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Introduction - Gauge Symmetry Revisited

Gauging:

• A global symmetry is promoted to a local one.

• Requires the introduction of new d.o.f.

Lattice Gauge Theory (LGT)

• High energy physics: discretization for numerics and regularization.

• Condensed matter: real crystal or optical lattices.

(Not so usual) questions

• Behavior of gauge theories in the presence of boundaries.

• Is there a way to interpolate between the gauged and ungauged
theory? How do they differ?
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The Kitaev Chain

1D spinless fermions with NN hopping and pairing

H = it
∑
j

γ̃jγj+1 +
i µ

2

∑
j

γ̃jγj .

Phases
• Trivial, |t/µ| < 1/2. One ground state, no edge modes.

• Topological, |t/µ| > 1/2. Two ground states, edge modes.

• Falls into the SPT paradigm, but is protected by fermion parity
which can never be broken!

Do the edge-modes survive gauging?
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Gauged Kitaev Chain

Hamiltonian

H = i t
∑
j

γ̃j σ
z
j+1/2γj+1 +

i µ

2

∑
j

γ̃j γj − h
∑
j

σx
j+1/2,

• Invariant under Gi = σxi−1/2(−1)
ni σxj+1/2

• We restrict to the even sector Gi = +1 → Gauss’ Law.

Symmetries

• Magnetic symmetry: W :=
∏
j σ

z
j+1/2

• Fermion parity acts non-trivially only at the boundary.

P =
∏
i

(−1)n
i

= σx1/2
∏
i

(σxi+1/2)
2σxL+1/2 = σx1/2σ

x
L+1/2
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Spins in the bulk, Fermions at the edge

• Local mapping: introduce gauge-invariant spin 1/2 variables:

Xi+1/2 = σ
x
i+1/2, Yi+1/2 = −iγ̃iσy

i+1/2
γi+1 Zi+1/2 = −iγ̃iσz

i+1/2γi+1.

• The Hamiltonian becomes:

H =
µ

2

∑
j

Xj−1/2Xj+1/2 − t
∑
j

Zj+1/2 − h
∑
j

Xj+1/2.

• Phase diagram is known, Z2 gauge theory interpretation is not!

t/µ

h/µ

SPT

0.5 1

1

0.5 Higgsdeconfined

(SSB)

or

confined

t/µ

h/µ

SPTdeconfined

0.5 1

Higgs
(SSB)

or

confined

(a) (b)µ > 0 µ < 0
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Higgs = SPT

H =
µ

2

L∑
j=1

Xj−1/2Xj+1/2 − t

L−1∑
j=1

Zj+1/2,

Edge operators #1
• Does not depend on Z1/2 and ZL+1/2 which are fermionic:

Z1/2 = σz
1/2γ1, ZL+1/2 = γ̃Lσ

z
L+1/2

• Two additional symmetries localized at the edge: X1/2 and XL+1/2

• They anticommute with W : GS is at least 2-fold degenerate.

Edge operators #2
• One can construct

γleft = Y1/2 −
µ

2t
Z1/2Y1+1/2 +

(
−
µ

2t

)2
Z1/2Z1+1/2Y2+1/2 + · · ·

• [γleft, H] = O
((
− µ

2t

)L) −→ 0 in the Higgs phase.

• X1/2 and γleft anticommute: 2-fold GS degeneracy at left edge!

• Same for right edge. 4-fold in total!
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Gentle Gauging - Overview

Motivation

• Gauging is a drastic operation, radically changes the physics at play.

• Can the gauged and ungauged models emerge from a unified
framework?

Hamiltonian

• We consider the Hamiltonian

H =
∑
j

(
itγ̃jσ

z
j+1/2γj+1 + i

µ

2
γ̃jγj − hσx

j+1/2 − iKσx
j−1/2γ̃jγjσ

x
j+1/2 −

t2

K
σz
i+1/2

)
• As K → 0, we recover the Kitaev chain. Gauge d.o.f. are still

present, but frozen to σz = 1 due to the 1/K term.

• For K →∞ we have the gauged Kitaev chain. The Gauss law is
enforced energetically by the K term.
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Phase diagram at h = 0

Global Zf2 × Z2 symmetry

• Parity P =
∏
j

(
iγ̃jγj

)
• Wilson Loop W =

∏
j σ

z
j+1/2

• Phases are characterized in terms of these two symmetries.
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Phase diagram at h = 0

Phases I and II
These are the topological and trivial Kitaev phases respectively. Link
spins form a paramagnet.

Phase III
As µ→∞ all sites are occupied: iγ̃iγi = −1. Hamiltonian for the links:

H =
∑
j

Kσx
j−1/2σ

x
j+1/2 −

t2

K
σz
j+1/2

Ising transition in the link variables. Phase III (|K/t| > 1) is ordered
(SSB). Connects to the deconfined phase of the gauged Kitaev chain.

Phase IV
This is the SPT (Higgs) phase of the gauged Kitaev chain. It can be
mapped to a stack of two Kitaev chains through a local mapping.
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Phase diagram at finite h

• Magnetic symmetry is explicitly broken

• K → 0 physics is unchanged. The h-term here is negligible.

• As K →∞ the symmetry broken phase survives only for µ > 0. The
SPT character of the Higgs phase is lost.

• Large h: analytical results from perturbation theory.

• Why are the trivial phases not connected? Distinct, protected by
fermion parity and translational symmetry! (Fuji et al. 2015)
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Outlook

Take-home messages

• In the presence of boundaries, gauging a global symmetry does not
eliminate it completely. Near the edges it survives and enriches the
quantum phase diagram of the system.

• Interpolating between gauged and ungauged versions of a model can
unveil a rich phenomenology, with unusual quantum criticality.

• Minimal example: gauging the simplest of symmetries -fermion
parity- in one of the most elementary models in condensed matter
physics.

Future directions

• Claim (Higgs=SPT): any magnetic-symmetry-preserving phase in
the gauge theory must be a nontrivial SPT! (Work in progress)

• Investigate similar phenomenology in related models. Example: Z3

parafermions.
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