A Novel Driven-Dissipative Quantum Many-Body System

Peter Zoller

In collaboration with:

H Pichler → ITAMP

T Ramos → Madrid

B Vermersch

P Hauke

UNIVERSITY OF INNSBRUCK

Kai Stannigel Andrew Daley (Strathclyde)

A Novel Driven-Dissipative Quantum Many-Body System

'Chiral' Interactions

- interactions mediated by photons
 - quantum optics we know

left - right symmetric

√ dipole-dipole interaction

$$H \sim \sigma_1^- \sigma_2^+ + \sigma_1^+ \sigma_2^-$$

by integrating out photons

- chiral quantum optics

broken left - right symmetry

✓ unidirectional interaction

$$H \sim \sigma_1^- \sigma_2^+$$

Theory: 'Cascaded Master equation' = open quantum system

chiral coupling between light and quantum emitters

Nanophotonic devices: chirality appears naturally ...

atoms & nanofibers

atoms & CQED

7

quantum dots & photonic nanostructures

NANOPHOTONICS

Chiral nanophotonic waveguide interface based on spin-orbit interaction of light

Jan Petersen, Jürgen Volz,* Arno Rauschenbeutel*

- R. Mitsch, A Rauschenbeutel et al., Nature Communications (2015)
- I. Söllner, P. Lodahl et al., Nature Nanotechnology 10, 775–778 (2015)

chirality natural / generic feature of photonic nanostructures

→ Many-Body Quantum Physics

Theory

- K. Stannigel, P. Rabl, and PZ, NJP 2012
- T. Ramos, H. Pichler, A.J. Daley, and PZ, PRL 2014
- H. Pichler, T. Ramos, A.J. Daley, PZ, PRA, 2015
- T. Ramos, B. Vermersch, P. Hauke, H. Pichler, and PZ, PRA 2016
- B. Vermersch, T. Ramos, P. Hauke, and PZ, PRA 2016

left-moving photon

right-moving photon

✓ 'chiral' atom-light interface: broken left-right symmetry $\gamma_L \neq \gamma_R$

'chirality' ~ open quantum system

'Chiral' Photon-Mediated Interactions

√ 'chiral' interactions

broken left-right symmetry

atoms only talk to atoms on the right

Quantum Optical Master Equation

- We integrate the photons out as 'quantum reservoir' in Born-Markov approximation
- Master equation for reduced dynamics: density operator of atoms

$$\dot{\rho} = -\frac{i}{\hbar} \left[H_{\text{sys}}, \rho \right] + \mathcal{L}\rho$$

1. 'Bidirectional' Master Equation

Master equation: symmetric

"Dicke" master equation for 1D: D E Chang et al 2012 New J. Phys. 14 063003

2.'Cascaded' Master Equation

H Carmichael CW Gardiner

open boundaries

Master equation: unidirectional

$$\dot{\rho} = \mathcal{L}\rho \equiv -i(H_{\rm eff}\rho - \rho H_{\rm eff}^{\dagger}) + \sigma\rho\sigma^{\dagger}$$

Lindblad form

non-Hermitian effective Hamiltonian

$$H_{\text{eff}} = H_1 + H_2 - i\frac{\gamma}{2} \left(\sigma_1^+ \sigma_1^- + \sigma_2^+ \sigma_2^- + 2\sigma_2^+ \sigma_1^- \right)$$

quantum jump operator: collective

$$\sigma = \sigma_1^- + \sigma_2^-$$

C.W. Gardiner, PRL 1993; H. Carmichael, PRL 1993

• general casepolitatoms, to hattains does not matter H. Pichler et al., PRA 2015

Our Model System: 'Chiral' Many-Body Quantum Optics

- √ 'chiral' photon-mediated interactions
- √ laser driving
- √open quantum system

Driven-dissipative quantum many-body system

Markovian Quantum Network Theory

Many body Quantum Optics

Dynamics: Master equation

$$\dot{\rho}(t) = -\frac{i}{\hbar}[H_{\rm sys}, \rho(t)] + \mathcal{L}\rho(t)$$

validity ...

· Steady state:

$$\rho(t) \xrightarrow{t \to \infty} \rho_{ss}$$

Markovian Quantum Network Theory

Many body Quantum Optics

Dynamics: Master equation

$$\dot{\rho}(t) = -\frac{i}{\hbar}[H_{\rm sys}, \rho(t)] + \mathcal{L}\rho(t)$$

validity ...

Steady state:

$$\rho(t) \xrightarrow{t \to \infty} \rho_{ss} = |\Psi\rangle\langle\Psi|$$

pure & (interesting) entangled state (dark state of dissipative dynamics)

Dynamics of spins coupled to a chiral waveguide

Special case:

- Distance commensurate with photon wavelength
 - $kd = 2\pi \mathbb{Z}$

 Equal Rabi frequencies and staggered detunings

$$\Omega_i = \Omega$$

$$\delta_i = -\delta_{i+1}$$

Two-Level Atoms with 'Chiral' Waveguide Coupling

- Unique, pure steady state: $\rho(t) \xrightarrow{t \to \infty} |\Psi\rangle\langle\Psi|$.
- Quantum Dimers

$$|\Psi\rangle = \bigotimes_{i=1}^{N} |D\rangle_{2i-1,2i}$$

product of pure quantum spin-dimers

$$|D\rangle = \frac{1}{\sqrt{1+|\alpha|^2}} \left[|gg\rangle + \frac{\alpha}{\sqrt{2}} \left(|ge\rangle - |eg\rangle \right) \right]$$
 singlet / EPR

$$\alpha = \frac{\sqrt{2\Omega}}{\delta - i(\gamma_R - \gamma_L)/2}$$
 singlet fraction

Note: only for N even

Entanglement by Dissipation

 $\gamma_L = 0$

• Iterative solution from left to right:

destructive quantum interference

N spins? Consider cascaded case first

 $\gamma_L = 0$

Iterative solution from left to right:

 $\gamma_L = 0$

• Iterative solution from left to right:

quantum interference: no light

 $\gamma_L = 0$

• Iterative solution from left to right:

 $\gamma_L = 0$

• Iterative solution from left to right:

constant "purification speed"

$$\gamma_L/\gamma_R = 0$$
$$\Omega/\gamma_R = 0.5$$

N odd: cascaded

 $\gamma_L = 0$

• Iterative solution from left to right:

Last spin cannot pair up, but still dimers are formed

N even: Chiral waveguide

 $\gamma_L \neq \gamma_R$

System purifies "as a whole"

$$\gamma_L/\gamma_R = 0.4$$
$$\Omega/\gamma_R = 0.5$$

$$\Omega/\gamma_R = 0.5$$

N odd: chiral waveguide

 $\gamma_L \neq \gamma_R$

• Odd number of spins?

Any unpaired spin destroyed the formed dimers: No dark state!

$$\gamma_L/\gamma_R = 0.4$$
$$\Omega/\gamma_R = 0.5$$

Dynamics of TLS coupled to a chiral waveguide

State of many-body spin system cools / purifies to a pure state of spin dimers, tetramers, hexamers, ...

Other realizations ... and more insight?

'Chiral' Couplings & 'Chiral' Networks with ...

- "photonic" wave-guides
- "phononic"
- spin waves [quantum spintronics]
- theory beyond Born-Markov using tDMRG techniques

'Chiral' Quantum Optics with Spin Waveguides

spin waveguide

T. Ramos, B. Vermersch, P. Hauke, H. Pichler, and PZ, PRA 2016

T. Ramos, B. Vermersch, P. Hauke, and PZ, PRA 2016

'Chiral' Couplings with Spin Chains

spin waveguide

$$\varphi \approx \pi/4$$
 Strong Chirality = synthetic gauge field

'Chiral' exponential decay into the spin waveguide

Dimer formation: system + reservoir dynamics

Dimer formation: system + reservoir dynamics

tDMRG + quantum trajectories [beyond Born-Markov]

'Wiring Up' Quantum Modules: 'Chiral' Quantum Circuits with Photons & Spins

'Wiring Up' Quantum Modules: 'Chiral' Quantum Circuits with Photons & Spins

Photonic Circuits: Quantum Feedback with Delays

Model 1: two driven atoms with a delay line

Model 2: driven atom in front of mirror = quantum feedback

We use tDMRG techniques to solve for the dynamics.

AL Grimsmo

H. Pichler, P.Z., PRL 2016 AL Grimsmo, PRL Aug 2015

Conclusions

 Chiral Quantum Optics & Quantum Many-Body Physics

dissipative formation of *pure quantum dimers*

- Physical realization with atoms / solid state emitters + photons, spins, ...
- Theory: dynamics of chiral quantum networks with t-DMRG techniques / beyond Markov approximation
- 2D ...