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VISCOSITY DIVERGENCE, JAMMING

[Boyer, Guazzelli & Pouliquen, PRL 2011]
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e Ultra-high performance concretes

e | ower water to cement ratio, very thick

e Use of "superplasticizers", i.e.
composition tuning



MODEL GRANULAR SUSPENSIONS SHOW "SIMPLE" RHEOLOGY IN STEADY STAIE.



EPTITOME OF UNSTEADY FLOW: SHEAR REVERSAL

. . [Gadala-Maria & Acrivos, JOR 1980]
Shear up to steady-state in a given direction,

and suddenly apply opposite shear
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FRAGILITY OF DENSE SUSPENSIONS

[Cates, Wittmer, Bouchaud & Claudin, PRL 1998]

Mechanical response depends strongly on the
compatibility of the instantly applied load with respect
to the load history.



DEM -+ LUBRICATION SIMULATIONS

[Seto et al, PRL2013]
[Mari et al, JOR 2014]
[Mari et al, PRE 2015]

Spherical hard particles in a Newtonian fluid in the Stokes regime,
short-range hydro (lubrication) + contacts

Eq. of motion (force balance) Simple shear through Lees-
0= Fu(U) + Fc Edwards b.c.
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PROTOCOL

1. Shear at constant stress in the x direction
(with gradient along ), up to steady-state
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2.Shear in a new direction making an angle 6 with x
(keeping the gradient along y)
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SHEAR RATE RESPONSE

6 = 180 is shear reversal

¢ = 0.54




SHEAR RATE RESPONSE

6 = 180 is shear reversal
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SHEAR RATE MAPS
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SHEAR RATE GAIN

Maximum rate projected on the x direction
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Can we use it and flow at lower viscosity
for more than a transient time?



VISCOSITY REDUCTION: NEW IDEA, MECHANICAL DRIVING

Primary flows with oscillatory cross shear

Speeding sedimentation of a large intruder
[Blanc, Lemaire & Peters, JFM, 2014]
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"Unthickening" of cornstarch

[Lin et al, PNAS, 2016]
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Viscosity (Pa.s)

Viscosity drop generic?
Dependent on thickening? Works only for frictional systems?
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SIMULATIONS

Rate-independent suspension of particles with only lubrication and
frictional contacts

Viscosity:
nN=ao a:y/ Vi






VISCOSITY REDUCTION WITHOUT THICKENING
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VISCOSITY REDUCTION
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Works for frictional suspensions!



IS ANY OSCILLATION HELPING?

Sy = 7+ WPy cos(wit 4 0
¥,y = wycos(wt)
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HOWEVER... DISSIPATION

Dissipation per unit strain W =

Yoy ~ W,y ~ w,so W, ~ w.
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Can we do better?



ORIGIN OF THE VISCOSITY DROP

Contact drop, that is, room making
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Room-making is slow



"ECHO" EXPERIMENT, RANDOM ORGANIZATION

Self-organization, absorbing phase transition

Pine et al. Nature 2005
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WHERE IS THE ABSORBING PHASE TRANSITION?

For large v =~ 1, phase transition at ¢. ~ 0.3
Butinourcasey ~ 1% < 1!

[Corté et al, PRL, 2009] Our system, oscillatory shear only, v = 2%:
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VISCOSITY REDUCTION AND RANDOM ORGANIZATION

Dependence on frequency Dependence on amplitude
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OCS is using random organization to improve flowability



Decouple s
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AN ALTERNATIVE PROTOCOL

elf-organization from primary shear

A self-organisation

R

RANEET

forward shear

Parameters:

Strain in the primary direction I
Amplitude of the oscillations -y
Number of oscillations per period
[Proportion of time in oscillations o]



ALTERNATING RANDOM ORGANIZATION AND SHEAR

Fory = 2% and ¢ = 0.56:
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Few oscillations are enough



ALTERNATING VS CONCURRENT OCS

Viscosity obtained for alternating OCS withn = 1 and v = 1% compared to high w
viscosity for concurrent OSP with same .
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BACK TO DISSIPATION

Depends on the time proportion spent in self-organization !

Fory = 1% and ¢ = 0.56:
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BACK TO DISSIPATION
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CONCLUSION

Powerful tool for viscosity/dissipation reduction without
composition tuning

Generic to granular suspensions

Use of a nonequilibrium phase transition in a rheological context
Adaptable for industrial devices?
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