

Driven-dissipative polariton quantum fluids in and out of equilibrium

Marzena Szymańska

Designer Quantum Systems Out of Equilibrium KITP, November 2016

Acknowledgements

Group:

G. Dagvadorj

In collaboration with:

D. Sanvitto D. Ballarini L. Dominici D. Caputo, M. De Giorgi, G. Gigli, C. S. Muñoz, F. P. Laussy, K. West, L. N. Pfeifer

Funding:

S. Diehl L. Sieberer E. Altman

N. Proukakis _{F.} P. Comaron

Engineering and Physical Sciences Research Council

Driven-dissipative Condensates

2D Light-matter condensates with drive and decay

Polaritons

Photon BEC Circuit QED systems Atoms in cavities

....

Driven-dissipative Condensates

2D Light-matter condensates with drive and decay

Can thermal equilibrium be achieved?

Can non-equilibrium but non-trivial phases be engineered?

State of the art: experiments

Condensation, superfluidity and vortices

[Kasprzak et al., Nature 2006]

[Amo et al. Nature Phys. 2009]

[K. G. Lagoudakis et al, Nature Physics 2008]

[Sanvitto et al., Nature Phys. 2010]

Hydrodynamics (nucleation of V-AV pairs, solitons in the wake of an obstacle), quantum turbulence, pattern formation

[Nardin et al., *Nature Phys.* 2011] [Sanvitto et al., *Nature Photonics* 2011] [Grosso et al., *PRL* 2011] [Amo et al., *Science* 2011, *Nature* 2009] [Wertz et al., *Nature Phys.* 2010]

State of the art: towards applications

♦ Electrically pumped polariton laser

[Schneider et al., Nature 2013]

Room temperature condensation and superfludity in organics

Kena-Cohen's group 2015

State of the art: lattices

Gold deposition

k,

Y. Yamamoto et al.

Surface acoustic waves

Pump modulation

P. G. Lagoudakis N. Berloff

A. Amo, J. Bloch et al.

9

Sub-wavelength Gratings

H. Deng et al.

Observed

- Edge states
- Spin-orbit coupling
- Dirac cones
- Magnetic monopoles
- Condensation in flat band
- BH model

. . .

• XY Hamiltonian

What Type of "Condensate"?

Sebastian Diehl's talk

What Type of "Condensate"?

Sebastian Diehl's talk

Spatial and Temporal Coherence

Spatial and Temporal Coherence

 \diamond **Occupation:** thermal

$$\alpha_{s,t} = k_B T / n_s < 1/4$$

Long Lifetime Microcavity

K. West, L. N. Pfeifer Studied in Snoke's and Sanvitto's groups

12 QWs Rabi: 16 meV t_p : 100 ps Q > 100.000 Spatially homogeneous

Spatial and Temporal Coherence - Experiment

Crossover from exponential to algebraic decay of coherence with equilibrium exponents

D. Caputo, et al. arXiv:1609.7603 (2016)

Spatial and Temporal Coherence - Theory

Coarse-graining

Spatial and Temporal Coherence – Photon Laser

Measurements in a bad cavity (short lifetime) sample in a weak coupling regime

In a lasing VCSEL coherence shows power law decay in space but Gaussian in time

Importance of consistent picture in space and time correlations

Spectrum of Excitations

Kardar–Parisi–Zhang (KPZ) Theory

[Altman et al, PRX 2015]

Kardar–Parisi–Zhang (KPZ) Theory

[Altman et al, PRX 2015]

Stretched exponential (faster then algebraic) decay of coherence but superfluidity survives

However, anisotropic system flows to a Gaussian fixed point power-law at any scale

g

$$\Gamma = \frac{\lambda_y D_x}{\lambda_x D_y}$$

$$g = \frac{\lambda_x^2 \Delta}{D_x^2 \sqrt{D_x D_y}}$$

How to realise in experiment?

Kardar–Parisi–Zhang (KPZ) Theory

[Altman et al, PRX 2015]

Playing with Spatial Anisotropy: OPO

$$\begin{split} \hat{H}_{SB} &= \int d\mathbf{r} \left[F(\mathbf{r},t) \hat{\psi}_{C}^{\dagger}(\mathbf{r},t) + \text{H.c.} \right] \\ &+ \sum_{\mathbf{k}} \sum_{l=X,C} \left\{ \zeta_{\mathbf{k}}^{l} \left[\hat{\psi}_{l,\mathbf{k}}^{\dagger}(t) \hat{B}_{l,\mathbf{k}} + \text{H.c.} \right] + \omega_{l,\mathbf{k}} \hat{B}_{l,\mathbf{k}}^{\dagger} \hat{B}_{l,\mathbf{k}} \right\} \end{split}$$

♦ Non-thermal occupation

 Signal phase is completely free and idler phase locked to signal via pump

$$2\varphi_p = \varphi_s + \varphi_i$$

Spontaneous U(1) symmetry breaking gapless and diffusive Goldstone mode

Playing with Spatial Anisotropy: OPO

♦ Time crystal

- Vortices: dislocations in density wave and time crystal
- After filtering in momentum: usual vortices

Stochastic Description

From Keldysh action by ignoring the RG irrelevant terms (quantum fluctuations of order higher then second) and using MSR formalism
 [Sieberer at al PRL (2013)]

 $i \begin{pmatrix} d\psi_X \\ d\psi_C \end{pmatrix} = \begin{cases} \begin{pmatrix} \omega_X - i\kappa_X + g_X(|\psi_X|^2 - \frac{1}{\Delta V}) & \Omega_R/2 \\ \Omega_R/2 & \frac{\nabla^2}{2m_c} - i\kappa_C \end{pmatrix} \begin{pmatrix} \psi_X \\ \psi_C \end{pmatrix} + \begin{pmatrix} 0 \\ F_p \end{pmatrix} \\ dt + \begin{pmatrix} \sqrt{\kappa_X} dW_X \\ \sqrt{\kappa_C} dW_C \end{pmatrix} \\ F_p(\mathbf{r}, t) = \mathcal{F}_p(\mathbf{r})e^{i(\mathbf{k}_p \cdot \mathbf{r} - \omega_p t)} \end{cases}$

dW - Wienner noise delta correlated in space and time

Observables: MC averages over noise

Low density:

Vortex/antivortex proliferation

Medium density:

V/AV pairing

High density:

V/AV annihilation, no vortices

Stochastic Description

From Keldysh action by ignoring the RG irrelevant terms (quantum fluctuations of order higher then second) and using MSR formalism
 [Sieberer at al PRL (2013)]

 $i \begin{pmatrix} d\psi_X \\ d\psi_C \end{pmatrix} = \begin{cases} \begin{pmatrix} \omega_X - i\kappa_X + g_X(|\psi_X|^2 - \frac{1}{\Delta V}) & \Omega_R/2 \\ & \Omega_R/2 & \frac{\nabla^2}{2m_c} - i\kappa_C \end{pmatrix} \begin{pmatrix} \psi_X \\ \psi_C \end{pmatrix} + \begin{pmatrix} 0 \\ F_p \end{pmatrix} \\ dt + \begin{pmatrix} \sqrt{\kappa_X} dW_X \\ \sqrt{\kappa_C} dW_C \end{pmatrix} \\ F_p(\mathbf{r}, t) = \mathcal{F}_p(\mathbf{r}) e^{i(\mathbf{k}_p \cdot \mathbf{r} - \omega_p t)} \end{cases}$

dW - Wienner noise delta correlated in space and time

Observables: MC averages over noise

Exact numerical solution

Stochastic Description

From Keldysh action by ignoring the RG irrelevant terms (quantum fluctuations of order higher then second) and using MSR formalism
 [Sieberer at al PRL (2013)]

 $i \begin{pmatrix} d\psi_X \\ d\psi_C \end{pmatrix} = \begin{cases} \begin{pmatrix} \omega_X - i\kappa_X + g_X(|\psi_X|^2 - \frac{1}{\Delta V}) & \Omega_R/2 \\ & \Omega_R/2 & \frac{\nabla^2}{2m_c} - i\kappa_C \end{pmatrix} \begin{pmatrix} \psi_X \\ \psi_C \end{pmatrix} + \begin{pmatrix} 0 \\ F_p \end{pmatrix} \\ dt + \begin{pmatrix} \sqrt{\kappa_X} dW_X \\ \sqrt{\kappa_C} dW_C \end{pmatrix} \\ F_p(\mathbf{r}, t) = \mathcal{F}_p(\mathbf{r}) e^{i(\mathbf{k}_p \cdot \mathbf{r} - \omega_p t)} \end{cases}$

dW - Wienner noise delta correlated in space and time

Observables: MC averages over noise

Quench Dynamics

[P. Comaron, G. Dagvadorj, A. Zamora, et al, in preparation]

Dynamics after infinitely fast quench

if universal can reveal the critical exponents of the transition

Dynamical Critical Exponents

Multicomponent Condensate

Spatial Coherence for All Components

The same exponent of the power-law decay of g1(r)

despite much lower density for photonic idler

Spinor Case and Fractional Vortices

Polariton system is spinor: excitons +1 and -1, two polarisations of light

TE-TM splitting

$$i\frac{\partial\psi_{\pm}}{\partial t} = \left(-\frac{\nabla^2}{2m_{\phi}} - i\kappa_C\right)\psi_{\pm} + \frac{\Omega_R}{2}\phi_{\pm} + \bullet \text{Anisotropy splitting}$$

$$\left(\frac{\partial}{\partial x} \mp i\frac{\partial}{\partial y}\right)^2\psi_{\mp} + \left(\frac{1}{2}\chi_0\psi_{\mp}\right) + F_{\pm} + \sqrt{\kappa_C}dW_{C,\pm}$$

$$i\frac{\partial\phi_{\pm}}{\partial t} = \left(-\frac{\nabla^2}{2m_{\psi}} - i\kappa_X\right)\phi_{\pm} + \frac{\Omega_R}{2}\psi_{\pm}$$

$$+\alpha_1|\phi_{\pm}|^2\phi_{\pm} + \alpha_2|\phi_{\mp}|^2\phi_{\pm} + \sqrt{\kappa_X}dW_{X,\pm}$$
Interactions between
\bullet different spins

✤ Full vortices and fractional vortices present

"Full" vortex

"Half" vortex

Dominici at al, Science Advances (2015)

Skyrmions and Spin Vortices

[Donati et al. to appear in PNAS]

Spin and orbital angular momentum are both quantized and mixed

Polarization anisotropy leads to complex dynamics

$$i\frac{\partial\psi_{\pm}}{\partial t} = \left(-\frac{\nabla^2}{2m_{\phi}} - i\kappa_C\right)\psi_{\pm} + \frac{\Omega_R}{2}\phi_{\pm} + \frac{\chi}{2}\left(\frac{\partial}{\partial x} \mp i\frac{\partial}{\partial y}\right)^2\psi_{\mp} + \frac{1}{2}\chi_0\psi_{\mp} + F_{\pm}$$

Keldysh Action for OPO

Projected into LP sub-space and limited to three modes

$$\psi_{lp}(\mathbf{r},t) = \psi_s e^{i(\mathbf{k}_s \mathbf{r} - \omega_s t)} + \psi_i e^{i(\mathbf{k}_i \mathbf{r} - \omega_i t)} + \psi_p e^{i(\mathbf{k}_p \mathbf{r} - \omega_p t)}$$

Keldysh Action

$$\begin{split} S_{C} &= \int dt d^{2}\mathbf{r} \Biggl\{ -(F_{p}^{*}\psi_{p}^{Q} + F_{p}\bar{\psi}_{p}^{Q}) + \\ &\sum_{j=s,p,i} \Biggl[\frac{1}{X_{j}^{2}} (\bar{\psi}_{j}^{C}\bar{\psi}_{j}^{Q}) \begin{pmatrix} 0 & [D_{0}^{A}]_{j}^{-1} \\ [D_{0}^{R}]_{j}^{-1} & [D_{0}^{-1}]_{k}^{K} \end{pmatrix} \begin{pmatrix} \psi_{j}^{C} \\ \psi_{j}^{Q} \end{pmatrix} \\ &- g_{x} \left(\left(2(|\psi_{s}^{C}|^{2} + |\psi_{i}^{C}|^{2} + |\psi_{p}^{C}|^{2}) - |\psi_{j}^{C}|^{2} \right) \psi_{j}^{C}\bar{\psi}_{j}^{Q} + \text{c.c.} \right) \Biggr] \\ &- g_{x} \left(2\psi_{s}^{C}\psi_{i}^{C}\bar{\psi}_{p}^{C}\bar{\psi}_{p}^{Q} + (\psi_{p}^{C})^{2} (\bar{\psi}_{i}^{C}\bar{\psi}_{s}^{Q} + \bar{\psi}_{s}^{C}\bar{\psi}_{i}^{Q}) + \text{c.c.} \right) \Biggr\}, \end{split}$$

Polariton dispersion: non-quadratic and anisotropic

$$[D_0^A]_j^{-1} = i\partial_t - \omega_{lp}(\mathbf{k}_j - i\nabla) - i\gamma_j$$
$$\omega_{lp}(\mathbf{q}) = \frac{1}{2} \left(q^2 + \delta_{CX} - \sqrt{(q^2 + \delta_{CX})^2 + 4} \right)$$
$$\delta_{CX} \equiv \omega_C(0) - \omega_X$$

 $F_p(\mathbf{r},t) = \mathcal{F}_p(\mathbf{r})e^{i(\mathbf{k}_p\cdot\mathbf{r}-\omega_p t)}$

Keldysh Action for OPO

Projected into LP sub-space and limited to three modes

$$\psi_{lp}(\mathbf{r},t) = \psi_s e^{i(\mathbf{k}_s \mathbf{r} - \omega_s t)} + \psi_i e^{i(\mathbf{k}_i \mathbf{r} - \omega_i t)} + \psi_p e^{i(\mathbf{k}_p \mathbf{r} - \omega_p t)}$$

Keldysh Action

$$\begin{split} S_{C} &= \int dt d^{2}\mathbf{r} \Biggl\{ -(F_{p}^{*}\psi_{p}^{Q} + F_{p}\bar{\psi}_{p}^{Q}) + \\ &\sum_{j=s,p,i} \Biggl[\frac{1}{X_{j}^{2}} (\bar{\psi}_{j}^{C}\bar{\psi}_{j}^{Q}) \begin{pmatrix} 0 & [D_{0}^{A}]_{j}^{-1} \\ [D_{0}^{R}]_{j}^{-1} & [D_{0}^{-1}]_{j}^{K} \end{pmatrix} \begin{pmatrix} \psi_{j}^{C} \\ \psi_{j}^{Q} \end{pmatrix} \\ &- g_{x} \left(\left(2(|\psi_{s}^{C}|^{2} + |\psi_{i}^{C}|^{2} + |\psi_{p}^{C}|^{2}) - |\psi_{j}^{C}|^{2} \right) \psi_{j}^{C}\bar{\psi}_{j}^{Q} + \text{c.c.} \right) \Biggr] \\ &- g_{x} \left(2\psi_{s}^{C}\psi_{i}^{C}\bar{\psi}_{p}^{C}\bar{\psi}_{p}^{Q} + (\psi_{p}^{C})^{2} (\bar{\psi}_{i}^{C}\bar{\psi}_{s}^{Q} + \bar{\psi}_{s}^{C}\bar{\psi}_{i}^{Q}) + \text{c.c.} \right) \Biggr\}, \end{split}$$

Polariton dispersion: non-quadratic and anisotropic

$$[D_0^A]_j^{-1} = i\partial_t - \omega_{lp}(\mathbf{k}_j - i\nabla) - i\gamma_j$$

$$\omega_{lp}(\mathbf{q}) = \frac{1}{2} \left(q^2 + \delta_{CX} - \sqrt{\left(q^2 + \delta_{CX}\right)^2 + 4} \right)$$
$$\delta_{CX} \equiv \omega_C(0) - \omega_X$$

 $F_p(\mathbf{r},t) = \mathcal{F}_p(\mathbf{r})e^{i(\mathbf{k}_p\cdot\mathbf{r}-\omega_p t)}$

KPZ for OPO – Drift Term

$$\partial_t \theta = D_x \partial_x^2 \theta + D_y \partial_y^2 \theta + \frac{\lambda_x}{2} (\partial_x \theta)^2 + \frac{\lambda_y}{2} (\partial_y \theta)^2 + B_x \partial_x \theta + B_y \partial_y \theta + \bar{\xi}_y$$

[A. Zamora, L. Sieberer, S. Diehl, et al. in preparation]

The drift term can be eliminated with Galilean boost.

In the moving frame standard KPZ with RG flow:

There is some influence on g1(t) = exp[-C/2]

$$C(0,t) \to (Bt)^{2\chi} F\left(\frac{t}{(Bt)^{z'}}\right) \to \begin{cases} t^{2\chi/z'} & \text{if } t \ll B^{z'/(1-z')} \\ t^{2\chi} & \text{if } t \gg B^{z'/(1-z')} \end{cases}$$

Faster temporal decay at long times

Infinite System – Driving Across Universalities

[A. Zamora, L. Sieberer, S. Diehl, et al. in preparation]

Negative detuning

By increasing drive we move from non-equilibrium to equilibrium fixed point

Two different universality classes as the drive is increased

How to Achieve Large Anisotropy?

Driving Across Universalities in a Finite System

[A. Zamora, L. Sieberer, S. Diehl, et al. in preparation]

Equilibrium physics dominates: transition between algebraic order and exponential decay of coherence (disorder) BKT-like in systems up to meters

Worst quality samples needed for the transition A

Searching for the KPZ Phase

[A. Zamora, L. Sieberer, S. Diehl, et al. in preparation]

Away from threshold:

 L_{KPZ} astronomical

Very close to threshold

 L_{KPZ} reasonable and L_{KPZ} < L_V only extremely close to threshold i.e. below BKT transition

Note: analytics not valid in this regime

Large g, even > 1

KPZ at all length-scales?

Conclusions

 Best microcavities indistinguishable from closed systems in equilibrium

 Anisotropy and dissipation – as in OPO – different phases possible

 Current microcavities "too good" for their size: equilibrium-like physics dominates

♦ But OPO shows a regime of strong KPZ nonlinearity i.e. KPZ order at all length-scales?

