

Gauging the Kitaev Chain arXiv:2010.00607

Umberto Borla

Together with Ruben Verresen, Jeet Shah, Sergej Moroz

Gauging:

- A global symmetry is promoted to a local one.
- Requires the introduction of new d.o.f.

Gauging:

- A global symmetry is promoted to a local one.
- Requires the introduction of new d.o.f.

Lattice Gauge Theory (LGT)

- High energy physics: discretization for numerics and regularization.
- Condensed matter: real crystal or optical lattices.

Gauging:

- A global symmetry is promoted to a local one.
- Requires the introduction of new d.o.f.

Lattice Gauge Theory (LGT)

- High energy physics: discretization for numerics and regularization.
- Condensed matter: real crystal or optical lattices.

(Not so usual) questions

- Behavior of gauge theories in the presence of boundaries.
- Is there a way to interpolate between the gauged and ungauged theory? How do they differ?

1D spinless fermions with NN hopping and pairing

$$H = it \sum_{j} \tilde{\gamma}_{j} \gamma_{j+1} + \frac{i \mu}{2} \sum_{j} \tilde{\gamma}_{j} \gamma_{j}.$$

1D spinless fermions with NN hopping and pairing

$$H = it \sum_{j} \tilde{\gamma}_{j} \gamma_{j+1} + \frac{i \mu}{2} \sum_{j} \tilde{\gamma}_{j} \gamma_{j}.$$

Phases

- Trivial, $|t/\mu| < 1/2$. One ground state, no edge modes.
- Topological, $|t/\mu| > 1/2$. Two ground states, edge modes.
- Falls into the SPT paradigm, but is protected by fermion parity which can never be broken!

1D spinless fermions with NN hopping and pairing

$$H = it \sum_{j} \tilde{\gamma}_{j} \gamma_{j+1} + \frac{i \mu}{2} \sum_{j} \tilde{\gamma}_{j} \gamma_{j}.$$

Phases

- Trivial, $|t/\mu| < 1/2$. One ground state, no edge modes.
- Topological, $|t/\mu| > 1/2$. Two ground states, edge modes.
- Falls into the SPT paradigm, but is protected by fermion parity which can never be broken!

Do the edge-modes survive gauging?

Hamiltonian

$$H = i t \sum_{j} \tilde{\gamma_{j}} \sigma_{j+1/2}^{z} \gamma_{j+1} + \frac{i \mu}{2} \sum_{j} \tilde{\gamma_{j}} \gamma_{j} - h \sum_{j} \sigma_{j+1/2}^{x},$$

Hamiltonian

$$H = i t \sum_{j} \tilde{\gamma_{j}} \sigma_{j+1/2}^{z} \gamma_{j+1} + \frac{i \mu}{2} \sum_{j} \tilde{\gamma_{j}} \gamma_{j} - h \sum_{j} \sigma_{j+1/2}^{x} + \frac{i \mu}{2} \sum_{j} \tilde{\gamma_{j}} \gamma_{j} - h \sum_{j} \sigma_{j+1/2}^{x} + \frac{i \mu}{2} \sum_{j} \tilde{\gamma_{j}} \sigma_{j}^{x} + \frac{i \mu}{2} \sum_{j} \tilde{\gamma_{j}} \sigma_{j}^{x$$

• Invariant under $G_i = \sigma_{i-1/2}^x (-1)^{n_i} \sigma_{j+1/2}^x$

• We restrict to the even sector $G_i = +1 \rightarrow \text{Gauss'}$ Law.

Hamiltonian

$$H = i t \sum_{j} \tilde{\gamma_{j}} \sigma_{j+1/2}^{z} \gamma_{j+1} + \frac{i \mu}{2} \sum_{j} \tilde{\gamma_{j}} \gamma_{j} - h \sum_{j} \sigma_{j+1/2}^{x} \gamma_{j+1/2} + \frac{i \mu}{2} \sum_{j} \tilde{\gamma_{j}} \gamma_{j} \gamma_{j} - h \sum_{j} \sigma_{j+1/2}^{x} \gamma_{j+1} + \frac{i \mu}{2} \sum_{j} \tilde{\gamma_{j}} \gamma_{j} \gamma_{j} - h \sum_{j} \sigma_{j+1/2}^{x} \gamma_{j+1} + \frac{i \mu}{2} \sum_{j} \tilde{\gamma_{j}} \gamma_{j} \gamma_{j} - h \sum_{j} \sigma_{j+1/2}^{x} \gamma_{j+1} + \frac{i \mu}{2} \sum_{j} \tilde{\gamma_{j}} \gamma_{j} \gamma_{j} - h \sum_{j} \sigma_{j+1/2}^{x} \gamma_{j+1} + \frac{i \mu}{2} \sum_{j} \tilde{\gamma_{j}} \gamma_{j} \gamma_{j} - h \sum_{j} \sigma_{j+1/2}^{x} \gamma_{j+1} + \frac{i \mu}{2} \sum_{j} \tilde{\gamma_{j}} \gamma_{j} \gamma_{j} - h \sum_{j} \sigma_{j+1/2}^{x} \gamma_{j+1} + \frac{i \mu}{2} \sum_{j} \tilde{\gamma_{j}} \gamma_{j} \gamma_{j} - h \sum_{j} \sigma_{j+1/2}^{x} \gamma_{j+1} + \frac{i \mu}{2} \sum_{j} \tilde{\gamma_{j}} \gamma_{j} \gamma_{j} - h \sum_{j} \sigma_{j+1/2}^{x} \gamma_{j+1} + \frac{i \mu}{2} \sum_{j} \tilde{\gamma_{j}} \gamma_{j} \gamma_{j} - h \sum_{j} \sigma_{j+1/2}^{x} \gamma_{j+1} + \frac{i \mu}{2} \sum_{j} \tilde{\gamma_{j}} \gamma_{j} \gamma_{j} - h \sum_{j} \sigma_{j+1/2}^{x} \gamma_{j+1} + \frac{i \mu}{2} \sum_{j} \tilde{\gamma_{j}} \gamma_{j} \gamma_{j} - h \sum_{j} \sigma_{j+1/2}^{x} \gamma_{j+1} + \frac{i \mu}{2} \sum_{j} \tilde{\gamma_{j}} \gamma_{j} \gamma_{j} - h \sum_{j} \sigma_{j+1/2}^{x} \gamma_{j+1} + \frac{i \mu}{2} \sum_{j} \tilde{\gamma_{j}} \gamma_{j} \gamma_{$$

• Invariant under $G_i = \sigma^x_{i-1/2} (-1)^{n_i} \sigma^x_{j+1/2}$

• We restrict to the even sector $G_i = +1 \rightarrow \text{Gauss' Law}$.

Symmetries

- Magnetic symmetry: $W := \prod_j \sigma_{j+1/2}^z$
- Fermion parity acts non-trivially only at the boundary.

$$P = \prod_{i} (-1)^{n^{i}} = \sigma_{1/2}^{x} \prod_{i} (\sigma_{i+1/2}^{x})^{2} \sigma_{L+1/2}^{x} = \sigma_{1/2}^{x} \sigma_{L+1/2}^{x}$$

• Local mapping: introduce gauge-invariant spin 1/2 variables:

 $X_{i+1/2} = \sigma_{i+1/2}^x, \qquad Y_{i+1/2} = -i\tilde{\gamma}_i \sigma_{i+1/2}^y \gamma_{i+1} \qquad Z_{i+1/2} = -i\tilde{\gamma}_i \sigma_{i+1/2}^z \gamma_{i+1}.$

• Local mapping: introduce gauge-invariant spin 1/2 variables:

$$X_{i+1/2} = \sigma_{i+1/2}^x, \qquad Y_{i+1/2} = -i\tilde{\gamma}_i \sigma_{i+1/2}^y \gamma_{i+1} \qquad Z_{i+1/2} = -i\tilde{\gamma}_i \sigma_{i+1/2}^z \gamma_{i+1}.$$

• The Hamiltonian becomes:

$$H = \frac{\mu}{2} \sum_{j} X_{j-1/2} X_{j+1/2} - t \sum_{j} Z_{j+1/2} - h \sum_{j} X_{j+1/2}.$$

• Local mapping: introduce gauge-invariant spin 1/2 variables:

$$X_{i+1/2} = \sigma_{i+1/2}^x, \qquad Y_{i+1/2} = -i\tilde{\gamma}_i \sigma_{i+1/2}^y \gamma_{i+1} \qquad Z_{i+1/2} = -i\tilde{\gamma}_i \sigma_{i+1/2}^z \gamma_{i+1}.$$

The Hamiltonian becomes:

$$H = \frac{\mu}{2} \sum_{j} X_{j-1/2} X_{j+1/2} - t \sum_{j} Z_{j+1/2} - h \sum_{j} X_{j+1/2}.$$

• Phase diagram is known, \mathbb{Z}_2 gauge theory interpretation is not!

Higgs = SPT

$$H = \frac{\mu}{2} \sum_{j=1}^{L} X_{j-1/2} X_{j+1/2} - t \sum_{j=1}^{L-1} Z_{j+1/2},$$

Edge operators #1

• Does not depend on $Z_{1/2}$ and $Z_{L+1/2}$ which are fermionic:

$$Z_{1/2} = \sigma_{1/2}^z \gamma_1, \qquad Z_{L+1/2} = \tilde{\gamma}_L \sigma_{L+1/2}^z$$

- Two additional symmetries localized at the edge: $X_{1/2}$ and $X_{L+1/2}$
- They anticommute with W: GS is at least 2-fold degenerate.

Higgs = SPT

$$H = \frac{\mu}{2} \sum_{j=1}^{L} X_{j-1/2} X_{j+1/2} - t \sum_{j=1}^{L-1} Z_{j+1/2},$$

Edge operators #1

• Does not depend on $Z_{1/2}$ and $Z_{L+1/2}$ which are fermionic:

$$Z_{1/2} = \sigma_{1/2}^z \gamma_1, \qquad Z_{L+1/2} = \tilde{\gamma}_L \sigma_{L+1/2}^z$$

- Two additional symmetries localized at the edge: $X_{1/2}$ and $X_{L+1/2}$
- They anticommute with W: GS is at least 2-fold degenerate.

Edge operators #2

One can construct

$$\gamma_{\text{left}} = Y_{1/2} - \frac{\mu}{2t} Z_{1/2} Y_{1+1/2} + \left(-\frac{\mu}{2t}\right)^2 Z_{1/2} Z_{1+1/2} Y_{2+1/2} + \cdots$$

- $[\gamma_{\text{left}}, H] = O\left(\left(-\frac{\mu}{2t}\right)^L\right) \longrightarrow 0$ in the Higgs phase.
- $X_{1/2}$ and γ_{left} anticommute: 2-fold GS degeneracy at left edge!
- Same for right edge. 4-fold in total!

Gentle Gauging - Overview

Gentle Gauging - Overview

Motivation

- Gauging is a drastic operation, radically changes the physics at play.
- Can the gauged and ungauged models emerge from a unified framework?

Gentle Gauging - Overview

Motivation

- Gauging is a drastic operation, radically changes the physics at play.
- Can the gauged and ungauged models emerge from a unified framework?

Hamiltonian

• We consider the Hamiltonian

$$H = \sum_{j} \left(it \tilde{\gamma}_{j} \sigma_{j+1/2}^{z} \gamma_{j+1} + i\frac{\mu}{2} \tilde{\gamma}_{j} \gamma_{j} - h\sigma_{j+1/2}^{x} - iK\sigma_{j-1/2}^{x} \tilde{\gamma}_{j} \gamma_{j} \sigma_{j+1/2}^{x} - \frac{t^{2}}{K} \sigma_{i+1/2}^{z} \right)$$

- As $K \to 0$, we recover the Kitaev chain. Gauge d.o.f. are still present, but frozen to $\sigma^z = 1$ due to the 1/K term.
- For K→∞ we have the gauged Kitaev chain. The Gauss law is enforced energetically by the K term.

Global $\mathbb{Z}_2^f imes \mathbb{Z}_2$ symmetry

• Parity $P = \prod_j \left(i \tilde{\gamma}_j \gamma_j \right)$

• Wilson Loop
$$W = \prod_j \sigma_{j+1/2}^z$$

• Phases are characterized in terms of these two symmetries.

Phases I and II

These are the topological and trivial Kitaev phases respectively. Link spins form a paramagnet.

Phases I and II

These are the topological and trivial Kitaev phases respectively. Link spins form a paramagnet.

Phase III

As $\mu \to \infty$ all sites are occupied: $i \tilde{\gamma}_i \gamma_i = -1$. Hamiltonian for the links:

$$H = \sum_{j} K \sigma_{j-1/2}^{x} \sigma_{j+1/2}^{x} - \frac{t^2}{K} \sigma_{j+1/2}^{z}$$

Ising transition in the link variables. Phase III (|K/t| > 1) is ordered (SSB). Connects to the deconfined phase of the gauged Kitaev chain.

Phases I and II

These are the topological and trivial Kitaev phases respectively. Link spins form a paramagnet.

Phase III

As $\mu \to \infty$ all sites are occupied: $i \tilde{\gamma}_i \gamma_i = -1$. Hamiltonian for the links:

$$H = \sum_{j} K \sigma_{j-1/2}^{x} \sigma_{j+1/2}^{x} - \frac{t^{2}}{K} \sigma_{j+1/2}^{z}$$

Ising transition in the link variables. Phase III (|K/t| > 1) is ordered (SSB). Connects to the deconfined phase of the gauged Kitaev chain.

Phase IV

This is the SPT (Higgs) phase of the gauged Kitaev chain. It can be mapped to a stack of two Kitaev chains through a *local* mapping.

Phase diagram at finite \boldsymbol{h}

Phase diagram at finite \boldsymbol{h}

- Magnetic symmetry is explicitly broken
- $K \rightarrow 0$ physics is unchanged. The *h*-term here is negligible.
- As $K\to\infty$ the symmetry broken phase survives only for $\mu>0.$ The SPT character of the Higgs phase is lost.
- Large *h*: analytical results from perturbation theory.

Phase diagram at finite h

- Magnetic symmetry is explicitly broken
- $K \rightarrow 0$ physics is unchanged. The *h*-term here is negligible.
- As $K\to\infty$ the symmetry broken phase survives only for $\mu>0.$ The SPT character of the Higgs phase is lost.
- Large h: analytical results from perturbation theory.

• Why are the trivial phases not connected? Distinct, protected by fermion parity and translational symmetry! (*Fuji et al. 2015*)

Take-home messages

• In the presence of boundaries, gauging a global symmetry does not eliminate it completely. Near the edges it survives and enriches the quantum phase diagram of the system.

Take-home messages

- In the presence of boundaries, gauging a global symmetry does not eliminate it completely. Near the edges it survives and enriches the quantum phase diagram of the system.
- Interpolating between gauged and ungauged versions of a model can unveil a rich phenomenology, with unusual quantum criticality.

Take-home messages

- In the presence of boundaries, gauging a global symmetry does not eliminate it completely. Near the edges it survives and enriches the quantum phase diagram of the system.
- Interpolating between gauged and ungauged versions of a model can unveil a rich phenomenology, with unusual quantum criticality.
- Minimal example: gauging the simplest of symmetries -fermion parity- in one of the most elementary models in condensed matter physics.

Take-home messages

- In the presence of boundaries, gauging a global symmetry does not eliminate it completely. Near the edges it survives and enriches the quantum phase diagram of the system.
- Interpolating between gauged and ungauged versions of a model can unveil a rich phenomenology, with unusual quantum criticality.
- Minimal example: gauging the simplest of symmetries -fermion parity- in one of the most elementary models in condensed matter physics.

Future directions

• Claim (Higgs=SPT): any magnetic-symmetry-preserving phase in the gauge theory must be a nontrivial SPT! (Work in progress)

Take-home messages

- In the presence of boundaries, gauging a global symmetry does not eliminate it completely. Near the edges it survives and enriches the quantum phase diagram of the system.
- Interpolating between gauged and ungauged versions of a model can unveil a rich phenomenology, with unusual quantum criticality.
- Minimal example: gauging the simplest of symmetries -fermion parity- in one of the most elementary models in condensed matter physics.

Future directions

- Claim (Higgs=SPT): any magnetic-symmetry-preserving phase in the gauge theory must be a nontrivial SPT! (Work in progress)
- Investigate similar phenomenology in related models. Example: \mathbb{Z}_3 parafermions.