max

, attempts
at dispersion always resulted in matt granules.
Our model with �A = 1.3 Pa, �∗ → 0, � = 1.0,  =

1.1 and C = 2.3 (→ �(2)
J

= 0.47,�(4)
J

= 0.63 and �(6)
J

=
0.72) captures the experimental phenomenology (except
for the yield stress threshold, for which see later). The
onset stress is always exceeded in practice (�∗ → 0) and
f = 1, Fig. 6(b). Z(�) increases from 2 (both friction
and adhesion, Fig. 2(iv)), to 4 (friction only, state (ii)).
�
J

(�) has a similar, sigmoidal, form, and intersects each

�-contours once at '(2)
J

≤ � ≤ '(4)
J

. Thus, increasing �
brings yielding from a jammed to a flowing state, followed
by shear thinning as the distance to jamming increases.
The predicted yield stress, �y(�), Fig. 6(d) (solid line),

diverges at '(4)
J

and captures our data well in this limit.

Case 3:

�⇤
�A

10
0

10
1

10
2

10
3

10
4

10
5

10
-2
10

-1
10

0
10

1
10

2
10

3

η
/η

0

σ/σA

10-2
10-1
100
101
102

0.3 0.5 0.7

φJ
(2)

σ
[P
a]

φ

φJ
(4)

φJ
(6)

Yield stress 
diverges at  '

(4)
J

�A/�
⇤ � 1



4

100

101

102

103

104

10-210-1100 101 102 103

η
/η

0

σ [Pa]

0.5

0.6

10-210-1100101102103

φJ(4)

φJ(6)

φ0

σsj σy

φ
J

σ [Pa]

10-2

10-1

100

101

102

103

0.3 0.4 0.5 0.6

φJ
(2)

φJ
(4)

σ
 [

P
a

]

φ

φJ
(6)

FIG. 5. Rheology of system S2 (case 2, �A�
∗ ≈ 1 (a) ⌘(�)�⌘0

at � = 0.37,0.43,0.45 and 0.48, from bottom to top. Symbols
and lines for (b), (c) and (d) the same as in Fig.4.

tuitous, requiring careful tuning of parameters. In our
theory, this is a strong prediction, applicable whenever
�A � �∗, being a consequence of the fact that Z = 4 for
both purely adhesive and purely frictional states states.
Shear thinning in our case arises because dZ�d� > 0.

Next we examine case 2, �A ≈ �∗, realised experimen-
tally by system S2: a suspension of 45 µm stericallyu-
stabilised PMMA spheres in a density-matching solvent.
Flow curves, Fig. 5, are Newtonian at � ≤ 0.37, but de-
velop a pronounced peak at �

peak

≈ 0.1 Pa at � ≥ 0.43.
Our model with the parameter set �

A

= �∗ = 0.02Pa,
� = 1,  = 0.4 and C = 3.6 (⇒ �

J

(2) = 0.36,�
J

(4) =
0.53 and �

J

(6) = 0.63) captures the observed behavior.
When �A ≈ �∗, �� plays a key role. Here,  < �, so
that adhesive contacts break more slowly than frictional
contacts form as � increases pass �A = �∗, giving rise to
a minimum in Z(�) at � ≈ �

peak

, Fig. 5(b).
A � contours that does not intersect �

J

(�) gives rise
to an ⌘(�) that first thickens as the system moves closer
to jamming, before thinning as it moves away again, pro-
ducing a peaked flow curve. At higher �, which our ex-
periments did not access, �-contours have up to two inter-
sections with the concave �

J

(�). At � � '(4), we predict
shear-jamming, followed by re-entrant yielding at higher
�: the system forms frictional contacts rapidly before all
adhesive contacts are broken, jams, but eventually un-
jams when, finally, all adhesive contacts are broken. The
�-� state diagram , Fig. 5(d), is complex and exquisitely
sensitive to �� (see SI for other possibilities).

Peaked flow curves have also been reported for 43 µm

100

101

102

103

104

105

10-210-1100101102103

η
/η

0

σ [Pa]

0.0

1.0

10-1100101102103

 2

 4

 6f
a

Z

f,
a Z

σ [Pa]

0.4

0.5

0.6

0.7

10-1 100 101 102 103

φJ
(2)

φJ
(4)

φ0

Jammed

Yielded

σy

φ
J

σ [Pa]

10-2
10-1
100
101
102

0.3 0.5 0.7

φJ
(2)

σ
[P
a]

φ

φJ
(4)

φJ
(6)

FIG. 6. Rheology of system S3 (case 3, �A��∗ � 1). (a)
Symbols, ⌘(�)�⌘0 at � = 0.14, 0.21, 0.28, 0.39, 0.47, 0.53,
0.57, 0.60, 0.61 and 0.62 (bottom to top). Solid lines: theory
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(c) and (d) as in Fig. 3.

glass spheres suspended in corn syrup + glycerin [21].
The thickening part of the peak was attributed to a small
amount of ‘viscous resuspension’, but no explanation was
o↵ered for the subsequent thinning. These flow curves are
well captured by our theory (see SI).
Case 3, �A��∗ � 1, is widely seen in granular dis-

persions. We realise it with system S3: a suspension
of cornstarch in sunflower oil with lecithin added as a
dispersent. Flow curves, Fig. 6(a), shear thin to a New-
tonian plateau at all concentrations probed. At � ≥ 0.28,
the system plausibly has a yield stress, which we again es-
timate as the stress at the lowest accessible �̇ = 0.02 s−1,
Fig. 6(d) (symbols). The yield stress grows rapidly at
high �, diverging at �

max

≈ 0.62. Beyond �
max

, attempts
at dispersion always resulted in matt granules.
Our model with �A = 1.3 Pa, �∗ → 0, � = 1.0,  =

1.1 and C = 2.3 (→ �(2)
J

= 0.47,�(4)
J

= 0.63 and �(6)
J

=
0.72) captures the experimental phenomenology (except
for the yield stress threshold, for which see later). The
onset stress is always exceeded in practice (�∗ → 0) and
f = 1, Fig. 6(b). Z(�) increases from 2 (both friction
and adhesion, Fig. 2(iv)), to 4 (friction only, state (ii)).
�
J

(�) has a similar, sigmoidal, form, and intersects each

�-contours once at '(2)
J

≤ � ≤ '(4)
J

. Thus, increasing �
brings yielding from a jammed to a flowing state, followed
by shear thinning as the distance to jamming increases.
The predicted yield stress, �y(�), Fig. 6(d) (solid line),

diverges at '(4)
J

and captures our data well in this limit.
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Open questions
•       = stress to break adhesive bonds   

• Z provides a “common language” for tribologists and 
rheologists — how we think about details. 

• Hydrodynamics and timescales: implications for 

�A

e.g., JKR+``pinning” Bonds break by ``peeling”
Dominik and Tielens, Phil. Mag. A (1995) 

hydrodynamic forces and torques
Z

�̇ > 0 =)

! Z = 6Standard Reynolds lubrication
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Size matters: the effect of particle diameter on 
hard sphere suspension rheology 
Ben Guy, Wilson Poon, Paul McGuire and Han Xu 

Die extrusion of polydisperse suspensions 
Many ceramic products are formed by the extrusion of dense, 
polydisperse suspensions through a die. It is important that the 
suspension remains well mixed during this process for the ceramic, or 
the product will be prone to failure. 
 
Clogging (figure 2a) and size segregation (figure 2b) of large and small 
particles are two common problems in channel flow. These phenomena 
cannot be captured with existing models of extrusion, which treat the 
different phases as continua. A particle level understanding is required 
for an accurate model. 

Hard spheres – a useful model system 
This project aims to understand these and other 
microscopic phenomena using PMMA model hard 
spheres. A confocal microscope coupled to a cone-
plate rheometer is used to visualize the flow of dyed 
particles. The particle coordinates can be tracked and 
the flow reconstructed in 3-d. This provides a way to 
link microscopic phenomena to bulk rheological 
behaviour. Flow through a glass capillary can be 
studied in a similar way [1]. By mixing together 
different particle batches the particle size distribution 
can be controlled, allowing the effect of 
polydispersity on flow to be studied systematically. 

Typical suspensions contain Brownian (d<2 
micron) and non-Brownian (d>2 micron) 
particles. As a starting point, rheology of 
monodisperse large (d=4.5 micron) and 
small (d=300 micron) spheres at a volume 
fraction of a 58% have been studied in the 
cone-plate geometry. It is useful to study 
the flow properties in  this constant stress 
environment before considering the more 
complicated case of capillary flow. 

Size segregation 

Clogging 

Size matters: not all hard spheres are equivalent 

Brownian Non-
Brownian 
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300 nm spheres 
• Up/down flow curves overlap 
• Suspension homogeneous at all shear rates 
• Rheology insensitive to protocol 

 
4500 nm spheres 
• Shear thickening and jamming, even at low 

shear rates 
• Rheology shows strong history dependence and 

is highly irreproducible 
• Evidence of shear banding from imaging 
• Sedimentation important 

 
 

Small particle yield stresses rescale like hard spheres 

Large particle yield stresses do not rescale like hard spheres 
 
At a given volume fraction, the dynamic yield stress        of hard sphere suspensions with 
different particle sizes should agree when rescaled by kBT/d3. Rescaled yield stresses for 
particles < 2micron diameter lie on a master curve which agrees with theoretical 
predictions for hard spheres (white circles, mode coupling theory [2] ). Rescaled yield 
stresses for 4.5 micron spheres are several orders of magnitude greater than small 
spheres  at the same volume fraction. This could be due to sedimentation, 
hydrodynamic interactions or increased effective particle hardness.  It  suggests that the 
particle size is no longer the only relevant length scale for suspensions of large hard 
spheres. 
 
 
 
 

Dynamic yield stress rescaling 

Figure 1 - particle size distribution for a bimodal suspension 
of PMMA spheres, obtained by TEM. Brownian motion 
becomes less important for particles with diameter da2 
micron 

PHSA-stabilised PMMA colloids behave 
as hard spheres in an appropriate 
solvent (e.g. decalin) 

Figure 2 – steady shear rheology measured in the cone-plate 
rheometer. Particles suspended in a mixture of tetralin and 
decalin.       is the dynamic yield stress. 

Figure 3 – reduced dynamic yield stress                           vs volume fraction . The 
spread in the data for small particles can be accounted for by a 3% uncertainty 
in volume fraction.  Uncertainty in  4500 nm particle yield stresses is around 
half a decade from repeat measurements. 
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Conclusion: Rheology of monodisperse hard spheres has a non-
trivial dependence on particle diameter. This emphasises the 
importance of the particle size distribution and the need for particle-
level modelling in paste extrusion.  
Future work: What happens to the rheology when we mix large and 
small spheres? Use rheo-imaging to systematically study the effect 
of PSD on flow properties. 
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Rheology comparison of 300 nm and 4500 nm spheres 

300 nm 58% down

4500 nm 58 % up

4500 nm 58% down

300 nm 58% up

Herschel-Bulkley fit
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