Instability of a falling jet of concentrated suspensions

P. Hébraud (IPCMS, Strasbourg)

M. Liard (IPCMS, Strasbourg, Sika, Zürich), J. Sautel (IPCMS, Strasbourg, ENS, Lyon), A. Sato (IPCMS, Strasbourg), D. Lootens (Sika, Zürich)

Outline

- 1 Introduction : shear thickening
 - Shear thickening in extension
 - Arrested state life time
- Falling jet of a suspension : solid-like regime
 - Jet shape
 - Weight loss
 - Transverse waves propagation
- Conclusion

 10^{2}

101

Shear thickening of concentrated suspensions

- d=2 μ m silica particles,
- water pH=7

- Cone-plate
- Controlled shear rate

10²

 $\dot{\gamma}$ (s⁻¹)

0.51 0.505

0.5

0.48

10³

Shear thickening of concentrated suspensions

- d=2 μ m silica particles,
- water pH=7

- Cone-plate
- Controlled shear rate

Life time of the arrested state

diameter: 650 nm

• roughness : $\sqrt{\langle \delta r^2 \rangle} = 6.2 \text{ nm}$

F.lanni et al P.R.E., 2006

- Mustispeckle Diffusing Wave Spectroscopy
- Relaxation of the contrast of the speckles after a stress step

Suspensions of corn starch particles

- $\dot{\epsilon}$ imposed
- Force and filament widths measured

E. E. Bischoff White, M. Chellamuthu, J.P. Rothstein, *Rheol. Acta*, 2010

Observation of the extended filament

M. Roché, H. Kellay, H.A. Stone, *P.R.L.*, 2011

- pulling a column of sample
- heterogeneities: jammed regions linked with liquid bridges

Falling jet of a suspension

How does the suspension flow under its own weight ? If g is sufficient :

- ullet Flow under $g\longrightarrow$ shear-thicken
- Flow stops → Relaxes back to the liquid state

Acquisition rate 500 im/s

Flow regimes

- small $\phi: Re, Fr, We \gg 1$: inertial regime,
- $\phi \longrightarrow \phi_m$: surface effects

Inertial regime

Shape of the jet

Assuming a perfect fluid:

- Bernoulli's theorem
- Laplace pressure

$$\begin{array}{rcl} \displaystyle \frac{r(z)}{r_0} & = & \left[1 + \frac{2}{Fr}\frac{z}{a} + \frac{2}{We}\left(1 - \frac{a}{r(z)}\right)\right]^{-1/4} \\ & = & \left[1 + \frac{2}{Fr}\frac{z}{a}\right]^{-1/4} \end{array}$$

Capillary regime

.

$$r(z) = r_0 + \epsilon e^{\alpha z}$$

- Constant celerity $c = v_{jet}$
- $\bullet \ \ {\rm Decreasing} \ \alpha^{-1}$

$$L \propto \frac{1}{\alpha} = \frac{U}{\sqrt{\Omega_c}} \propto \sqrt{We}$$

At high ϕ , the jet ruptures at longer length.

Jet shape in the "solid-like" regime

Jet instability

 $\begin{array}{l} \mathrm{speed} \! \approx 1/10 \\ \phi = 0.535 \end{array}$

Average jet shape

At the output of the funnel : $\dot{\epsilon} \approx 10^2~s^{-1}$ $1 \gg We, Fr$: inertia irrelevant

- Rapid decrease of the jet radius at the output of the funnel,
- Thinner jet, smaller radius decrease

Weight loss in the "solid like" regime

- the weight of the entire column is measured : tensile stress is transmitted
- well defined weigth scales

Weight loss in the "solid like" regime

 $\langle \delta w \rangle = 0.17~g$ lineic mass : $4.7 \cdot \text{g} \cdot \text{m}^{-1} \longrightarrow \delta \ell = 3.4~\text{cm}$

Identify and follow maxima

Distribution of velocities

 $\phi = 53.25~\%,~\phi = 53.5~\%$ Superposition of up and down travelling waves $c_{max} \approx 0.5 \text{m} \cdot \text{s}^{-1} \text{ whereas } v_{iet} \approx 0.1 m \cdot s^{-1}$

Wave propagation along the rope

Wave propagation along a solid rope

$$\frac{\partial^2 x}{\partial t^2} = \frac{T(x)}{\mu} \frac{\partial^2 x}{\partial z^2}$$

$$c = \sqrt{\frac{T}{\mu}} = \sqrt{Lg} \approx 1 \text{m} \cdot \text{s}^{-1}$$

We observe:

$$A(x,t) = \sum A_i \cos(\omega t \pm kx)$$

Assuming one wave travelling up and one down:

Reflexion coeff : $R \approx 0.5$

Distribution of wavelengths

$$\phi = 53.25 \ \%, \ \phi = 53.5 \ \%$$
 $\lambda_{max} = 20 \ \text{mm}$

Conclusion

Conclusion

At the shear thickening transition under gravity:

- the jet is heterogeneous
- it sustains tensile stress
- it lets solid chunks fall
- becomes radially unstable