Optical lattice clock & Spin-orbit coupled fermions

Synthetic Quantum Matter KITP, Nov. 28, 2016

Jun Ye

JILA, NIST & Univ. of Colorado

Scientific vision for clock research

Understand emerging quantum many-body systems

with "clock" precision and control

<u>Is there a limit</u> <u>for clock? Or</u> <u>new opportunity</u> <u>for fundamental</u> <u>physics ?</u>

AMO physics- CM, high energy, astrophysicsUltrapreciseUltrafastUltracoldTheory

Nature's high Q oscillator

Once set, it swings during the entire age of the universe

Quality factor > 10¹⁷ Boyd *et al.,* Science **314**, 1430 (2006).

- 2

Control of light the electromagnetic spectrum

Measurement of coherence > 20 s

Beating of two sound waves (10³ Hz)

Holding atoms in a magic light bowl

Ye, Kimble, Katori, Science **320**, 1734 (2008).

Precision metrology in optical lattice

- Precision improvement by $N^{1/2}$
- Doppler & Recoil shifts = 0
- Atomic interaction effects?

<u>Coherent</u> spectroscopy Q > 1 x 10¹⁵

Boyd et al., Science **314**, 1430 (2006).

2016: Sr linewidth ~0.08 Hz (Fermi gas 3D lattice)

Lattice clock - pushing the clock stability

A new frontier for clock stability & accuracy

JILA Sr Clock II :

lowest uncertainty in atomic clocks: 2.1×10^{-18}

Bloom *et al.,* Nature **506**, 71 (2014). Nicholson *et al.,* Nature Comm. **6** (2015).

Huntemann *et al.*, PRL **116**, 063001 (2016).

Ultracold fermions: say NO to collisional shifts

⁸⁷Sr, at precision ~ 10^{-15} , zero shift: First appearance, ~ 10^{-16} : Reduced shift, ~ 10^{-17} : < 10^{-18} : PRL 98, 083002 (2007). Science 324, 360 (2009). Science 331, 1043 (2011). PRL 109, 230801 (2012).

See related work of Yb clock by Ludlow *et al*.

3 degrees of freedom: electronic, nuclear, spatial

Gorshkov et al., Nature Phys. 6, 289 (2010).

Clock probe of many-body spin dynamics

Martin et al., Science 341, 632 (2013).

Ramsey spectroscopy for spin correlations

Spin Interactions

Density shifts & SU(N) symmetry

Zhang et al., Science 345, 1467 (2014). Fallani, Inguscio (2014); Fölling, Bloch (2014)

So far, single site interactions

- Identical fermions, *p-wave* collision dominates
- Multiple nuclear spins, s- and p-waves under SU(N)

 $U_o >> E_R$: Tunneling negligible

Setting atoms free

 $U_o \sim E_R$: Tunneling at rate J

A new regime for interactions

Tunneled atoms distinguishable, s-wave collisions allowed.

SU(*N*) Kondo Lattice

Exploring SU(N) & spin-orbital coupling Wall *et al.*, PRL **116**, 035301 (2016); Kolkowitz *et al.*, Nature, in press (2016).

spin (**nuclear**) 10 flavors

Related work in Yb: Inguscio/Fallani, arXiv:1609.04800

 $\Phi = \pi \lambda_l / \lambda_c$

- Charged fermion in a synthetic magnetic field
- Clock transition for spectroscopy
- Many-body interaction under spin-orbit coupling

Varying detuning at different quasi-momenta \rightarrow broadening of the transition.

Density of states diverge at *dE/dk* = 0 : van Hove singularities

Probe spin-orbit coupled band structure $H_q = -\Omega S^x - (\Delta E(q) + \delta)S^z = \vec{B}_{eff}(q, \delta) \cdot \hat{\vec{S}}$

 $\Delta E(q) = -J \left[\cos(\pi q/k_L + \Phi) - \cos(\pi q/k_L) \right]$

 q/k_L

Spin-motion locking: non-zero chirality determined by θ_q

Momentum-resolved spectroscopy

- Momentum selection: π pulse (g \rightarrow e), Ω = 10 Hz
- Cleaning pulse: Remove all atoms in g
- Rabi oscillations with Ω =100 Hz at δ = \bigstar

Momentum-resolved Rabi oscillation chiral angle θ_q

Clock sensitivity opens the door for investigation of spin-orbit coupled ladders

3D Fermi Band Insulator Clock Scaling up the Sr quantum clock: 1 million atoms, 160 s

A Fermi Band Insulator Clock

4 x 10⁴ ⁸⁷Sr atoms; 40 nK; 2 nuclear spin states, each $T/T_F = 0.08$

Record long atom-light coherence

Sr optical clock (10-18) advancing state-of-the-art S. Campbell

R. Hutson

G. E. Marti

- S. Bromley
- T. Bothwell
- S. Kolkowitz
- A. Goban X. Zhang (Peking U.) T. Nicholson (MIT) M. Bishof (Argonne) B. Bloom (Intel) M. Martin (Caltech) J. Williams (JPL) M. Swallows (AO Sense) S. Blatt (MPQ, Garching) A. Ludlow (NIST) Y. Lin (NIM) G. Campbell (JQI, NIST) T. Zelevinsky (Columbia U.) M. Boyd (AO Sense) J. Thomsen (U. Copenhagen) T. Zanon (Univ. Paris 6) S. Foreman (U. San Fran) X. Huang (WIPM)
- T. Ido (Tokyo NICT), X. Xu (ECNU) T. Loftus (AO Sense)
- NIST, PTB, M. Holland, P. Julienne, M. Lukin, M. Safronova, Daley/Zoller ...

- W. Zhang
 - J. Robinson
 - L. Sonderhouse

