BLENDING LIQUID AND GRAINS ACCRETION DYNAMICS ON WET GRANULAR MATERIALS

Alban SAURET Guillaume SAINGIER, Pierre JOP

SVI, CNRS/Saint-Gobain

INDUSTRIAL PROCESSES : GRAINS AND SUSPENSIONS

Building materials: cement, concrete, mortars, plasters

Suspensions of bubbles in yield stress fluids

e.g. L. Ducloué, O. Pitois, J. Goyon, X. Chateau, & G. Ovarlez, J. non-Newton. Fluid Mech. (2015).

Glass and substrates

Glass wool: fibers

A. Sauret, F. Boulogne, E. Dressaire & H.A. Stone, EPJE (2015)

INDUSTRIAL PROCESSES : WET COATING

INTERFACIAL EFFECTS IN SUSPENSIONS

Furbank & Morris, Phys. Fluids (2004)

Bonnoit *et al.*, Phys. Fluids (2012)

Lubbers et al., Phys. Rev. Lett. (2014)

Buchanan *et al.,* Langmuir (2007)

DIP COATING

Presence of particles during coating processes ?

 $U = 7.3 \,\mu \mathrm{m/s}$ $h = 14 \,\mu \mathrm{m}$

 $U = 17 \,\mu \mathrm{m/s}$ $h = 24 \,\mu \mathrm{m}$

 $U = 36 \,\mu \mathrm{m/s}$ $h = 40 \,\mu \mathrm{m}$

LIQUID CURTAIN

LIQUID CURTAIN

Bossa & Villermaux, JFM (2011) Vernay et al., PRL (2015)

duration: 15 ms

 $t = 7 \mathrm{~ms}$

PARTICLE-LADEN LIQUID SHEET

Expansion : captured using the viscosity of the suspension

S. Arora, C. Ligoure, & L. Ramos, Phys. Rev. Fluids (2016)

Role of the interfacial effects in suspension flows: Particles modify thin film dynamics through viscous and local effects

Blending Liquid and Grains

How to prepare a dense suspension or a wet granular media ?

BLENDING LIQUID AND GRAINS

Hydration of plaster

Preparation of mortar

Preparation of adhesive wheels

Wet granulation in powder

How to efficiently blend liquid and grains ?

FROM DRY GRANULAR MATERIALS TO SUSPENSIONS

funicular

Suspension

Saturation rate

Moller & Bonn, EPL (2007) Herminghaus Adv. Phys. (2005) Mitarai & Nori Adv. Phys. (2006)

pendular

capillary

r $F_{cap} = 2\pi\gamma r \cos\theta_{c}$ Willett et al., Langmuir (2000)

Scheel et al., Nat. Mater. (2008)

FROM DRY GRANULAR MATERIALS TO SUSPENSIONS

dry state

funicular

pendular

Suspension

Saturation rate

Moller & Bonn, EPL (2007) Herminghaus Adv. Phys. (2005) Mitarai & Nori Adv. Phys. (2006)

 $F_{cap} = 2\pi\gamma r\cos\theta_c$

Willett et al., Langmuir (2000)

Pakpour et al., Sci. Rep. (2012) Nowak et al., Nat. Phys. (2005)

FROM DRY GRANULAR MATERIALS TO SUSPENSIONS

Cazacliu & Noquet, Cem. Concr. Res. (2009) Betz *et al., Int. J. Pharma*. (2003)

BLENDING LIQUID AND GRAINS

Haddadi et al., PRF (2016)

Wang et al. Powder Tech. (2017)

 $V = 0.6 \mu L$

INTERACTION BETWEEN A GRANULAR FLOW AND A LIQUID

dry granular flow

cohesive wet grains

GRANULAR TOWER

acheco-Vazquez *et* PRE (2012)

GRANULAR TOWER

CAPILLARY IMBIBITION VS VERTICAL ACCRETION

Lucas-Washburn law:
$$h^2(t) \sim \frac{R\gamma\cos\theta}{\eta}t$$

Jurin's height:
$$h_{max} = \frac{2\gamma \cos \theta}{\rho g R}$$

GRANULAR TOWER

Growth dynamics cannot be fitted by the Lucas-Washburn law

GRANULAR TOWER

The growth of the wet aggregate only depends on the particle/liquid/air interface where the grains are impacting

LIQUID DISTRIBUTION

X-Ray tomography: visualization of liquid phase (water+iode), air and beads

Viscous regime: $\tau_{visc} \gg \tau_{capt}$

Aggregate growth is limited by the fluid flow in the granular packing

$$l^{v}(t) = \sqrt{\frac{2 \, k \, \Delta p}{\eta} \, t}$$

Capture regime: $\tau_{visc} \ll \tau_{capt}$

Growth limited by the fraction of dry grains trapped by the wet aggregate

$$\ell^c(t) = \frac{Q_g}{\rho_s \phi S} \, \mathcal{P}_{capt} \, t$$

INITIAL VELOCITY

Evolution of \mathcal{P}_{capt} with Δh : transition between the 2 regimes

Initial growth velocity: $v(\Delta h, t = 0) = v_0 \exp\left(-\frac{\Delta h}{h^*}\right) = \frac{Q_g}{\rho_s \phi S} \mathcal{P}_{capt}(\Delta h)$ Capture probability: $\mathcal{P}_{capt}(\Delta h) = \mathcal{P}_0 \exp\left(-\frac{\Delta h}{h^*}\right)$

CAPTURE MECHANISM

Accretion efficiency assumed to be captured by the liquid availability at the interfaces

CAPTURE MECHANISM

Accretion efficiency assumed to be captured by the liquid availability at the interfaces

TRANSITION BETWEEN REGIMES

Viscous regime: $l^v(t) = \sqrt{\frac{2 \, k \, \Delta p}{\eta} \, t}$

Capture regime:

$$\ell^c(t) = \frac{Q_g}{\rho_s \phi S} \, \mathcal{P}_{capt} \, t$$

Transition: $u^v = u^c$

VERTICAL GROWTH: GRANULAR TOWERS

$$\mathcal{P}_{capt}(\Delta h) = \mathcal{P}_0 \exp\left(-\frac{\Delta h}{h^\star}\right)$$

VERTICAL GROWTH: GRANULAR TOWERS

INTERACTION BETWEEN A GRANULAR FLOW AND A LIQUID

dry granular flow

cohesive wet grains

DENSE FLOW

t = 0 min

t = 15 min

t = 2 h

DENSE FLOW

$$h(t) = h^* \ln\left(1 + \frac{V_0}{h^*}t\right)$$

t = 0 min

t = 15 min

t = 2 h

DENSE FLOW

t = 0 min

t = 15 min

t = 2 h

SUMMARY

- Accretion: local phenomenon associated to the curvature of the meniscus

- Two regimes :

viscous: limited by the fluid flow in the porous media capture: limited by trapping efficiency

EDITORS' SUGGESTION

Accretion Dynamics on Wet Granular Materials

The probability that a jet of dry grains will stick to a wet granular pile depends on the amount of liquid available at the pile's surface.

Guillaume Saingier, Alban Sauret, and Pierre Jop Phys. Rev. Lett. **118**, 208001 (2017)

SUMMARY

- Accretion: local phenomenon associated to the curvature of the meniscus

- Two regimes :

viscous: limited by the fluid flow in the porous media capture: limited by trapping efficiency

Many open questions : three-phase systems

- How does the morphology of the grains/liquid mixture couple with its rheology?
- How does the reorganization of the capillary bridges affect the rheology ? Granular
- Liquid/Liquid/Particles mixtures?

Koos & Willenbacher, Science (2011) Koos, Curr. Opin. Colloid Interface Sci. (2014)

material

Pendular state

Spherical Bijel agglomeration

Pickering emulsion

Capillary state

BLENDING LIQUID AND GRAINS ACCRETION DYNAMICS ON WET GRANULAR MATERIALS

G. Saingier, P. Jop P. Raux, A. Troger; M. Gomez, B. Colnet, M. Bazant, H. A. Stone, E. Dressaire

