Corrective lenses for high-redshift supernovae

Daniel Holz Institute for Theoretical Physics UCSB

TASC meeting, ITP October 18, 2002

Dalal, N., DH, Chen, X., & Frieman, J.A. 2002 submitted to ApJL; astro-ph/0206339

Magnification Distribution

Probability distribution, $P(\mu)$, of image magnification, μ , at high redshift

- The average magnification is given by the Robertson-Walker filled-beam value (normalized to 1).
- The minimum magnification, μ_{\min} , is given by the empty-beam value.
- The distributions are peaked at μ < 1, and have tails to high magnification.
 - ⇒ The distributions are non-Gaussian.

Lensing amplification affects all high-redshift sources.

Is there any way to correct for these lensing effects?

"Fixing" standard candles

- Observe the lens distribution directly
 - Identify luminous sources along the line-of-sight
 - Estimate the mass map, and calculate the lensing amplification.
- Use a weak lensing shear map:
 - Take a deep image of the surrounding field.
 - Measure shear lensing effects on background galaxies.
 - Use the shear mass map to estimate lensing amplification effects.

The convergence power spectrum (at z = 2, for Λ CDM):

The variance of the effective convergence is given by:

$$\begin{split} \left\langle \kappa^2 \right\rangle &= \frac{1}{2\pi} \int_0^\infty \mathrm{d}\ell \, \ell \, \mathrm{P}_\kappa(\ell) \\ &= \frac{9\pi}{4} \left(\frac{\Omega_m H_0^2}{c^2} \right)^2 \int_0^{R_S} \mathrm{dR} \, \left(\frac{\mathrm{R}(1 - \mathrm{R}/\mathrm{R}_S)}{\mathrm{a}(\mathrm{R})} \right)^2 \int_0^\infty \frac{\mathrm{dk}}{\mathrm{k}^2} \, \Delta_{\mathrm{mass}}^2(\mathrm{k}, \mathrm{a}(\mathrm{R})) \end{split}$$

Lensing can't be undone

The reduction of the lensing error due to inclusion of weak lensing shear measurements is given by:

$$\begin{split} \langle \kappa^2 \rangle_{\gamma} &= (1 - r^2) \langle \kappa^2 \rangle \\ &= \left(1 - \frac{\langle \kappa \kappa_{\theta} \rangle^2}{\langle \kappa^2 \rangle \left(\langle \kappa_{\theta}^2 \rangle + \gamma^2 / N \right)} \right) \langle \kappa^2 \rangle \end{split}$$

 θ is the shear lensing smoothing angle

y is the intrinsic galaxy ellipticity

N is the number of source galaxies within θ

ALL GALAXIES AT Z=2

For
$$\gamma = 0.4$$
, Λ CDM, at $z = 2$:

 0.6
 0.4
 r^2
 0.2
 0.06
 0.4
 $REDSHIFT$
 $DISTRIBUTION$
 N_{gal}/deg^2

 \Rightarrow Shear maps cannot be used to correct for lensing amplification.

What is to be done?

Safety in numbers.

- The mean lensing amplification is equivalent to the absence of lensing.
- Good statistics will average away all lensing effects.
- \Rightarrow Lensing problem can be solved by throwing lots of supernovae at it!