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A Primer on Crystals
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Crystals are ubiquitous in nature and they represent a striking
example of LLandau’s spontaneous symmetry breaking paradigm.

Space-1ranslation Symmetry 1s spontaneously broken in crystals!

Consequence: Phonon Modes!



T1me Crystals

| Selected for a Viewpoint in Physics
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PRL 109, 160401 (2012) PHYSICAL REVIEW LETTERS 19 OCTOBER 3012
Quantum Time Crystals
Frank Wilczek

PRL 109, 163001 (2012)

|& Selected for a Viewpoint in Physics L endi
PHYSICAL REVIEW LETTERS 19 OCTOBER 3012

Tongcang Li," Zhe-Xuan Gong,”* Zhang-Qi Yin,>* H. T. Quan,’ Xiaobo Yin,' Peng Zhang,'

S
Space-Time Crystals of Trapped Ions

L.-M. Duan,*? and Xiang Zhang'®*

In 2012, Frank Wilczek introduced the notion of Time 1ranslation
Symmetry Breaking in Quantum Many-body Systems.

He dubbed this new phase of matter a “Quantum Time Crystal”.



Wilczek’s Model
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T. Li et al. Phys. Rev. Lett. 109, 163001 (2012)

Wilczek considered N attractively interacting bosons 1n an

Aharonov-Bohm (AB) ring of unit length.

When gy(N — 1) < — z° and a = 0, ¢, becomes non-
uniform and the ground state comprises bright solitons.

Central 1dea: A finite AB flux would cause the lump of
charge to teel a simple torque. '1'his will cause the lump to
move and lead to spontaneous breaking of Time-
Translation Symmetry



Problems with Wilczek’s Model
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PRL 111, 070402 (2013) PHYSICAL REVIEW LETTERS 16 AUGUST 2013

Impossibility of Spontaneously Rotating Time Crystals: A No-Go Theorem

Patrick Bruno™

Time crystals: Can diamagnetic currents drive a charge density
wave into rotation?

EPL 103 57008 (2013).
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PRL 114, 251603 (2015) PHYSICAL REVIEW LETTERS 26 JUNE 2015

Absence of Quantum Time Crystals

Haruki Watanabe"" and Masaki Oshikawa®'

The state posited by Wilczek was not the ground state ot the
model. The ground state of this system 1s one where the soliton
does not move.

More generally, time translation symmetry breaking is not possible
in the eround state or 1n equilibrium.



Circumventing the Issue:
Resort to Non-Equilibrium

d0i:10.1038/nature21413

Observation of a discrete time crystal

J. Zhang!, P. W. Hess', A. Kyprianidis', P. Becker’, A. Lee!, J. Smith!, G. Pagano', I.-D. Potirniche?, A. C. Potter?, A. Vishwanath®4,
N. Y. Yao? & C. Monroe!+”
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PRL 119, 250602 (2017) PHYSICAL REVIEW LETTERS 22 DECEMBER 2017

Time Crystal Behavior of Excited Eigenstates

Andrzej Syrwid,' Jakub Zakrzewski,> and Krzysztof Sacha'”’

PHYSICAL REVIEW LETTERS 121, 035301 (2018)

Boundary Time Crystals

F. Iemini,’ A. Russomanno,”' J. Keeling,” M. Schird,* M. Dalmonte,' and R. Fazio'*

Non-stationarity and dissipative time crystals: spectral
properties and finite-size effects

Cameron Booker' {2, Berislav Bu¢a' and Dieter Jaksch'
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Discrete '11me Crystals
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A Discrete 'Time Crystal (D'TC) 1s a periodically driven system, where
physical observables oscillate with a subharmonic frequency.



Discrete '11me Crystals

In order to quality as a Discrete Time Crystal, there should be a class
of observables, O and 1nitial states |y) such that f(r) = (y| O®) | y)
satisty the following 3 conditions:

A. Time Iranslation Symmetry Breaking: f(r + T) # f(¢), while
H(t+T)=H®)

B. Rigidity: f(¥) shows a fixed oscillation frequency without fine-tuned
Hamiltonian parameters.

C. Persistence: 'The nontrivial oscillation with fixed frequency must
persist indefinitely when L — 0.

Ref: Biao Huang, Ying-Hai Wu, and W. Vincent Liu, Phys. Rev. Lett. 120, 110603 (2018)



Recipe for Realizing a D'1'C

Periodically driven systems typically heat up to a featureless infinite
temperature state. '1'his heating can be evaded in a many-body

localized system.
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Recipe for Realizing a D'1'C

Periodically driven systems typically heat up to a featureless infinite
temperature state. '1'his heating can be evaded in a many-body

localized system.
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T1me Crystal Dynamics

Pertect JU -Pulse, ¢ =0
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T1me Crystal Dynamics

Pertect JU -Pulse, ¢ =0

[ TT...11)—> Il ) —[1TT...1T1)

Period doubling oscillations
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T1me Crystal Dynamics

Pertect JU -Pulse, ¢ =0

[ TT...11)—> Il ) —[1TT...1T1)

Period doubling oscillations

Impertect 7T-Pulse, € # 0
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T1me Crystal Dynamics

Pertect 7T -Pulse, ¢ =0

[ TT...11)—> Il ) —[1TT...1T1)

Period doubling oscillations

Impertect JT-Pulse, € 75 0
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Issues With Many-Body

lL.ocalization

 Many-Body localization places very stringent bounds on the
range of interactions, symmetries and dimensionality ot the
system (see: Gopalakrishnan and Parameswaran, Phys. Rep.

862, 1 (2020)).

e Furthermore, MBL may not even be possible in the
Thermodynamic Limit (see: Jan Suntajs, Janez Bonca, Tomaz

Prosen, and Lev Vidmar, Phys. Rev. E 102, 062144 (2020))

e Practicallyy MBL can lead to long lived transient dynamics,
making it very difhicult to access long-time dynamics.
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Issues With Many-Body

lL.ocalization

 Many-Body localization places very stringent bounds on the
range of interactions, symmetries and dimensionality ot the
system (see: Gopalakrishnan and Parameswaran, Phys. Rep.

862, 1 (2020)).

e Furthermore, MBL may not even be possible in the
Thermodynamic Limit (see: Jan Suntajs, Janez Bonca, Tomaz

Prosen, and Lev Vidmar, Phys. Rev. E 102, 062144 (2020))

e Practicallyy MBL can lead to long lived transient dynamics,
making it very difhicult to access long-time dynamics.

o)
Is MBL necessary to realize a DTC? “/



D'T'C without MBL

Observation of discrete time-crystalline orderina
disordered dipolar many-body system

Soonwon Choi, Joonhee Choi, Renate Landig, Georg Kucsko, Hengyun Zhou, Junichi Isoya, Fedor
Jelezko, Shinobu Onoda, Hitoshi Sumiya, Vedika Khemani, Curt von Keyserlingk, Norman Y. Yao,
Eugene Demler & Mikhail D. Lukin

Nature 543, 221-225(2017) | Cite this article

PHYSICAL REVIEW LETTERS 120, 110603 (2018)

Clean Floquet Time Crystals: Models and Realizations in Cold Atoms
Biao Huang,"" Ying-Hai Wu,” and W. Vincent Liu">*"

PHYSICAL REVIEW LETTERS 120, 180602 (2018)

Temporal Order in Periodically Driven Spins in Star-Shaped Clusters

Soham Pal, Naveen Nishad, T. S. Mahesh, and G.J. Sreejith

Question: What is the simplest model where a DTC can arise
in the absence of MBL?

19



Our Model

We consider a periodically driven one-dimensional spin-chain

AL
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H(ty= ) Y JSiS+ ) (m—e)Sis(t — nT)

J
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We consider 2 different types of interaction:

(a) Nearest Neighbor Ising interaction
(b) Infinite Range Ising interaction
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Our Model

We consider a periodically driven one-dimensional spin-chain

AL

$ 444343344
NALV

H(ty= ) Y JSiS+ ) (m—e)Sis(t — nT)

J
I J#I

We consider 2 different types of interaction:

(a) Nearest Neighbor Ising interaction
(b) Infinite Range Ising interaction

When € = 0, the chain exhibits a sub-harmonic response with frequency @/2.
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2-Pulse Analysis

Perfect 7T Pulse
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2-Pulse Analysis

Perfect 7T Pulse

[ TT...11)—> [ll... ) —[1TT...1T1)

Impertect 7T Pulse, € #0

T ) = )

—cos(e)¥ 1sin(e)

R 2,

(— 1)"cos(e)-"sin(e)"

In general, no
perfect revival

[l )

Question: How can we recover the initial state after 2 pulses?

23
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Creating a time-crystal

For a small deviation from the perfect JT pulse (when [e¢? « 1), we can
just consider 2 pathways to examine the dynamics.

We consider the nearest neighbor Ising model where the Ising coupling

1sJ

R o Cr G I N GO

Lblll...T...ll)—/

—cos(e) Isin(e) —cos(e)*t?sin(e)’exp(—iJT)
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Creating a time-crystal

For a small deviation from the perfect JT pulse (when [e¢? « 1), we can
just consider 2 pathways to examine the dynamics.

We consider the nearest neighbor Ising model where the Ising coupling

1sJ

R o Cr G I N GO

Lblll...T...ll)—/

—cos(e) Isin(e) —cos(e)*t?sin(e)’exp(—iJT)

When JT = x, these two pathways intertere constructively.



Results: D'T'CG Dynamics
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Results: Lifetime
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Ref: Sayan Choudhury (arXiv:2104.05201)
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Results: Lifetime
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The DTC lifetime 1s maximum when /7T = 7
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Results: Lifetime
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The DTC lifetime is maximum when /7T = 7

The DTC lifetime shows a significant enhancement for even size chains
when JT ~ 7.
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Results: Lifetime
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Ref: Sayan Choudhury (arXiv:2104.05201)
The DTC lifetime is maximum when /7T = 7

The DTC lifetime shows a significant enhancement for even size chains
when JT ~ 7. Why?




An Eternal Time Crystal

Our model possesses a time reflection symmetry when JT = x:

L
O'ixl IG.Z.

1 j=1

L
RU(T)R" = exp(—iLz/2)U(T), where R =

l
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An Eternal Time Crystal

Our model possesses a time reflection symmetry when JT = x:

L
O'ixl IG.Z.

1 j=1

L
RU(T)R" = exp(—iLz/2)U(T), where R =

l

As a consequence of this symmetry, there are at least 21/ states

exactly at quasi-energies 0 and 7 for even size systems. (ladecola

and Hsieh, Phys. Rev. Lett. 120, 210603 (2018)).
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An Eternal Time Crystal

Our model possesses a time reflection symmetry when JT = x:

L
O'ixl IG.Z.

1 j=1

L
RU(T)R" = exp(—iLz/2)U(T), where R =

l

As a consequence of this symmetry, there are at least 21/ states
exactly at quasi-energies 0 and 7 for even size systems. (ladecola

and Hsieh, Phys. Rev. Lett. 120, 210603 (2018)).

Due to the existence of such “z-spectral paired” states, this system
can exhibit infinitely long lived period doubling oscillations for
certain initial states.



An Eternal Time Crystal
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An Eternal Time Crystal

Let us consider a pair of such states whose quasi-energies otter by z: |yy)
and |y).

Let us initialize the system in the state |w(t = 0)) = |yy) + |w,)
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An Eternal Time Crystal

Let us consider a pair of such states whose quasi-energies otter by z: |yy)
and |y).

Let us initialize the system in the state |w(t = 0)) = |yy) + |w,)
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An Eternal Time Crystal
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and |y).

Let us initialize the system in the state |w(t = 0)) = |yy) + |w,)
At time T, we get: |w(t =T)) = |yy) — |w,)
At time 2'T, we get: |y (t =2T)) = |yp) + |yy) = |yw( = 0))

More generally, we get at time 2n'l] |w(t = 2nT)) = |y(t = 0))

38



39

An Eternal Time Crystal

Let us consider a pair of such states whose quasi-energies otter by z: |yy)
and |y).

Let us initialize the system in the state |w(t = 0)) = |yy) + |w,)
At time T, we get: |w(t =T)) = |yy) — |w,)
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More generally, we get at time 2n'l] |w(t = 2nT)) = |y(t = 0))

Perfect Revival #Eternal Period-doubling oscillations
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An Eternal Time Crystal

Let us consider a pair of such states whose quasi-energies otter by z: |yy)
and |y).
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Caveat: In this model and eternal D'TC can be realized for very few
mnitial states.
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An Eternal Time Crystal

Let us consider a pair of such states whose quasi-energies otter by z: |yy)
and |y).

Let us initialize the system in the state |w(t = 0)) = |yy) + |w,)
At time T, we get: |w(t =T)) = |yy) — |w,)
At time 2'T, we get: |y (t =2T)) = |yp) + |yy) = |yw( = 0))

More generally, we get at time 2n'l] |w(t = 2nT)) = |y(t = 0))

Perfect Revival #Eternal Period-doubling oscillations

Caveat: In this model and eternal D'TC can be realized for very few
mnitial states.

Question: Can we overcome this issue?



An Eternal Time Crystal

PHYSICAL REVIEW RESEARCH 2, 033070 (2020)
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Eternal discrete time crystal beating the Heisenberg limit

Changyuan Lyu®,! Sayan Choudhury,! Chenwei Lv®,! Yanggian Yan,’»?"" and Qi Zhou'-%>T
' Department of Physics and Astronomy, Purdue University, 525 Northwestern Avenue, West Lafayette, Indiana 47907, USA
2Center for Science of Information, Purdue University, West Lafayette, Indiana 47907, USA
3 Purdue Quantum Science and Engineering Institute, Purdue University, 1205 West State Street, West Lafayette, Indiana 47907, USA

® (Received 23 August 2019; accepted 28 June 2020; published 14 July 2020)

A discrete time crystal (DTC) repeats itself with a rigid rhythm, mimicking a ticking clock set by the interplay
between its internal structures and an external force. Discrete time crystals promise profound applications
in precision timekeeping and other quantum techniques. However, it has been facing a grand challenge of
thermalization. The periodic driving supplying the power may ultimately bring DTCs to thermal equilibrium and
destroy their coherence. Here we show that an all-to-all interaction delivers a DTC that evades thermalization
and maintains quantum coherence and quantum synchronization regardless of spatial inhomogeneities in the
driving field and the environment. Moreover, the sensitivity of this DTC scales with the total particle number
to the power of 3/2, realizing a quantum device of measuring the driving frequency or the interaction strength
beyond the Heisenberg limit. Our work paves the way for designing nonequilibrium phases with long coherence
time to advance quantum metrology.



Infinite-Range Interactions
AR
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H(t)y=2]) Y S8+ ) (x—€)Si5(t—nT)
I J#I l
An 1nfinite range interacting Ising model can give rise to a perfect
revival after every 2 pulses for any value of €'!

Conditions: (1) JT = & and

(2) The number of particles 1s even
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A Pertect Eternal 11me-Crystal 44

Impertect 7T Pulse, € #0

)2L

A1 ) == ) =D 1 1)



A Pertect Eternal 11me-Crystal 45

Impertect 7T Pulse, € #0
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Impertect 7T Pulse, € #0
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Impertect 7T Pulse, € #0
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Impertect 7T Pulse, € #0
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Here, the dynamical phase ¢,, = m(L —m)JT
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Impertect 7T Pulse, € #0

cos(e)*t
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\\, —cos(e)-sin(e) e'? cos(e)**sin(e)?
L1l

e o ©

[ L)

)Zm

sin(e

Here, the dynamical phase ¢,, = m(L —m)JT

When JT = 7, there is a perfect many-body constructive
interference after every even pulse for any value of ¢!



Return Probability
PQnT) = | (y(2nT) |y(0)) |

Results
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Results

Return Probability
PQnT) = | (y(2nT) |y(0)) |
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Local Magnetization

1
c(2nT) = z(w(ZnT )| o7 |w(2nT))

51



Results

Return Probability Local Magnetization
1

P2nT) = | (w(2nT) | w(0)) | o(@nT) = —(y(2nT) | o7 |y(2nT))
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A perfect revival of the initial state occurs when JT =7
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Robustness of the D'1C

|'¥(07)) |W(T7)) |W(2T7))
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“@"Q (=1 HCOS( )sm( /)
e @@@ jeF
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0 T 2T

These eternal period doubling oscillations are observed for:
(A) Any Z, symmetry breaking initial state.
(B) Even 1f € varies spatially
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Comparison with MBL.:

Spatially Inhomogeneous Pulse
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Comparison with MBL.:

Spatially Inhomogeneous Pulse

Our
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Our model exhibits eternal period doubling oscillations
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What it Interactions are not
Infinite Range
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An Important Gaveat

The pertect revival disappears when JT # 7.

AN YT
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An Important Gaveat

The pertect revival disappears when JT # 7.

— § = 0.0057
0~ *r =6 = 0.017 -

0 20 40 60 0 100 0 20 40 60 80 100
T n

o= |JT— x| e = /4 L =200

This feature can actually be useful!



Use in Metrology
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This beats the Heisenberg Limit!
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Use in Metrology

The Quantum Fisher Information, [, is given by:

: I_Fe
IJT(ZHT)=£1_I>I})4 o

F. = [(¥(07)|Usr @nT)Ujr 4 (—2nT)|W(07))|?
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Use in Metrology

The Quantum Fisher Information, [, is given by:

: I_Fe
IJT(ZHT)=£1_I>I})4 o

F. = [(¥(07)|Usr @nT)Ujr 4 (—2nT)|W(07))|?

Analytically, we obtain

2
I.2nT) = nz[sinz(Zé N3 + 2 sin (G)N?]
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Use in Metrology

The Quantum Fisher Information, [, is given by:

: I_Fe
IJT(ZHT)=£1_I>I})4 o

F. = [(¥(07)|Usr @nT)Ujr 4 (—2nT)|W(07))|?

Analytically, we obtain

2
I.2nT) = nz[sinz(Zé N3 + 2 sin (G)N?]

T'he uncertainty 1n estimating J7 1s:

Ajp > 14/T,2nT) ~ n~'N~"
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Use in Metrology

The Quantum Fisher Information, [, is given by:

. l_Fe
I]T(ZHT) = !l_I)I%)‘I- )

F. = [(¥(07)|Usr @nT)Ujr 4 (—2nT)|W(07))|?

9

Analytically, we obtain

2
I.2nT) = ”Z[sinz(zé N3 + 2 sin*(0)N?]

T'he uncertainty 1n estimating J7 1s:

Ajp > 14/T,2nT) ~ n~'N~"

This beats the Linear Heisenberg
Limit!




Experimental Realization

Credit: Garsten Klempt Group

Cavity QED BEC 1n a Double-well

Credit: Tilman Esslinger Group

T EEEELL

Credit: Norman Yao Group

lon Trap
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Further Connections
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Yang-Yang Chen,"? Pengfei Zhang,’> Wei Zheng ©,* Zhigang Wu®,"" and Hui Zhai ©3>-7

PHYSICAL REVIEW X 11, 011057 (2021)

Suppressing Dissipation in a Floquet-Hubbard System

Konrad Viebahn ,* Joaquin Minguzzi, Kilian Sandholzer, Anne-Sophie Walter, Manish Sajnani,
Frederik Gorg, and Tilman Esslinger



Coming Soon!!

Self-ordered Time Crystals in a Quasiperiodically Driven Spin Chain

Sayan Choudhury!''* and W. Vincent Liul'2:3:4 T

! Department of Physics and Astronomy, University of Pittsburgh, Pittsburgh, PA 15260, USA
2 Wilczek Quantum Center, School of Physics and Astronomy and T. D. Lee Institute,
Shanghai Jiao Tong University, Shanghai 200240, China
3Shanghai Research Center for Quantum Sciences, Shanghai 201315, China
4 Shenzhen Institute for Quantum Science and Engineering and Department of Physics,
Southern University of Science and Technology, Shenzhen 518055, China
(Dated: July 21, 2021)

Recent work has demonstrated that quasiperiodically driven many-body localized systems can
host a rich array of non-equilibrium quantum phases of matter. Motivated by the question of
whether such phases can arise in the absence of disorder, we investigate the dynamics of a Lipkin-
Meshkov-Glick model under quasiperiodic kicking. Intriguingly, we find that this infinite range
interacting spin chain can exhibit long-lived periodic oscillations when the kicking amplitudes are
drawn from the Thue-Morse sequence (TMS). We dub this phase a “self-ordered time crystal”
(SOTC) and establish that it is prethermal in nature. We demonstrate that this system can host
at least two qualitatively distinct kinds of SOTC phases, and trace the origin of these phases to
the recursive structure of the TMS. Furthermore, we demonstrate the robustness of the SOTCs
under different kinds of perturbations. Owur results suggest that quasiperiodic driving protocols
can provide a promising route for realizing novel non-equilibrium phases of matter in long-range
interacting systems.
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Conclusion

We have proposed a scheme for extending the lifetime of discrete time-
crystals 1n disorder free systems by optimizing the interaction strength (or
the driving frequency) for both short and long-range interacting systems.

We have shown that for an infinite range interacting spin chain, we can
create an eternal time crystal that would show perfect revival after an
even number of pulses, due to a perfect many-body constructive
interference.

T'his eternal time crystal can be usetul for performing precision
measurements.

Our scheme can be easily realized 1n various quantum simulator
platforms.
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