Yielding and fluidization of soft solids

Emanuela Del Gado

Department of Physics and I(SM) 2 Georgetown University

GEORGETOWン \mathcal{C} UNIVERSITY

Collaborators and funding

Vishwas V. Vasisht

UNIVERSITÉ Grenoble
Elpes

Gabrielle Roberts

Y

GEORGETOWJCUNIVERSITY

Making jammed soft solids flow

Numerical simulations

- ~10 ${ }^{5}$ soft spheres
- 10\% size polydispersity
- ~ 70-80\% volume fraction
a) periodic boundary conditions
(Lees-Edwards)

$$
\begin{array}{r}
m \frac{d^{2} \vec{r}_{i}}{d t^{2}}=-\zeta\left(\frac{d \vec{r}_{i}}{d t}-\dot{\gamma} z_{i} \vec{e}_{x}\right)-\nabla_{\vec{r}_{i}} U \\
\tau_{0}=\sqrt{m a^{2} / \epsilon}
\end{array}
$$

b) Wall based simulations:

- Roughened walls, deformation applied by moving one of them
- Dissipative Particle Dynamics

$$
\begin{aligned}
& \vec{F}_{i}^{D P D}(t)=\vec{F}_{i}^{i n t}(t)+\sum_{j(\neq i)} F_{i j}^{D} \\
& F_{i j}^{D}=-\zeta \omega\left(r_{i j}\right)\left(\hat{r}_{i j} \cdot v_{i j}\right) \hat{r}_{i j}
\end{aligned}
$$

The Con-rheo in Blair's Lab

- Oil/water-glycerol emulsion (+SDS)
- Droplet size ~6.0 $\mu \mathrm{m}$
- 15\% polydispersity
- 70\% volume fraction
- Parallel plate rheometer (gap $100 \mu m$)
- Roughened bottom plate

Droplet rearrangement analysis

- Time-resolved fluorescence confocal images acquired under shear (continuous rotation at a fixed $\dot{\gamma}$)
- 3D images stacks $\left(\dot{\gamma} \leq 10^{-2} s^{-1}\right)$; time-resolved spatial crosscorrelations between pairs of 2D images at high rate $\left(\dot{\gamma}>10^{-2} s^{-1}\right)$

$$
\left.v(x, y)\right|_{z} \longrightarrow \begin{aligned}
& \dot{\gamma}_{l}=d v_{x} / d z \\
& \text { local shear rate }
\end{aligned}
$$

local fluctuations in the shear frame
$\Delta \gamma=\dot{\gamma}_{l} \Delta t \quad$ accumulated strain

$$
\left\langle\Delta r^{2}\right\rangle=\left\langle\Delta x^{2}+\Delta y^{2}\right\rangle
$$

Flow curve and non-affine motion

$$
\sigma \simeq \sigma_{Y}+K \dot{\gamma}^{0.5}
$$

- Shear-rate dependence of elementary flow events

Flow curve and non-affine motion

$$
\sigma \simeq \sigma_{Y}+K \dot{\gamma}^{0.6}
$$

simulations

$$
\begin{aligned}
& U^{i}=U_{x}^{i} \hat{x}+U_{y}^{i} \hat{y} \\
& \delta U^{i}=\left|U^{i}-\langle U\rangle\right|
\end{aligned}
$$

V.V. Vasishk, S. Dulla, EDG and D.L. Blair, PRL 2018

A complex fluidization - flow inhomogeneities

Fluidization of a 1% w/w carbopol microgel sheared at $0.5 \mathrm{~s}^{-1}$ for a gap width of 1 mm

Part of the material is stuck, only part of it flows. No apparent difference in density or in structure between the two parts.

Fielding, Rep. Prog. Phys. 2014; Bonn et al Rev. Mod. Phys. 2017; Divoux et al, Anh. Rev. Fl. Mech. 2016; Shrivastav et al. JOR 2016; Olmsted, Rheol. Acta 2008; Coussot \& Ovarlez EPJE 2010; Adams \& Olmsted PRL 2009; Manning el al. PRE 2009; Divoux el al. Sofe Matter 2012

Reconstructing the velocity profile

By the time the stress starts decaying, part of the material forms a non-flowing band.

Wall geometry enhances localization, which tends to happen next to the fixed wall

Evolution of the flowing band

- Small strain response is elastic, but the width of the flowing band depends on the shear rate (see experiments and theory).
- Complete fluidization (onset of homogeneous flow) signaled by the evolution of normal stresses.

See Adams \& Olmsled PRL 2009 Divoux el al. PRL 2010 Fielding, RPP 2014

Non-trivial dependence of the fluidization time

- Small systems: the fluidization time simply set by the imposed shear rate.
- Large systems: microscopic dynamical processes not just slaved to the shear rate.
- Spatial correlations over large distances that increase with the sample size.

See Divoux el al. PRL 2010

A structural signature

- Time evolution of icosahedral parkicle packing is correlated to the shear banding.

Prevalence of icosahedral local order in supercooled liquids and glasses is known

Steinhardk, Nelson \& Ronchelli PRL 1981; Pinney et al. JCP 2016; Royall \& Williams Phys. Rep. 2015

A structural signature

Steinhardk, Nelson \& Roncherti PRL 1981; Pinney el al. JCP
2016; Royall $\&$ Williams Phys. PRL 1981; Pinney et al. JCP
2016; Royall $\&$ Williams Phys. Rep. 201s

Time evolution of icosahedral parkicle packing is correlated to the shear banding.

Prevalence of icosahedral local order in supercooled liquids and glasses is known

A micromechanical picture

Overconstrained domains allow for local compression or tension with no net force under load = self-stress states

Icosahedrally packed domains signal overcoordinated (and hence overconstrained) regions, where stresses kend to accumulate under load, e akin to self-stress states

Testing the hypothesis

- Changing the cooling rate in preparing the initially solid samples.
- Deeper minima = higher percentage of icosahedrally packed domains; higher mechanical strength; higher overshoot; stronger tendency to dilate

Effect on fluidization time

- The fluidization exponent α increases with the increasing icosahedral packing percentage in the initially solid sample.
- Redistribution of the mechanical constraints under shear introduce a characteristic time that interferes with the imposed shear rate and strongly affects the timescale over which fluidization occurs.

Summary

- Over-constrained domains favor stress storage (and a stress overshoot) in dense soft solids under shear, by concentrating stresses in self-stress states that are mainly compressive and that self-organize into a non-flowing band in the material.

A general mechanism for the emergence and persistence of flow inhomogeneities in dense soft solids
V.V. Vasisht, G. Roberts and EDG, arXiv:1709.08717
V.V. Vasisht, S. Dutta, EDG and D.L. Blair, PRL 2018

