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A Primer on Crystals

Crystals are ubiquitous in nature and they represent a striking 
example of  Landau’s spontaneous symmetry breaking paradigm. 

Space-Translation Symmetry is spontaneously broken in crystals! 

Consequence: Phonon Modes!

∑
i

p2
i

2mi
+ ∑

i≠j
V(ri − rj)
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Time Crystals

In 2012, Frank Wilczek introduced the notion of  Time Translation 
Symmetry Breaking in Quantum Many-body Systems. 

He dubbed this new phase of  matter a “Quantum Time Crystal”.
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Wilczek’s Model

Wilczek considered N attractively interacting bosons in an 
Aharonov-Bohm (AB) ring of  unit length. 

When  and ,  becomes non-
uniform and the ground state comprises bright solitons. 

Central idea: A finite AB flux would cause the lump of  
charge to feel a simple torque. This will cause the lump to 
move and lead to spontaneous breaking of  Time-
Translation Symmetry

g0(N − 1) < − π2 α = 0 ϕ0
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T. Li et al. Phys. Rev. Lett. 109, 163001 (2012)

Ground State Ansatz:

H =
N

∑
i=1

(pi − α)2

2 + g0
2 ∑

i≠j
δ(xi − xj)

ψ(x) =
N

∏
i=1

ϕ0(xi)



Problems with Wilczek’s Model

The state posited by Wilczek was not the ground state of  the 
model. The ground state of  this system is one where the soliton 
does not move. 

More generally, time translation symmetry breaking is not possible 
in the ground state or in equilibrium.
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Circumventing the Issue: 
Resort to Non-Equilibrium
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Discrete Time Crystals

A Discrete Time Crystal (DTC) is a periodically driven system, where 
physical observables oscillate with a subharmonic frequency. 

Interaction Pulse PulseInteraction Interaction

Drive Period, T

Oscillation Period, 2T
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Discrete Time Crystals
In order to qualify as a Discrete Time Crystal, there should be a class 
of  observables,  and initial states  such that  
satisfy the following 3 conditions: 

A. Time Translation Symmetry Breaking: , while 
 

B. Rigidity:  shows a fixed oscillation frequency without fine-tuned 
Hamiltonian parameters. 

C. Persistence: The nontrivial oscillation with fixed frequency must 
persist indefinitely when .

O |ψ⟩ f(t) = ⟨ψ |O(t) |ψ⟩

f(t + T ) ≠ f(t)
H(t + T ) = H(t)

f(t)

L → ∞
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Ref: Biao Huang, Ying-Hai Wu, and W. Vincent Liu, Phys. Rev. Lett. 120, 110603 (2018) 
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Periodically driven systems typically heat up to a featureless infinite 
temperature state. This heating can be evaded in a many-body 
localized system.  

Recipe for Realizing a DTC



Recipe for Realizing a DTC
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H = H1 + V δ(t − nT )

H1 = ∑
i

Jz
i σz

i σz
i+1 + Bz

i σz
i

V = ( π
2 − ϵ)∑

i
σx

i

Disordered  
Interactions

Onsite 
Disorder

Yao et al. PRL 118, 030401 (2017)  
Imperfect  

-pulseπ

Periodically driven systems typically heat up to a featureless infinite 
temperature state. This heating can be evaded in a many-body 
localized system.  

Model: 
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Perfect      -Pulse,  ϵ = 0π
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| ↑ ↑ … ↑ ↑ ⟩ | ↑ ↑ … ↑ ↑ ⟩| ↓ ↓ … ↓ ↓ ⟩

Perfect      -Pulse,  ϵ = 0π

Period doubling oscillations

Imperfect      -Pulse,  ϵ ≠ 0π
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Issues With Many-Body 
Localization

• Many-Body localization places very stringent bounds on the 
range of  interactions, symmetries and dimensionality of  the 
system (see: Gopalakrishnan and Parameswaran, Phys. Rep. 
862, 1 (2020)). 

• Furthermore, MBL may not even be possible in the 
Thermodynamic Limit (see: Jan Šuntajs, Janez Bonča, Tomaž 
Prosen, and Lev Vidmar, Phys. Rev. E 102, 062144 (2020)) 

• Practically, MBL can lead to long lived transient dynamics, 
making it very difficult to access long-time dynamics. 
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Is MBL necessary to realize a DTC?



DTC without MBL

Question: What is the simplest model where a DTC can arise 
in the absence of  MBL?
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Our Model
We consider a periodically driven one-dimensional spin-chain 

z

z

z

z
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H(t) = ∑
i

∑
j≠i

JijSz
i Sz

j + ∑
i

(π − ϵ)Sx
i δ(t − nT )

We consider 2 different types of  interaction: 

(a) Nearest Neighbor Ising interaction 
(b) Infinite Range Ising interaction



Our Model
We consider a periodically driven one-dimensional spin-chain 

H(t) = ∑
i

∑
j≠i

JijSz
i Sz

j + ∑
i

(π − ϵ)Sx
i δ(t − nT )

z

z

z

z

We consider 2 different types of  interaction: 

(a) Nearest Neighbor Ising interaction 
(b) Infinite Range Ising interaction

When           , the chain exhibits a sub-harmonic response with frequency        . ϵ = 0 ω/2
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| ↑ ↑ … ↑ ↑ ⟩ | ↑ ↑ … ↑ ↑ ⟩| ↓ ↓ … ↓ ↓ ⟩

π

2-Pulse Analysis
Perfect       Pulse
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2-Pulse Analysis

| ↑ ↑ … ↑ ↑ ⟩ | ↑ ↑ … ↑ ↑ ⟩| ↓ ↓ … ↓ ↓ ⟩

Perfect       Pulseπ

Imperfect       Pulse,π ϵ ≠ 0

| ↑ ↑ … ↑ ↑ ⟩ | ↓ ↓ … ↓ ↓ ⟩

| ↓ ↓ … ↑ … ↓ ↓ ⟩

| ↓ ↓ … ↓ ↓ ⟩
…

−cos(ϵ)L−1sin(ϵ)

(−1)mcos(ϵ)L−msin(ϵ)m

sin(ϵ)L }In general, no 
perfect revival 

Question: How can we recover the initial state after 2 pulses?

cos(ϵ)L
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Creating a time-crystal
For a small deviation from the perfect     pulse (when              ), we can 
just consider 2 pathways to examine the dynamics.   

We consider the nearest neighbor Ising model where the Ising coupling 
is J

| ↑ ↑ … ↑ ↑ ⟩ | ↑ ↑ … ↑ ↑ ⟩| ↓ ↓ … ↓ ↓ ⟩

| ↓ ↓ … ↑ … ↓ ↓ ⟩

cos(ϵ)L cos(ϵ)2L

−cos(ϵ)L−1sin(ϵ) −cos(ϵ)2L−2sin(ϵ)2exp(−iJT )

π Lϵ2 ≪ 1
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Creating a time-crystal
For a small deviation from the perfect     pulse (when              ), we can 
just consider 2 pathways to examine the dynamics.   

We consider the nearest neighbor Ising model where the Ising coupling 
is J

| ↑ ↑ … ↑ ↑ ⟩ | ↑ ↑ … ↑ ↑ ⟩| ↓ ↓ … ↓ ↓ ⟩

| ↓ ↓ … ↑ … ↓ ↓ ⟩

cos(ϵ)L cos(ϵ)2L

−cos(ϵ)L−1sin(ϵ) −cos(ϵ)2L−2sin(ϵ)2exp(−iJT )

π Lϵ2 ≪ 1

When            , these two pathways interfere constructively.JT = π
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Results: DTC Dynamics
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cos(ϵ)L cos(ϵ)2L

−cos(ϵ)L−1sin(ϵ) −cos(ϵ)2L−2sin(ϵ)2e(−iJT)

t = T t = 2T

(a)

(b) (c)

JT=� JT=0.15

0 200 400 600 800 1000
0.0
0.2
0.4
0.6
0.8
1.0

n

P
(2
nT

)

0.40 0.45 0.50 0.55 0.60
0.0
0.1
0.2
0.3
0.4

�

FF
T

0 500 1000
0

0.25
0.5
0.75
1

n

P
(2
nT

)

0 500 1000
0

0.25
0.5
0.75
1

n

P
(2
nT

)

�������

0.2

0.4

0.6

0.8

DTC

No 
TTSB

No 
TTSB

0.2 0.3 0.4 0.5 0.6 0.7 0.8
0

2

4

6

8

10

12

ω

FF
T

|ψ (t = 0)⟩ = | ↑ ↑ ↑ ↑ → ↑ ↑ ↑ ↑ ↑ ⟩

0.2 0.3 0.4 0.5 0.6 0.7 0.8
0

1

2

3

4

5

ω

FF
T

|ψ(t = 0)⟩ = | ↑ ↑ ↑ ↑ ↓ ↑ ↑ ↑ ↑ ↑ ⟩

(a)

(b)

0.05 0.06 0.07 0.08 0.09 0.10
-10

-8

-6

-4

-2

ϵ/π

Lo
g 1
0[
Δ π

/Δ
0]

0.05 0.06 0.07 0.08 0.09 0.10
-0.5

0.0

0.5

1.0

1.5

ϵ/π

Lo
g 1
0[
Δ π

/Δ
0]

0.05 0.06 0.07 0.08 0.09 0.10
-2.5
-2.0
-1.5
-1.0
-0.5
0.0

ϵ/π

Lo
g 1
0[
Δ π

/Δ
0]

(c)

0.05 0.06 0.07 0.08 0.09 0.10
-4

-3

-2

-1

0

ϵ/π

Lo
g 1
0[
Δ π

/Δ
0]J = π/10 J = π/4 J = 0.35π

J = 0.9π

0.05 0.06 0.07 0.08 0.09 0.10

-5
-4
-3
-2
-1
0

ϵ/π
Lo
g 1
0[
Δ π

/Δ
0]

(d)

J = π/2

0.05 0.06 0.07 0.08 0.09 0.10

-6

-4

-2

0

ϵ/π

Lo
g 1
0[
Δ π

/Δ
0] J = 3π/4

5 10 15
-1.0
-0.5
0.0
0.5
1.0

α

ϵ/
π

5 10 15
-1.0
-0.5
0.0
0.5
1.0

α

ϵ/
π

5 10 15
-1.0
-0.5
0.0
0.5
1.0

α

ϵ/
π

ωT/(2π)

ωT/(2π)

lo
g 1

0(Δ
π/

Δ 0
)

lo
g 1

0(Δ
π/

Δ 0
)

JT = π

ϵ = 0.1π

ϵ = 0.1π



Results: Lifetime
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Ref: Sayan Choudhury (arXiv:2104.05201)
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Ref: Sayan Choudhury (arXiv:2104.05201)
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Results: Lifetime
30

The DTC lifetime is maximum when  JT = π

Ref: Sayan Choudhury (arXiv:2104.05201)

The DTC lifetime shows a significant enhancement for even size chains 
when .  Why?JT ∼ π



An Eternal Time Crystal
Our model possesses a time reflection symmetry when : 

, where . 

JT = π

RU(T )R† = exp(−iLπ/2)U(T ) R =
L

∏
i=1

σx
i

L

∏
j=1

σz
j
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An Eternal Time Crystal
Our model possesses a time reflection symmetry when : 

, where . 

As a consequence of  this symmetry, there are at least   states 
exactly at quasi-energies 0 and   for even size systems. (Iadecola 
and Hsieh, Phys. Rev. Lett. 120, 210603 (2018)). 

JT = π

RU(T )R† = exp(−iLπ/2)U(T ) R =
L

∏
i=1

σx
i

L

∏
j=1

σz
j

2L/2

π
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An Eternal Time Crystal
Our model possesses a time reflection symmetry when : 

, where . 

As a consequence of  this symmetry, there are at least   states 
exactly at quasi-energies 0 and   for even size systems. (Iadecola 
and Hsieh, Phys. Rev. Lett. 120, 210603 (2018)). 

Due to the existence of  such “ -spectral paired” states, this system 
can exhibit infinitely long lived period doubling oscillations for 
certain initial states.

JT = π

RU(T )R† = exp(−iLπ/2)U(T ) R =
L

∏
i=1

σx
i

L

∏
j=1

σz
j

2L/2

π

π
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An Eternal Time Crystal
Let us consider a pair of  such states whose quasi-energies offer by :  
and . 

π |ψ0⟩
|ψπ⟩
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Question: Can we overcome this issue?

Perfect Revival Eternal Period-doubling oscillations 



An Eternal Time Crystal
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Infinite-Range Interactions

An infinite range interacting Ising model can give rise to a perfect 
revival after every 2 pulses for any value of     !


Conditions:  (1)                and 

                     (2) The number of  particles is even   

z

z

z

z

ϵ
JT = π

H(t) = 2J∑
i

∑
j≠i

Sz
i Sz

j + ∑
i

(π − ϵ)Sx
i δ(t − nT )
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| ↑ ↑ … ↑ ↑ ⟩ | ↑ ↑ … ↑ ↑ ⟩| ↓ ↓ … ↓ ↓ ⟩cos(ϵ)L cos(ϵ)2L

44

Imperfect       Pulse,π ϵ ≠ 0

A Perfect Eternal Time-Crystal



| ↑ ↑ … ↑ ↑ ⟩ | ↑ ↑ … ↑ ↑ ⟩| ↓ ↓ … ↓ ↓ ⟩cos(ϵ)L cos(ϵ)2L
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| ↓ ↓ … ↑ … ↓ ↓ ⟩
−cos(ϵ)L−1sin(ϵ) eiϕ1 cos(ϵ)2L−2sin(ϵ)2

A Perfect Eternal Time-Crystal
Imperfect       Pulse,π ϵ ≠ 0



| ↑ ↑ … ↑ ↑ ⟩ | ↑ ↑ … ↑ ↑ ⟩| ↓ ↓ … ↓ ↓ ⟩cos(ϵ)L cos(ϵ)2L
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| ↓ ↓ … ↑ … ↓ ↓ ⟩
−cos(ϵ)L−1sin(ϵ) eiϕ1 cos(ϵ)2L−2sin(ϵ)2

A Perfect Eternal Time-Crystal
Imperfect       Pulse,π ϵ ≠ 0

…(−1)mcos(ϵ)L−msin(ϵ)m eiϕm cos(ϵ)2L−2msin(ϵ)2m



| ↑ ↑ … ↑ ↑ ⟩ | ↑ ↑ … ↑ ↑ ⟩| ↓ ↓ … ↓ ↓ ⟩cos(ϵ)L cos(ϵ)2L
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| ↓ ↓ … ↑ … ↓ ↓ ⟩
−cos(ϵ)L−1sin(ϵ) eiϕ1 cos(ϵ)2L−2sin(ϵ)2

A Perfect Eternal Time-Crystal
Imperfect       Pulse,π ϵ ≠ 0

…(−1)mcos(ϵ)L−msin(ϵ)m eiϕm cos(ϵ)2L−2msin(ϵ)2m

| ↓ ↓ … ↓ ↓ ⟩sin(ϵ)L eiϕL sin(ϵ)2L
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A Perfect Eternal Time-Crystal
Imperfect       Pulse,π ϵ ≠ 0

…(−1)mcos(ϵ)L−msin(ϵ)m eiϕm cos(ϵ)2L−2msin(ϵ)2m
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Here, the dynamical phase ϕm = m(L − m)JT
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| ↓ ↓ … ↑ … ↓ ↓ ⟩
−cos(ϵ)L−1sin(ϵ) eiϕ1 cos(ϵ)2L−2sin(ϵ)2

A Perfect Eternal Time-Crystal
Imperfect       Pulse,π ϵ ≠ 0

…(−1)mcos(ϵ)L−msin(ϵ)m eiϕm cos(ϵ)2L−2msin(ϵ)2m

| ↓ ↓ … ↓ ↓ ⟩sin(ϵ)L eiϕL sin(ϵ)2L

Here, the dynamical phase ϕm = m(L − m)JT

When , there is a perfect many-body constructive 
interference after every even pulse for any value of  !

JT = π
ϵ
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JT = π

Return Probability Local Magnetization

A perfect revival of  the initial state occurs when JT = π



Robustness of  the DTC

These eternal period doubling oscillations are observed for: 
(A) Any  symmetry breaking initial state. 
(B) Even if   varies spatially

ℤ2
ϵ

cos( ϵi

2 )sin(
ϵj

2 )cos( ϵi

2 )sin(
ϵj

2 )
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Comparison with MBL: 
Spatially Inhomogeneous Pulse
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P(2nT ) σ(2nT )

Our 
Model

MBL

ϵ ∈ [−ws, ws]



Comparison with MBL: 
Spatially Inhomogeneous Pulse
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P(2nT ) σ(2nT )

Our 
Model

MBL

ϵ ∈ [−ws, ws]Our model exhibits eternal period doubling oscillations 



What if  Interactions are not 
Infinite Range
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An Important Caveat
The perfect revival disappears when .JT ≠ π
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δ = |JT − π | ϵ = π/4 L = 200
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An Important Caveat
The perfect revival disappears when .JT ≠ π
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This feature can actually be useful!



Use in Metrology
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FWHM

This beats the Heisenberg Limit!

ΔJT =

Δπ ∝ 1/N1.5
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Use in Metrology
The Quantum Fisher Information,    is given by:IJT



Analytically, we obtain
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Analytically, we obtain

The uncertainty in estimating  is:JT
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Use in Metrology
The Quantum Fisher Information,    is given by:IJT

ΔJT ≥ 1/ Iπ(2nT ) ∼ n−1N−3/2



Analytically, we obtain

The uncertainty in estimating  is:JT

63

Use in Metrology
The Quantum Fisher Information,    is given by:IJT

This beats the Linear Heisenberg 
Limit!

ΔJT ≥ 1/ Iπ(2nT ) ∼ n−1N−3/2



Experimental Realization
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Ion Trap Credit: Norman Yao Group

Credit: Tilman Esslinger Group

Cavity QED BEC in a Double-well

Credit: Carsten Klempt Group



Further Connections 
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Coming Soon!!
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Conclusion
• We have proposed a scheme for extending the lifetime of  discrete time-

crystals in disorder free systems by optimizing the interaction strength (or 
the driving frequency) for both short and long-range interacting systems. 

• We have shown that for an infinite range interacting spin chain, we can 
create an eternal time crystal that would show perfect revival after an 
even number of  pulses, due to a perfect many-body constructive 
interference. 

• This eternal time crystal can be useful for performing precision 
measurements. 

•  Our scheme can be easily realized in various quantum simulator 
platforms.
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Thank You
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