
  

Lorenza ViolaLorenza Viola
Dept. Physics & Astronomy

Dartmouth College

Designer Quantum Systems Out of Equilibrium   
Nov 14, 2016 – Nov 18, 2016

Design and Characterization of Topological Boundary Modes:Design and Characterization of Topological Boundary Modes:
from Floquet engineering to a generalized Bloch Ansatzfrom Floquet engineering to a generalized Bloch Ansatz



  

Broad contextBroad context  KITP 2016 / 1 

Many-body quantum physics meets [quantum] control engineering... 

 Explore new possibilities [and limitations] of control methodology...

Control actuation
[Synthesis and 

optimization]

Measurement 
[Sensing and
estimation]

Control analysis
[Modeling]

 



 Out-of-equilibrium phenomena entail coupling between target system
 and external 'controller' or 'environment' – [some] pathways: 

Identify dynamical model for target system ⇒ Control analysis
Design controller in order to modify dynamics ⇒ Control synthesis
Validate performance ⇒ Optimization   

...in concert with the whole gamut of many-body complexity... 
Highly entangled quantum states 
Competing interactions
Non-conventional [topological] orders

   Switched Hamiltonian dynamics: Quantum quenches
      Time-dependent Hamiltonian dynamics: Coherently driven quantum systems
      Open-quantum system dynamics: Uncontrolled  and controlled dissipation  

⋮

...to uncover and realize new Physics...  
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Control actuation
[Synthesis and 

optimization]

Measurement 
[Sensing and
estimation]

Control analysis
[Modeling]

 



 Dissipative [Kraus or Lindblad] quantum control engineering: 

 Leverage engineered dissipation towards tasks not (or not robustly) achievable by unitary 
     control alone e.g., open-system simulators, fixed-point tuning, steady-state phase transitions... 

P.D. Johnson, F. Ticozzi & LV, General fixed points of quasi-local frustration-free
quantum semigroups: from invariance to stabilization, QIC 16, 0657 (2016).

LV & Lloyd, PRA 65 (2001).

 Explore ultimate possibilities [and limitations] of control methodology...
Identify dynamical model for target system ⇒ Control analysis
Design controller in order to modify dynamics ⇒ Control synthesis
Validate performance ⇒ Optimization   

...in concert with the whole gamut of many-body complexity... 
Highly entangled quantum states 
Competing interactions
Non-conventional [topological] orders

Many-body quantum physics meets [quantum] control engineering... 

...to uncover and explore new Physics...  



  

Focus: Topological fermionic matter Focus: Topological fermionic matter   KITP 2016 / 2 

Topological insulators/superconductors are gapped phases of fermionic matter 
which support 'symmetry protected' mid-gap states localized on the boundary.     

This talk: Closed-system, Hamiltonian dynamics of non-interacting fermionic matter 

 I. Time-translation symmetry – Floquet engineering of Majorana flat bands in s-wave TSs... 

 II. Space-translation symmetry up to boundaries – Generalizing Bloch theorem, witnessing the
                                                                                         bulk-boundary correspondence, and all that... 

Broken TR invariance ⇒
Chiral boundary states

/TI TR invariance preserved ⇒
Helical boundary states
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Part I:Part I:
Floquet engineering of topological boundary modesFloquet engineering of topological boundary modes

[non-equilibrium Majorana flat bands][non-equilibrium Majorana flat bands]

Designer Quantum Systems Out of Equilibrium   
Nov 14, 2016 – Nov 18, 2016

Shusa Deng, Gerardo Ortiz, Amrit Poudel & LV
 Majorana flat bands  in s-wave gapless topological superconductors 

Phys. Rev. B 89, 140507(R) (2014).

Amrit Poudel, Gerardo Ortiz & LV
 Dynamical generation of Floquet Majorana flat bands  in s-wave superconductors 

EPL 110, 17004 (2015).

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 Case study: Two-band, TR-invariant [mean-field] model on square lattice 

Gapless s-wave superconductors* provide a different route to topological 
superconductivity ⇒ Emergence of protected boundary Majorana flat bands (MFB).   

*Abrikosov & Gor'kov, Sov. Phys. JEPT 12 (1961). 

On-site potential 
+ intra-band pairing

Spin-orbit inter-band
interaction  

Inter-band [spin-triplet] 
s-wave pairing

  The bulk excitation spectrum can close at 
      [a finite set of] special momentum values, e.g. 

  A continuum of zero-energy Majorana modes
      may emerge in the thermodynamic limit.



  

Why Why Majorana flat bands?...Majorana flat bands?... KITP 2016 / 3 

 Case study: Two-band, TR-invariant [mean-field] model on square lattice

  Conceptual significance: Anomalous bulk-boundary correspondence – 
      Emergence of MFB depends on how  boundary conditions are imposed [for same  bulk].

  Experimental significance: A MFB implies a large peak in the LDOS at the surface... 

On-site potential 
+ intra-band pairing

Spin-orbit inter-band
interaction  

Inter-band [spin-triplet] 
s-wave pairing

Gapless s-wave superconductors* provide a different route to topological 
superconductivity ⇒ Emergence of protected boundary Majorana flat bands (MFB).   

*Abrikosov & Gor'kov, Sov. Phys. JEPT 12 (1961). 



  

Control framework and Floquet formalismControl framework and Floquet formalism  KITP 2016 / 4 

    Objective: Use external periodic control to engineer non-equilibrium MFB in s-wave 
                       superconductors where they do not exist at equilibrium ⇒ Floquet MFB 

 Floquet formalism leverages translational invariance in time to obtain exact Ansatz 
 for time-dependent basis states: 

Necessary symmetry requirement: Design time-independent effective Hamiltonian        
such that appropriate chiral symmetry  is in place    

Floquet quasi-energies [Time-periodic] Floquet eigenstates

  Map to a formally time-independent problem on extended space

  Restriction to first Brillouin zone yields physical  effective Hamiltonian:

,



  

Floquet quasi-energy spectrum Floquet quasi-energy spectrum KITP 2016 / 5 

 Topological features are encoded in the Floquet quasi-energy spectrum

 Effective Hamiltonian gives exact description of stroboscopic time-evolution under        : 
                      

  If external control is spatially homogeneous, momentum is conserved [under PBC] ⇒

  Depending on the applied control protocol, spectrum may be determined numerically from
      [block-]diagonalization of                 or from direct diagonalization of the Floquet propagator 

  The necessary symmetry requirement for         may be met in two different ways: 
      (1) Use control to 'activate' a desired chiral symmetry already present at equilibrium...
      (2) Use control to 'generate' a desired chiral symmetry that is broken at equilibrium...





  

MFB via dynamical chiral-symmetry activationMFB via dynamical chiral-symmetry activation  KITP 2016 / 6 

 Target system: s-wave gapless spin-triplet SC in a topologically trivial phase.

  Periodic modulation of chemical potential:
    

  Can show that chiral symmetry is obeyed,

and the instantaneous Hamiltonian remains
in a topologically trivial phase throughout...
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 Target system: s-wave gapless spin-triplet SC in a topologically trivial phase.

  Periodic modulation of chemical potential:
    

  Can show that chiral symmetry is obeyed,

and the instantaneous Hamiltonian remains
in a topologically trivial phase throughout...

 Floquet MFB emerge at zero energy as well as non-zero,  
 driving-dependent energies – no equilibrium counterpart.  
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 Target system: s-wave gapless spin-triplet SC in a topologically trivial phase.

  Periodic modulation of chemical potential:
    

 Floquet MFB emerge at zero energy as well as non-zero,  
 driving-dependent energies – no equilibrium counterpart.  
                      

  Can show that chiral symmetry is obeyed,

and the instantaneous Hamiltonian remains
in a topologically trivial phase throughout...

  All MFB are robust against external perturbations  
      that do not break the activated chiral symmetry – 
      e.g., in-plane (x, z) magnetic field:



  

KITP 2016 / 7 MFB via dynamical chiral-symmetry activationMFB via dynamical chiral-symmetry activation  

 Target system: s-wave gapless spin-triplet SC in a topologically trivial phase.

  Periodic in-plane magnetic field:
    

  Can show that chiral symmetry is preserved at all times.

 Unlike the equilibrium case [or when chemical potential is modulated], Floquet MFB may
emerge independently of the choice of OBC vs. PBC – albeit only at non-zero energies... 
  'Standard' bulk-boundary correspondence is restored.    

  Only [known] example of s-wave topological SC hosting MFB along both boundaries!



  

MFB via dynamical chiral-symmetry generationMFB via dynamical chiral-symmetry generation KITP 2016 / 8 

 Target system: s-wave gapped spin-singlet SC in a topologically non-trivial phase, but 
 hosting only one Majorana pair per boundary.

On-site potential 
+ intra-band pairing

Spin-orbit inter-band
interaction  

Inter-band [spin-singlet] 
s-wave pairing

 Strategy: Suppress unwanted S-O contribution via repeated sign-flips [dynamical-decoupling] 
Viola & Lloyd, PRA 58 (1998); Viola, Knill & Lloyd, PRL 85 (2000).

  At equilibrium, MFB may exist if z-component of SO coupling vanishes,                                   .
      Any non-zero       causes the relevant chiral symmetry to be broken...

  Design a 'parity-kick' operator that selectively maps                                    to                                  :

  Single-cycle controlled propagator: 



  

KITP 2016 / 9 MFB via dynamical chiral-symmetry generationMFB via dynamical chiral-symmetry generation

  Zero-energy MFB emerge from equilibrium Majorana pairs in the presence of periodic 
 kicks – under the appropriate boundary condition. 

 The effective Hamiltonian may be computed [perturbatively] via Magnus expansion:

  Sufficient convergence condition:                      .   

  Can show that effective Hamiltonian preserves chiral symmetry up to arbitrary order.
  Control dynamically generates at once  Floquet MFB and their protecting symmetry...



  

Summary – thus far... Summary – thus far... KITP 2016 /10  

 Driven quantum matter may access a broader range of possibilities – including 
 non-equilibrium topological quantum phases without known equilibrium counterpart.  

  Symmetry-protected MFB may be engineered in 
      two-band s-wave superconductors starting from 
      equilibrium conditions where none or at most 
      a pair of Majorana modes exist. 

  Floquet MFB maintain their advantage in terms
      of enhanced transport signatures, and need not
      depend on how boundary conditions are applied
      as sensitively as equilibrium MFB do.  

  Control techniques may be portable to other
      designer platforms [AMO systems].



  

Summary – thus far... Summary – thus far... KITP 2016 /10  

 But... How to identify the bulk-boundary combinations that do support protected boundary 
 modes?... How to tune parameters at 'sweet spots' where they are maximally robust?...

 Driven quantum matter may access a broader range of possibilities – including 
 non-equilibrium topological quantum phases without known equilibrium counterpart.  

  Symmetry-protected MFB may be engineered in 
      two-band s-wave superconductors starting from 
      equilibrium conditions where none or at most 
      a pair of Majorana modes exist. 

  Floquet MFB maintain their advantage in terms
      of enhanced transport signatures, and need not
      depend on how boundary conditions are applied
      as sensitively as equilibrium MFB do.  

  Control techniques may be portable to other
      designer platforms [AMO systems].
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Part II: Part II: 
Exact characterization of topological boundary modesExact characterization of topological boundary modes

[generalized Bloch theorem][generalized Bloch theorem]

Designer Quantum Systems Out of Equilibrium   
Nov 14, 2016 – Nov 18, 2016


Abhijeet Alase, Emilio Cobanera, Gerardo Ortiz & LV

 Exact solution of quadratic fermionic Hamiltonians for arbitrary boundary conditions 

Phys. Rev. Lett. 117, 076804 (2016).

Emilio Cobanera, Abhijeet Alase, Gerardo Ortiz & LV
 Exact solution of corner-modified banded block-Toeplitz eigensystems 

J. Phys. A: Math. & Theor., Forthcoming  (2016).



  

KITP 2016 /11  Why 'arbitrary' boundaries?...Why 'arbitrary' boundaries?...  

Bulk-boundary correspondence (BBC): Joining two systems in distinct phases mandates 
emergence of states localized on the boundary – irrespective of how the systems are joined.  

Kitagawa, QIP 11 (2012);
Cedzich et al, JPA 49 (2016); ArXiv:1611.04439.

 BBC is a powerful principle but... beyond 1D quantum walks, no general analytic insight 
 nor rigorous theory is available as yet.

 Genesis of boundary modes: Exactly, how does it happen?...
 Robustness  of boundary modes: Exactly, what is the interplay between bulk/ boundary?...

Isaev, Moon, Ortiz, PRB 84 (2011), Fagotti, J. Stat. Mech. (2016)...

Response to boundary perturbations is key to topological robustness... in turn...
Robustness against changes of BCs may influence bulk symmetries at equilibrium.   

 Exactly, what does this all mean at the basic system-theoretic level?... 



  

KITP 2016 /11  Why 'arbitrary' boundaries?...Why 'arbitrary' boundaries?...  

Bulk-boundary correspondence (BBC): Joining two systems in distinct phases mandates 
emergence of states localized on the boundary – irrespective of how the systems are joined.  

 BBC is a powerful principle but... beyond 1D quantum walks, no general analytic insight 
 nor rigorous theory is available as yet.

 Genesis of boundary modes: Exactly, how does it happen?...
 Robustness  of boundary modes: Exactly, what is the interplay between bulk/ boundary?...

 Goal: Develop an analytic approach to the BBC, starting from the simplest setting of 
           clean systems – translational invariance broken only by boundary conditions.   

Necessary consistency requirement: Allow for arbitrary BCs from the outset...

Isaev, Moon, Ortiz, PRB 84 (2011), Fagotti, J. Stat. Mech. (2016)...

 Exactly, what does this all mean at the basic system-theoretic level?... 

Kitagawa, QIP 11 (2012);
Cedzich et al, JPA 49 (2016); ArXiv:1611.04439.

Response to boundary perturbations is key to topological robustness... in turn...
Robustness against changes of BCs may influence bulk symmetries at equilibrium.   



  

KITP 2016 /12  Tight-binding models with boundaries Tight-binding models with boundaries   

 Case study: Finite-range disorder-free quadratic fermionic Hamiltonians on D =1 lattice

Hopping/pairing among fermions located r cells apart:
in the bulk                        at the boundary   

 Introduce subsystem decomposition on single-particle space:

 Strategy: Try to mimic the success story of Fourier transform by making it explicit that a 
 translation-invariant Hamiltonian may still  be constructed 'away from the boundary'... 
  

 Introduce 'translation-like' left shift operator:

PBC:
OBC:

...
 N-3     N-2      N-1       N

R=2



  

KITP 2016 /13  Bulk-boundary separationBulk-boundary separation  

 Single-particle Hamiltonian rewrites as a 'corner-modified' banded block-Toeplitz matrix:

such that W  enforces BCs via                     and HN  may be naturally associated to an infinite 
[banded block-Laurent] translation-invariant Hamiltonian 

 N-3     N-2      N-1       N

R=2



  

KITP 2016 /13  Bulk-boundary separation [intermezzo]Bulk-boundary separation [intermezzo]  

 N-3     N-2      N-1       N

R = 1

H is obtained as infinite extension of the BBT matrix PBHN with boundary rows removed... 

Corner modifi cation 



  

KITP 2016 /13  Bulk-boundary separationBulk-boundary separation  

 Single-particle Hamiltonian rewrites as a 'corner-modified' banded block-Toeplitz matrix:

such that W  enforces BCs via                     and HN  may be naturally associated to an infinite 
[banded block-Laurent] translation-invariant Hamiltonian 

 N-3     N-2      N-1       N

R=2

 Diagonalization problem for H  may be exactly  recast into the simultaneous solution of  

 BULK EQUATION

 BOUNDARY EQUATION



  

KITP 2016 /14  Solution approach (in words...)Solution approach (in words...)

 Step 1: Obtain eigenvalue-dependent Ansatz for the solutions to the bulk equation.  

 Key observation: For arbitrary ϵ, it is easy  to compute and store a basis of the kernel  
    of a corner-modified BBT matrix – complexity is independent of N. 

 Generically, all solutions may be obtained as solutions to the associated infinite 
     BBL system – which is translation-invariant: Kernel determination entails solving a
     polynomial equation of small degree, at most 4dR. 

Generic case:                                                                        ⇒  quasi-invariant solutions: 
                                                                                                         extended support 

Non-invertible case: Additional solutions may emerge because of projection from  
infinite-to-finite system,                                                     ⇒      emergent solutions:
                                                                                                     finite support (localized)



  

KITP 2016 /14  Solution approach (in words...)Solution approach (in words...)

 Step 1: Obtain eigenvalue-dependent Ansatz for the solutions to the bulk equation.  

 Step 2: Impose BCs, by using Ansatz to select solutions that also solve boundary equation.   

 Key observation: For arbitrary ϵ, it is easy  to compute and store a basis of the kernel  
    of a corner-modified BBT matrix – complexity is independent of N. 

 Generically, all solutions may be obtained as solutions to the associated infinite 
     BBL system – which is translation-invariant: kernel determination entails solving a
     polynomial equation of small degree, at most 4dR. 

Generic case:                                                                        ⇒  quasi-invariant solutions: 
                                                                                                         extended support 

Non-invertible case: Additional solutions may emerge because of projection from  
infinite-to-finite system,                                                     ⇒      emergent solutions:
                                                                                                     finite support (localized)

 Using the Ansatz for |ϵ〉, recast boundary equation as the kernel equation of a 4dR × 4dR 
    boundary matrix B, so that if |ϵ〉 is an eigenvector ⇒ 



  

KITP 2016 /15  A generalized Bloch Ansatz  A generalized Bloch Ansatz    

 Exact solution yields a structural characterization of [single-particle] energy eigenstates – 
 effectively generalizing Bloch theorem from periodic to arbitrary BCs:  

Translation-invariant Emergent

 For generic parameter values and generic ϵ, no emergent solution exists, and Ansatz can be
     expressed entirely in terms of 'exponential solutions' [Bloch waves with complex momentum...]

 Translation-invariant basis states are built out of eigenvectors of 'reduced bulk Hamiltonian': 

KITP 2016 /15  



  

KITP 2016 /15  A generalized Bloch Ansatz  A generalized Bloch Ansatz    

 Exact solution yields a structural characterization of [single-particle] energy eigenstates – 
 effectively generalizing Bloch theorem from periodic to arbitrary BCs:  

Translation-invariant Emergent

 For generic parameter values and generic ϵ, no emergent solution exists, and Ansatz can be
     expressed entirely in terms of 'exponential solutions' [Bloch waves with complex momentum...]

 Translation-invariant basis states are built out of eigenvectors of 'reduced bulk Hamiltonian': 

KITP 2016 /15  

 Ansatz allows to completely characterize all  possible eigenstates for specified BCs that 
 can naturally exist or be engineered  via parameter tuning...    



  

Example: The Kitaev chain (new surprises)Example: The Kitaev chain (new surprises)  KITP 2016 /16  

 Three 'exceptional' but relevant scenarios: 
(1) Non-invertible case,                      .                                              Or, regardless of invertibility:
(2) Characteristic polynomial                      , for some ϵ ⇒ Dispersionless band, [bulk-]localized     
(3) Two or more roots coincide, for some  ϵ ⇒ Power-law solutions [despite short range!]  

...all represented in the Kitaev chain at             :



  

Example: The Kitaev chain (new surprises)Example: The Kitaev chain (new surprises)  KITP 2016 /16  

Fulga et al, NJP 15 (2013).

 Three 'exceptional' but relevant scenarios: 
(1) Non-invertible case,                      .                                              Or, regardless of invertibility:
(2) Characteristic polynomial                      , for some ϵ ⇒ Dispersionless band, [bulk-]localized     
(3) Two or more roots coincide, for some  ϵ ⇒ Power-law solutions [despite short range!]    

...all represented in the Kitaev chain at             :

(3) Doubly degenerate roots [power-law Majoranas...]   

(3) Perfectly localized bulk solutions at 'sweet spot'   



  

Example: A topological combExample: A topological comb  KITP 2016 /17  

 Ansatz may be used to gain analytic insight and design 'exotic' zero-energy boundary modes...  

Case study: A fermionic ladder with intra- and inter-ladder NN hopping

⇒

 A non-trivial perfectly localized zero-energy mode exists, split over two boundary sites  with 
    weights controlled by ratio             [independently of N].  

 Full solution shows that model is gapped, and no dispersionless bulk-localized band exists. 

 Zero-energy mode is robust, despite lack of obvious protecting chiral symmetry.



  

KITP 2016 /18  Further implications...Further implications...  

Alase et al, PRL 117 (2016).

 The boundary matrix may used to construct useful [computationally tractable] indicators 
 of bulk-boundary correspondence that include both bulk and boundary information: 

 Approach may be extended to diagonalization of 
 clean systems with internal/multiple boundaries 
 Impurity problems 
 Bound states on SN, SNS junctions

 Approach may be extended to D >1, as long as 
 periodic BCs are imposed on D–1 directions 
 Graphene with arbitrary BCs 
 Gapless s-wave superconductors, MFB...

 If either reduced bulk Hamiltonian or BCs are  
     changed, singularity develops iff system hosts
     bound zero-energy modes... 



  

Summary and outlookSummary and outlook  KITP 2016 /19  

 A natural generalization of Bloch theorem is possible for 'almost translationally invariant' 
 finite-range quadratic fermionic Hamiltonians – based on exact separation of eigenvalue 
 problem into translation-invariant bulk equation, and a boundary equation. 

  The generalized Bloch theorem offers an analytic window into the bulk-boundary 
     correspondence  – including origin of perfectly localized eigenstates and existence 
     of both exponential and power-law solutions in short-range models. 

  The generalized Bloch theorem provides new understanding and tools for designing
     topological boundary modes – by parameter tuning or Hamiltonian engineering.  

 Standard Bloch theorem is consistently recovered for translationally invariant systems.
 



  

Summary and outlookSummary and outlook  KITP 2016 /19  

 A natural generalization of Bloch theorem is possible for 'almost translationally invariant' 
 finite-range quadratic fermionic Hamiltonians – based on exact separation of eigenvalue 
 problem into translation-invariant bulk equation, and a boundary equation. 

 Plenty of directions call for further investigation...  

  The generalized Bloch theorem offers an analytic window into the bulk-boundary 
     correspondence  – including origin of perfectly localized eigenstates and existence 
     of both exponential and power-law solutions in short-range models. 

  The generalized Bloch theorem provides new understanding and tools for designing
     topological boundary modes – by parameter tuning or Hamiltonian engineering.  

  Bloch Ansatz for Floquet systems with boundaries [back to Majorana flat bands]...
  Relationship between bulk-boundary separation and entanglement spectrum...
  Bloch Ansatz for quadratic systems of bosons...
  Diagonalization of quadratic Lindblad dynamics with boundaries...

 Standard Bloch theorem is consistently recovered for translationally invariant systems.
 

⋮
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KITP 2016 /20  
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