SHAKEN AND STIRRED: RANDOM ORGANIZATION, VISCOSITY AND DISSIPATION IN GRANULAR SUSPENSIONS

Romain Mari

Laboratoire Interdisciplinaire de Physique, CNRS-Université Grenoble-Alpes

Dept. of Chemical Engineering and Biotechnology, Cambridge

VISCOSITY DIVERGENCE, JAMMING

[Boyer, Guazzelli & Pouliquen, PRL 2011]

MUCEM, Marseille

- Ultra-high performance concretes
- Lower water to cement ratio, very thick
- Use of "superplasticizers", i.e. composition tuning

EPTITOME OF UNSTEADY FLOW: SHEAR REVERSAL

Shear up to steady-state in a given direction, and suddenly apply opposite shear

"Memory" of past applied load

FRAGILITY OF DENSE SUSPENSIONS

[Cates, Wittmer, Bouchaud & Claudin, PRL 1998]

Mechanical response depends strongly on the compatibility of the instantly applied load with respect to the load history.

DEM + LUBRICATION SIMULATIONS

[Seto et al, PRL 2013] [Mari et al, JOR 2014] [Mari et al, PRE 2015]

Spherical hard particles in a Newtonian fluid in the Stokes regime, short-range hydro (lubrication) + contacts

Eq. of motion (force balance) $0 = F_{
m H}(U) + F_{
m C}$

$$|F_{
m C}^{
m t}|<\mu|F_{
m C}^{
m n}|$$

Simple shear through Lees-Edwards b.c.

PROTOCOL

1. Shear at constant stress in the x direction (with gradient along y), up to steady-state

2. Shear in a new direction making an angle θ with x (keeping the gradient along y)

SHEAR RATE RESPONSE

heta=180 is shear reversal

SHEAR RATE RESPONSE

 $\theta=180$ is shear reversal

SHEAR RATE MAPS

SHEAR RATE GAIN

Maximum rate projected on the x direction

Can we use it and flow at lower viscosity for more than a transient time?

VISCOSITY REDUCTION: NEW IDEA, MECHANICAL DRIVING

Primary flows with oscillatory cross shear

Speeding sedimentation of a large intruder [Blanc, Lemaire & Peters, JFM, 2014]

"Unthickening" of cornstarch [Lin et al, PNAS, 2016]

Viscosity drop generic?
Dependent on thickening? Works only for frictional systems?

SIMULATIONS

Rate-independent suspension of particles with only lubrication and frictional contacts

Viscosity:
$$\eta = \sigma_{xy}/\dot{\gamma}_{xy}$$

$$\dot{\gamma}_{xy} = \dot{\gamma}$$
 $\dot{\gamma}_{zy} = \dot{\gamma}_{\perp} \cos(\omega t)$

VISCOSITY REDUCTION WITHOUT THICKENING

When $\gamma=1\%-5\%$, strong viscosity drop.

Dependence on γ

VISCOSITY REDUCTION

Works for frictional suspensions!

IS ANY OSCILLATION HELPING?

$$egin{align} \dot{\gamma}_{xy} &= \dot{\gamma} + \omega^{ ext{pri}} \gamma \cos(\omega^{ ext{pri}} t + \delta) \ \dot{\gamma}_{zy} &= \omega \gamma \cos(\omega t) \ \end{array}$$

Viscosity map

HOWEVER... DISSIPATION

Dissipation per unit strain
$$W=rac{\int \Sigma:\dot{\Gamma}\;\mathrm{d}t}{\int\dot{\gamma}_{xy}\mathrm{d}t}$$
 $\dot{\gamma}_{zy}\sim\omega,\Sigma_{zy}\sim\omega$, so $W_{zy}\sim\omega^2$.

Can we do better?

ORIGIN OF THE VISCOSITY DROP

Contact drop, that is, room making

Room-making is slow

"ECHO" EXPERIMENT, RANDOM ORGANIZATION

Self-organization, absorbing phase transition

WHERE IS THE ABSORBING PHASE TRANSITION?

For large $\gamma pprox 1$, phase transition at $\phi_{
m c} pprox 0.3$

But in our case $\gamma \approx 1\% \ll 1!$

[Corté et al, PRL, 2009]

Our system, oscillatory shear only, $\gamma=2\%$:

Transition very close to jamming

VISCOSITY REDUCTION AND RANDOM ORGANIZATION

Dependence on frequency

Dependence on amplitude

OCS is using random organization to improve flowability

AN ALTERNATIVE PROTOCOL

Decouple self-organization from primary shear

Parameters:

- ullet Strain in the primary direction Γ
- Amplitude of the oscillations γ
- Number of oscillations per period n
- [Proportion of time in oscillations α]

ALTERNATING RANDOM ORGANIZATION AND SHEAR

Few oscillations are enough

ALTERNATING VS CONCURRENT OCS

Viscosity obtained for alternating OCS with n=1 and $\gamma=1\%$ compared to high ω viscosity for concurrent OSP with same γ .

BACK TO DISSIPATION

Depends on the time proportion spent in self-organization α !

For
$$\gamma=1\%$$
 and $\phi=0.56$:

BACK TO DISSIPATION

CONCLUSION

- Powerful tool for viscosity/dissipation reduction without composition tuning
- Generic to granular suspensions
- Use of a nonequilibrium phase transition in a rheological context
- Adaptable for industrial devices?

