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Jammed Packings
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Jammed Packings: Contact Points
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Jammed Packings: Grain Polygons and Void Polygons
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Figure: (Left) Distribution of the total area covered by the grain polygons AG at
EG = 10−15. Using finite-size scaling fits we find is A∗

G = 0.446(1) as the number
of grains NG →∞ and EG → 0+. (Right) Behaviour of the grain area
distributions for different energies for packings of NG = 512 disks.
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Scaling with Energy
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Figure: Scaling of the excess grain area ∆AG = AG − A∗
G with total energy per

particle EG . We find that the excess grain area scales as a power of the total
energy in the system with exponent βE = 0.28(2).
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Scaling with Coordination
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Figure: Scaling of ∆AG with excess coordination in the system ∆Z . We find that
the excess grain area scales as a power of ∆Z with exponent βZ = 1.00(1).
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Stress Transmission in Granular Packings

Figure: Inhomogeneous stress transmission in granular piles made with (a) disks
and (b) elliptic cylinders. Ref: I. Zuriguel, T. Mullin, Proc. Royal Society A 464, 2089 (2008).
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Stress Transmission in Granular Packings

Depending on the underlying disorder, stress transmission can be
either wave-like or diffusive. Ref: R. P. Behringer, “Forces in Static Packings.”, Handbook of

Granular Materials (CRC Press, NY, 2016).

Figure: Mean response of a 50 g point force for (a) a uniform hexagonal packing
of disks, (b) a bimodal packing of disks (c) pentagons. Ref: J. Geng, D. Howell, E. Longhi, R. P.

Behringer, G. Reydellet, L. Vanel, E. Clément, and S. Luding, Phys. Rev. Lett. 87, 035506 (2001).
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Models of Stress Transmission: The q-model
C. H. Liu, S. R. Nagel, D. A. Schecter, S. N. Coppersmith, S. Majumdar, and T. A. Witten, Science 269, 513 (1995).

Only the vertical components of the forces are considered.

A fraction qi ,j of the total weight w(i ,D) supported by the ith site
in layer D, is transmitted to particle j in layer D + 1.

Figure: Schematic diagram showing the paths of weight support for a
two-dimensional system in the q0,1 limit where each site transmits its weight to
exactly one neighbor below. The numbers at each site are the values of w(i ,D).
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Models of Stress Transmission: The q-model
C. H. Liu, S. R. Nagel, D. A. Schecter, S. N. Coppersmith, S. Majumdar, and T. A. Witten, Science 269, 513 (1995).

Force balance yields a stochastic equation

w(j ,D + 1) = 1 +
∑
i

qi ,j(D)w(i ,D).

Steady state produces an exponential distribution of forces.

Figure: Linear-linear and log-log plots of the normalized weight distribution
function PD(v) vs v = w/D.
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Grains and Voids

The two dimensional plane can be decomposed into regions belonging
to grains and voids. These two graphs are dual to each other.
Ref: K. Ramola and B. Chakraborty, J. Stat. Mech. 114002 (2016).

Figure: (Left) A jammed packing of bidispersed frictionless disks with periodic
boundary conditions. (Right) The same configuration with the associated grain
polygons (white) and void polygons (blue).
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Stress Tensor and Continuum Descriptions

The stress tensor for a given packing is defined as

σ̂ =
1

V

∑
g

σ̂g ,

σ̂g =
∑
c

~rg ,c ⊗ ~fg ,c .

where ~rg,c = ~rc − ~rg , with ~rc being the position of the contact c, and ~rg being the position of the grain g .

The continuum description is

∇ · σ̂ = 0.

In the presence of external forces we have

∇ · σ̂ = −~fext.
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Local Constraints in Granular Packings

The force balance constraint for a given packing is∑
c

~fg ,c = 0,

where ~fg,c represents the force acting on the grain g , through the contact c.

The torque balance constraint is∑
c

~rg ,c × ~fg ,c = 0.

The real space constraints can be parametrized as loop constraints∑
~rg ,g ′ = 0,

where ~rg,g′ = ~rg′ − ~rg is the inter-particle distance vector between two adjacent grains g and g′.
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Height Fields

Mechanical equilibrium (
∑

c
~fg ,c = 0) leads to a gauge

representation of the forces.

The forces are given by the difference of height variables

~fg ,c = ~hg ,v − ~hg ,v ′ .

~hv4

~fg0,c2

~fg0,c3

~hv2~fg0,c1

g4

g2

g3

g1

~hv1 ~hv3

~eg0,v2

~eg0,v1 ~eg0,v3g0
~fg0,c4 ~eg0,v4

Figure: The height fields {~h} are associated with the void polygons (shaded
light blue). The forces are represented by (bidirectional) arrows.

Kabir Ramola Stress transmission and response in granular assemblies 15 / 1



Uniqueness of Heights

Force balance ensures the uniqueness of heights.

~hv4

~fg0,c2

~fg0,c3

~hv2~fg0,c1

g4

g2

g3

g1

~hv3g0
~fg0,c4

~hv1

For grain g0 we have

~fg0,c1 = ~hv1 − ~hv2 ,

~fg0,c2 = ~hv2 − ~hv3 ,

~fg0,c3 = ~hv3 − ~hv4 ,

~fg0,c4︸︷︷︸
0

= ~hv4 − ~hv1︸ ︷︷ ︸
0

.
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Generalization to Body Forces

In the presence of body forces we have
∑

c
~fg ,c = −~f bodyg .

We introduce auxiliary fields on the grains {~φg}.

The forces are given by the difference of heights and {~φ}.
~fg ,c = ~hv ′ − ~hv + ~φg ′ − ~φg .

~hv3

~fg0,c2

~fg0,c3

~fg0,c1

~hv4

~hv1 ~fbody
g0~φg0~fg0,c4

~φg4
~φg3

~hv2
~φg1

~φg2

Kabir Ramola Stress transmission and response in granular assemblies 17 / 1



Generalization to Body Forces

~hv3

~fg0,c2

~fg0,c3

~fg0,c1

~hv4

~hv1 ~fbody
g0~φg0~fg0,c4

~φg4
~φg3

~hv2
~φg1

~φg2

For grain g0 we have

~fg0,c1 = ~hv1 − ~hv2 + ~φg1 − ~φg0 ,

~fg0,c2 = ~hv2 − ~hv3 + ~φg2 − ~φg0 ,

~fg0,c3 = ~hv3 − ~hv4 + ~φg3 − ~φg0 ,

~fg0,c4︸︷︷︸
−~f bodyg0

= ~hv4 − ~hv1︸ ︷︷ ︸
0

+ ~φg4 − ~φg0︸ ︷︷ ︸
�2~φg0

.

This is simply the network laplacian defined as

�2 ~φg0 = ~φg1 + ~φg2 + ~φg3 + ~φg4 − 4~φg0 .
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Generalization to Body Forces (cont.)

This is valid for every grain.

We can represent this in vectorial notation as the basic equation

�2|~φ〉 = −|~f body〉.

We can invert this equation to obtain the auxilliary fields {~φg}.

Given a set of body forces {~f bodyg } and the contact network, the

solution {~φg} is unique.
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Properties of the Network Laplacian

The network Laplacian is a NG × NG real symmetric matrix.

�2 has the eigenfunction expansion

�2 =

NG∑
i=1

λi |λi 〉〈λi |.

�2 has one zero eigenvalue, with eigenvector

λ1 = 0, |λ1〉 = (111...1).

The rest of the eigenvalues are all negative.
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Inverting the Body Forces

We therefore have(∑
i>1

1

λi
|λi 〉〈λi |

)
︸ ︷︷ ︸

(�2)−1

�2 = I− |λ1〉〈λ1|.

Using this we have the inversion

−(�2)−1|~f body 〉 = |~φ〉 − |λ1〉〈λ1|~φ〉

= |~φ− 1

N

N∑
i=1

~φ 〉.
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Response to a Body Force: Frictionless Systems

Figure: The response of a system of soft disks to applied body forces (represented
by red arrows). The inhomogeneous nature of the stress response is clearly
illustrated.
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Response to a Body Force: Frictional Systems

Figure: The response of a sheared system of soft frictional disks to applied body
forces (represented by red arrows) with Lees-Edwards boundary conditions at
global shear γ = 0.43. The response provides characteristic signatures of the
emergence of “force chains” along the compressive direction.
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Response to a Body Force

Figure: The response of a system of soft grains to applied body forces. The black
arrows represent the changes in the contact force vectors in response to the
imposed body forces (red arrows).
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Response to a Body Force: Eigenvalue Expansion

Figure: The stress response of the system (left) using only the largest negative
eigenvector of the Laplacian matrix, illustrating a localized response, and (right)
using only the smallest negative eigenvector of the Laplacian matrix, illustrating a
delocalized response.
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Density of States
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Figure: The density of states ρ(λ) of the eigenvalues λ of the Laplacian matrix,
for NG = 1024 grains at different global energies (EG ). The data is averaged over
5000 configurations.
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Measures of Localization: Inverse Participation Ratio

The eigenvalues of the Laplacian λi , i = 1, ...,NG and corresponding
normalized eigenvectors λ ≡ {e1,λ, e1,λ, ..., eNG ,λ}.

The Inverse Participation Ratio (IPR) corresponding to the
eigenvector is defined as

q−1(λ) =
∑
j

e4
j ,λ

For a localized mode the IPR would be of O(1)

For a delocalized mode this quantity would be of O(1/NG ).
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Measures of Localization: Inverse Participation Ratio
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Figure: The inverse participation ratio (IPR) of the Laplacian eigenvectors, for
NG = 1024 grains at different global energies (EG ). The low modes are
delocalized whereas a large part of the spectrum is localized. The data is
averaged over 5000 configurations.
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Stability of Networks

Although force balance is satisfied at the grain level, other constraints
such as the Coulomb constraint (|f |T ≤ µ|f |N) and torque
balance would constrain the solutions.

The network is stable to perturbations as long as all the local
constraints are respected.

Once the solutions fall outside these bounds, the network must
necessarily rearrange.

One can always find a torque balanced solution as long as
perturbation is small enough.

This construction therefore accurately describes systems in the
infinitely rigid limit.
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Thank You.
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