

Granular dispersion rheology as constraint counting

B. M. Guy, J. A. Richards, D. Hodgson, E. Blanco and W. C. K. Poon

Granular dispersions: simple, right?

- Hard particles with $~d\gtrsim 2~\mu{
 m m}$
- Non-Brownian ($\mathrm{Pe} \to \infty$)
- Viscous flow (negligible particle and fluid inertia)

Expectation: universal, Newtonian rheology:

Dimensional analysis $\implies \eta = \eta_f f(\phi) \propto \dot{\gamma}^0$

Reality:

Experimental phenomenology is *capricious*

Shear stress σ

Guy et. al., PRL (2016)

Zarraga et. al., J. Rheol. (2000)

Gamonpilas et. al., J. Rheol. (2016) Brown & Jaeger, Nat. Mater. (2010)

Reality:

Experimental phenomenology is *capricious*

Shear stress σ

Particle-level details are important

In most cases, explanations are bespoke

Is there a generic, underlying physics?

Shear stress σ

Granular dispersion rheology is about making and breaking of *constraints* with stress

Details —>
$$\mathcal{Z}(\sigma)$$

Wyart and Cates theory: constraint-driven version

Borrow ideas from dry granular packings

Reformulated phenomenological WC theory (3-d) **Isostaticity:** Minimum number of contacts per sphere \mathcal{Z} for mechanical stability # force/torque balance equations per particle = # force/torque degrees of freedom per particle

Reformulated phenomenological WC theory (3-d)

Frictionless Frictional

Walkthrough: $\phi_0 < \varphi_1^{(4)}$

Walkthrough: $\phi_0 \ge \varphi_{.I}^{(4)}$

Example: 4 micron PMMA in CXB+decalin

Guy, Hermes and Poon, PRL (2015)

✓ Quantitatively captures experimental phenomenology

Real particles are usually sticky!

(e.g., due to van der Waals interactions)

BUT

<u>Attraction</u> resulting from a central potential $U_{\rm vdW}(r)$ does not constrain rotations

 $\implies \mathcal{Z}$ unaffected

Literature unclear for friction + adhesion. We propose:

WC-like theory

Fraction of adhesive contacts $a(\sigma) = 1 - e^{-(\sigma_A/\sigma)^{\kappa}}$ $\sigma_A = \text{Characteristic adhesive stress}$

Fraction of frictional contacts $f(\sigma) = e^{-(\sigma^*/\sigma)^{\beta}}$

Nature (2008)

Case 2: $\sigma_A \approx \sigma^*$ (various systems)

Predicts peaked flow curves!

Exact form sensitive to σ_A/σ^* and κ/β (and shear history)

<u>Case 3</u>: $\sigma_A/\sigma^* \gg 1$

<u>Case 3</u>: $\sigma_A/\sigma^* \gg 1$ (Cornstarch in sunflower oil + lecithin)

Open questions

σ_A = stress to break adhesive bonds
 e.g., JKR+``pinning" → Bonds break by ``peeling"
 Dominik and Tielens, Phil. Mag. A (1995)

- Z provides a "common language" for tribologists and rheologists how we think about details.
- Hydrodynamics and timescales: implications for \mathcal{Z} $\dot{\gamma}>0$ \Longrightarrow hydrodynamic forces and torques

Standard Reynolds lubrication $\rightarrow \mathcal{Z} = 6$

Thank you for your attention!

Edinburgh team

- J. A. Richards (poster)
- D. Hodgson
- E. Blanco
- W. C. K. Poon

Funding

