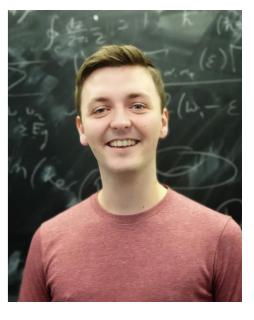
Fragility of Time Reversal Symmetry-Protected Topological Phases

Nigel Cooper Theory of Condensed Matter Group, Cavendish Laboratory, University of Cambridge

> Interacting Topological Matter: AMO Systems KITP Online, 20 July 2021

Work in collaboration with Max McGinley

[Max McGinley & NRC, PRL 121, 090401 (2018); Nature Physics 16, 1181 (2020)]



SIMONS FOUNDATION

Time Reversal Symmetry (TRS)

• Classical dynamics $\frac{\mathrm{d}\mathbf{r}}{\mathrm{d}t} = \frac{\mathrm{d}H}{\mathrm{d}\mathbf{p}}$ $\frac{\mathrm{d}\mathbf{p}}{\mathrm{d}t} = -\frac{\mathrm{d}H}{\mathrm{d}\mathbf{r}}$

TRS if equations of motion invariant under

 $t \to -t$ $r \to r$ $p \to -p$ \Rightarrow H(r,p) = H(r,-p)

• Quantum dynamics (spinless particle)

$$i\hbar \frac{d}{dt}\psi(\mathbf{r},t) = H\psi(\mathbf{r},t)$$

TRS if equations of motion invariant under

 $t \to -t \quad \psi(\mathbf{r}, t) \to K\psi(\mathbf{r}, t) \equiv \psi^*(\mathbf{r}, t) \implies KHK^{-1} = H \quad [K, H] = 0$

$$r \to KrK^{-1} = r$$

$$p \to KpK^{-1} = K\frac{\hbar}{i}\frac{d}{dr}K^{-1} = -p$$
anti-unitary operator $|\Psi\rangle \to \hat{\mathcal{O}}|\Psi\rangle$ $(\hat{\mathcal{O}}\Psi, \hat{\mathcal{O}}\Phi) = (\Psi, \Phi)^*$

Time Reversal Symmetry-Protected Quantum Phenomena

 $[\hat{O}, \hat{\mathscr{H}}] = 0$ for anti-unitary time reversal operator \hat{O}

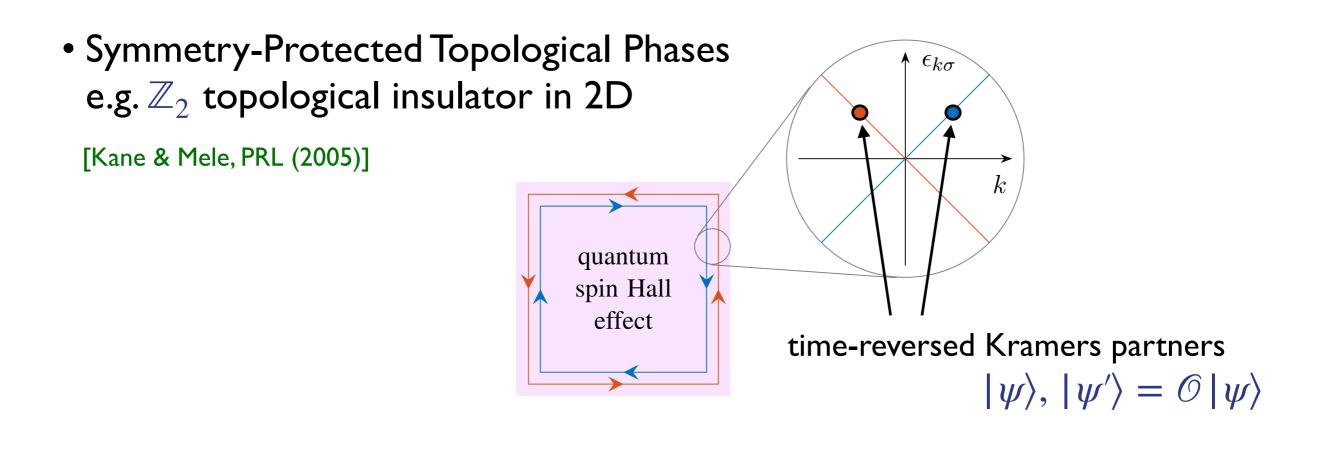
• Kramers' Degeneracy (half-integer spin system $\hat{O}^2 = -\hat{1}$)

 $|\psi\rangle$ and $|\psi'\rangle = \hat{O} |\psi\rangle$ are degenerate and orthogonal

e.g. Spin-3/2
$$\hat{\mathscr{H}} = E_g \hat{S}_z^2 / 2$$
 $\frac{3/2}{1/2} -\frac{-3/2}{-1/2} \begin{bmatrix} E_g \end{bmatrix}$

 \Rightarrow exact two-fold degeneracy for TRS-respecting \mathscr{H}

Time Reversal Symmetry-Protected Quantum Phenomena



 $\langle \psi' | \hat{A} | \psi \rangle = 0$ for any TRS-respecting observable \hat{A} $[\hat{O}, \hat{A}] = 0$

⇒absence of elastic backscattering of helical edge states unless TRS broken (magnetic field, magnetic impurities)

Nigel Cooper, University of Cambridge

Symmetry Protected Topological Phases

• Free-fermion topological insulators / superconductors

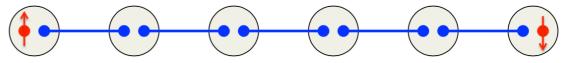
[Altland-Zirnbauer:Time-reversal, charge-conjugation & sublattice symmetries]

	sy	mmet	ries	spatial dimension [Sc							chnyo
Class	T	С	S	0	1	2	3	4	5	6	7
A AIII	0 0	0 0	0 1	Z 0	0 Z	\mathbb{Z}	0 Z	\mathbb{Z}	0 ℤ	\mathbb{Z}	0 Z
AI BDI	+	0 +	0 1	\mathbb{Z} \mathbb{Z}_2	0 \mathbb{Z}	0 0	0 0	$2\mathbb{Z}$	0 2ℤ	$\mathbb{Z}_2 \\ 0$	\mathbb{Z}_2 \mathbb{Z}_2
D	0	+	0	\mathbb{Z}_2^2	\mathbb{Z}_2	\mathbb{Z}	0	0	0	2ℤ	0
DIII	-	+	1	0	\mathbb{Z}_2	\mathbb{Z}_2	\mathbb{Z}	0	0	0	2ℤ
AII	-	0	0	2Z	0	\mathbb{Z}_2	\mathbb{Z}_2	\mathbb{Z}	0	0	0
CII	_	_	1	0	2ℤ	0	\mathbb{Z}_2^-	\mathbb{Z}_2	\mathbb{Z}	0	0
С	0	_	0	0	0	2ℤ	0	\mathbb{Z}_2^{-}	\mathbb{Z}_2	\mathbb{Z}	0
CI	+	—	1	0	0	0	$2\mathbb{Z}$	0	\mathbb{Z}_2^-	\mathbb{Z}_2	\mathbb{Z}

[Schnyder, Ryu, Furusaki, Ludwig (2008); Kitaev (2009)]

• Interacting symmetry-protected topological phases [Chen, Gu, Wen, PRB (2010)]

e.g. Haldane phase of spin-1 chain



[Image:Wierschem & Sengupta, Mod Phys Lett B (2015)]

Symmetry Protected Topological Phases

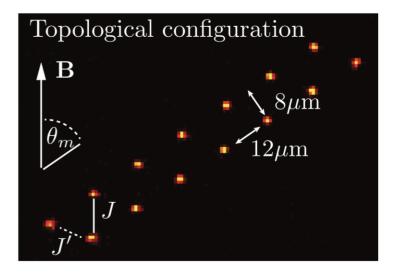
• Free-fermion topological insulators / superconductors

[Altland-Zirnbauer:Time-reversal, charge-conjugation & sublattice symmetries]

	sy	mmet	ries	spatial dimension						[Schnyd		
Class	T	С	S	0	1	2	3	4	5	6	7	
A AIII	0 0	0 0	0 1	$\begin{bmatrix} \mathbb{Z} \\ 0 \end{bmatrix}$	0 ℤ	\mathbb{Z}	0 ℤ	\mathbb{Z}	0 ℤ	\mathbb{Z} 0	0 ℤ	
AI BDI	+++	0 +	0 1	\mathbb{Z} \mathbb{Z}_2	0 ℤ	0 0	0 0	$2\mathbb{Z}$	$\begin{array}{c} 0 \\ 2\mathbb{Z} \end{array}$	$\mathbb{Z}_2 \\ 0$	\mathbb{Z}_2 \mathbb{Z}_2	
D	0	+	0	\mathbb{Z}_2^-	\mathbb{Z}_2	\mathbb{Z}	0	0	0	2ℤ	0	
DIII	_	+	1	0	\mathbb{Z}_2^-	\mathbb{Z}_2	\mathbb{Z}	0	0	0	$2\mathbb{Z}$	
AII	_	0	0	2ℤ	0	\mathbb{Z}_2^-	\mathbb{Z}_2	\mathbb{Z}	0	0	0	
CII	_	_	1	0	$2\mathbb{Z}$	0	\mathbb{Z}_2^-	\mathbb{Z}_2	\mathbb{Z}	0	0	
С	0	_	0	0	0	2ℤ	0	\mathbb{Z}_2^-	\mathbb{Z}_2	\mathbb{Z}	0	
CI	+	_	1	0	0	0	2ℤ	0	\mathbb{Z}_2^-	\mathbb{Z}_2	\mathbb{Z}	

[Schnyder, Ryu, Furusaki, Ludwig (2008); Kitaev (2009)]

• Interacting symmetry-protected topological phases



e.g. SPT phase of Rydberg atoms [S. de Léséleuc *et al.*, Science 2019]

+ crystalline symmetries, higher order topological phases...

⇒ Detailed classification of topological matter at equilibrium

Nigel Cooper, University of Cambridge

Beyond Groundstate Topology

1) Non-equilibrium dynamics

Unitary evolution:
$$|\Psi(t)\rangle = \mathscr{T}\exp\left[-i\int_{0}^{t}\hat{\mathscr{H}}(t')\,dt'\right]|\Psi(0)\rangle$$

- dynamical preparation of topological phases? (cold gases)

— effects of environmental couplings on topological edge modes

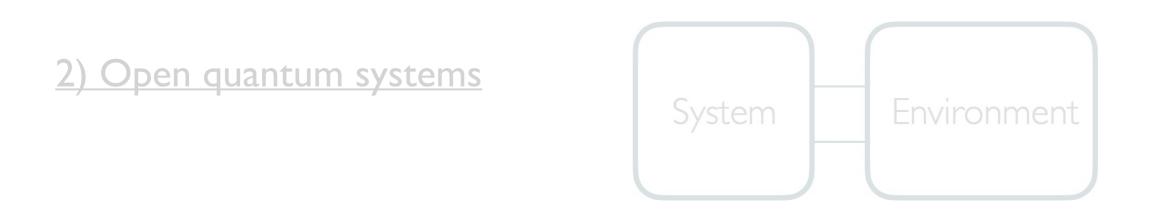
⇒Time reversal symmetry-protected phenomena are intrinsically fragile

Beyond Groundstate Topology

1) Non-equilibrium dynamics

Unitary evolution:
$$|\Psi(t)\rangle = \mathscr{T}\exp\left[-i\int_{0}^{t}\hat{\mathscr{H}}(t')\,dt'\right]|\Psi(0)\rangle$$

- dynamical preparation of topological phases? (cold gases)



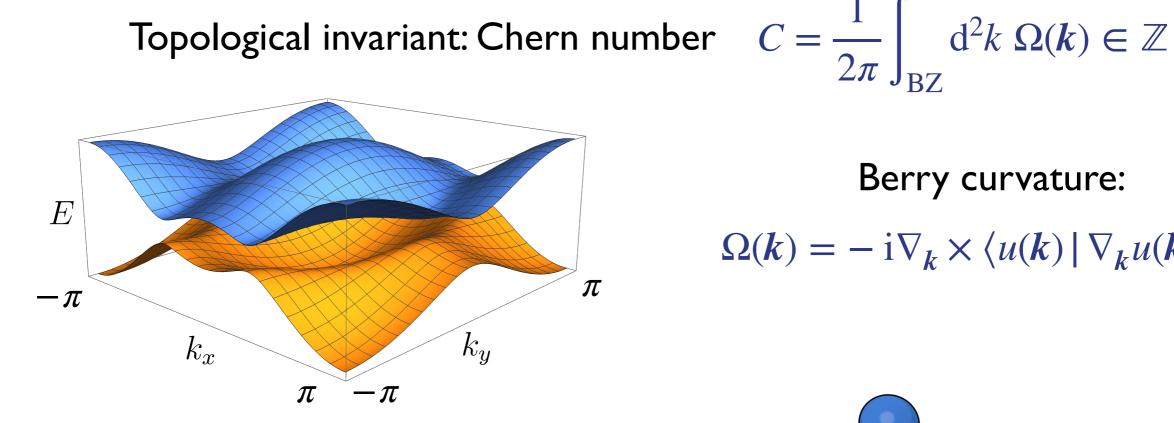
⇒Time reversal symmetry-protected phenomena are intrinsically fragile

Nigel Cooper, University of Cambridge

No symmetry protection: Chern Insulator (2D)

2D Bloch Bands

[Thouless, Kohmoto, Nightingale & den Nijs, PRL 1982]



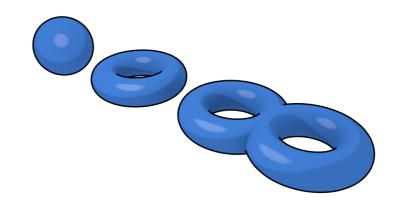
Berry curvature:

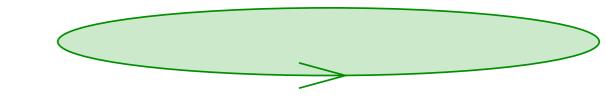
$$\Omega(\boldsymbol{k}) = -i\nabla_{\boldsymbol{k}} \times \langle u(\boldsymbol{k}) \,|\, \nabla_{\boldsymbol{k}} u(\boldsymbol{k}) \rangle \cdot \hat{\boldsymbol{z}}$$

• C cannot change under smooth deformations

Insulating bulk with C gapless edge states

Nigel Cooper, University of Cambridge





Non-Equilibrium Dynamics of Chern Insulator (2D)

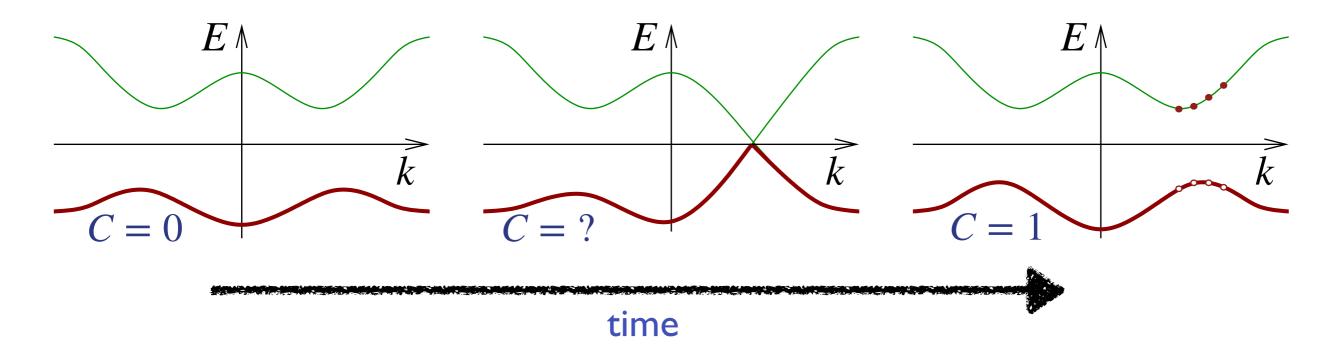


What are the consequences for the topology of the system?

[Here no interactions, no disorder; results are more general]

Nigel Cooper, University of Cambridge

Non-Equilibrium Dynamics of Chern Insulator (2D)



Quench: start in ground state of H^{i} then time evolve under H^{f}

Time-evolving Bloch state of particle at $\mathbf{k} | u(\mathbf{k}, t) \rangle = \exp[-iH^{f}(\mathbf{k})t] | u(\mathbf{k}, 0) \rangle$

$$\Omega(\boldsymbol{k},t) = -i\nabla_{\boldsymbol{k}} \times \langle u(\boldsymbol{k},t) \,|\, \nabla_{\boldsymbol{k}} u(\boldsymbol{k},t) \rangle \cdot \hat{z}$$

⇒ Chern number of the many-body state is preserved [Foster, Dzero, Gurarie & Yuzbashan, PRB 2013 & PRL 2014; D'Alessio & Rigol, Nat. Commun. 2015; Caio, NRC & Bhaseen, PRL 2015]

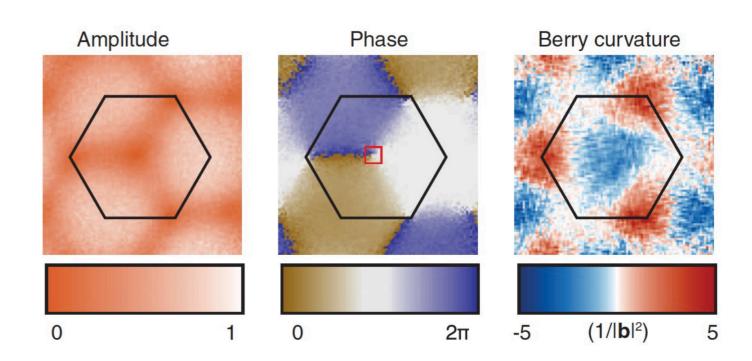
Nigel Cooper, University of Cambridge

Non-Equilibrium Dynamics of Chern Insulator (2D)

 \Rightarrow Obstruction to (fast) preparation of a state with differing Chern number [for slow ramps, $\tau \gg L/v$, deviations can be small]

Direct experimental observation, by tomography of Bloch states

 $|u(\mathbf{k})\rangle \longrightarrow \begin{pmatrix} \cos[\theta(\mathbf{k})/2] \\ \sin[\theta(\mathbf{k})/2] e^{i\phi(\mathbf{k})} \end{pmatrix}$



[Fläschner et al., Science 2016]

Does the same hold for symmetry-protected topology?

Dynamics of Symmetry-Protected Topology

[Max McGinley & NRC, PRL 2018]

• Start in ground state of $\hat{\mathscr{H}}_{i}$ then time evolve under $\hat{\mathscr{H}}_{f}$

Symmetry: $[\hat{O}, \hat{\mathcal{H}}_i] = 0 \Rightarrow$ some symmetry-protected topological invariant

- $\hat{\mathscr{H}}_{f}$ breaks symmetry \Rightarrow topological invariant lost
- What if $\hat{\mathscr{H}}_{f}$ respects the symmetry? $[\hat{\mathcal{O}}, \hat{\mathscr{H}}_{f}] = 0$

Anti-unitary symmetries

 $\left[\hat{\mathcal{O}}i\hat{\mathcal{O}}^{-1}=-i\right]$

$$\hat{\mathcal{O}} e^{-i\hat{\mathscr{H}}_{f}t} \hat{\mathcal{O}}^{-1} = e^{+i\hat{\mathscr{H}}_{f}t}$$

Symmetry is lost in the time-evolved state

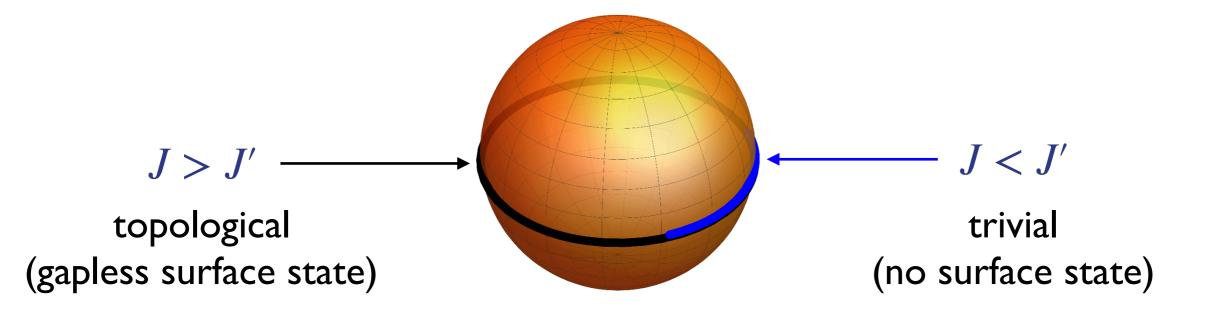
Topological "invariant" time-varying even if symmetries respected

Symmetry-Protected Topology: SSH Model

$$-\underline{A} - \underline{B} - \underline{A} - \underline{A} - \underline{B} - \underline{A} - \underline{B} - \underline{A} -$$

sublattice symmetry \Rightarrow $H(k) = -\begin{pmatrix} 0 & J' + Je^{-ik} \\ J' + Je^{ik} & 0 \end{pmatrix} \Rightarrow |u(k)\rangle = \frac{1}{\sqrt{2}} \begin{pmatrix} 1 \\ e^{i\phi(k)} \end{pmatrix}$

 $[\theta(k) = \pi/2]$



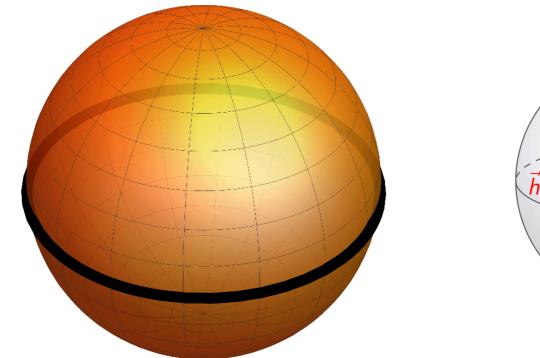
ſ

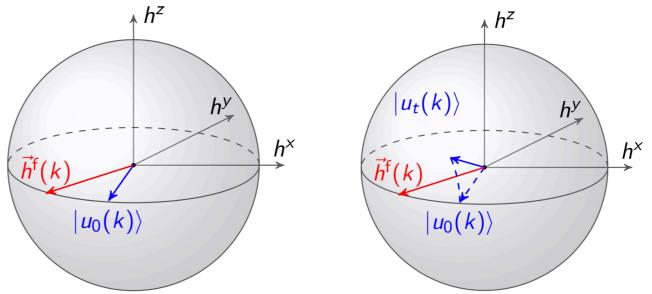
Symmetry-protected topological invariant: Φ_Z

$$\Phi_{\text{Zak}} = i \left| \left\langle u(k) \right| \partial_k u(k) \right\rangle dk = \pi \times \text{winding number}$$

Nigel Cooper, University of Cambridge

Example: Su-Schrieffer-Heeger Model





Topological "invariant" Φ_{Zak} time-varying even though Hamiltonian always respects symmetry

time-variations appear as a current: $I(t) = \frac{1}{2\pi} \frac{d\Phi_{Zak}}{dt}$

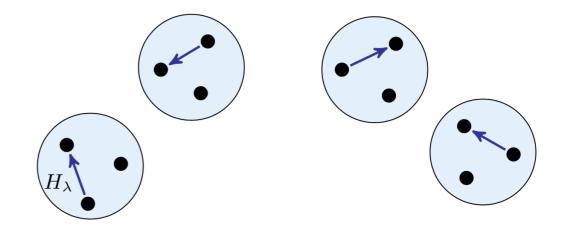
Is there a topological classification of non-equilibrium systems?

Non-Equilibrium Topological Classification

<u>Equilibrium:</u>

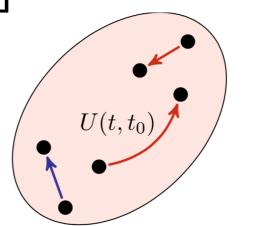
smoothly connected under a gapped symmetric Hamiltonian with

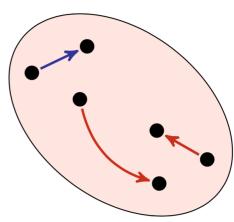
$$|\Psi_1
angle \xrightarrow{H_\lambda} |\Psi_2
angle$$



Non-equilibrium: Connected by (finite) time evolution governed by a symmetric Hamiltonian

$$|\Psi_1
angle \xrightarrow{e^{-\mathrm{i}Ht}} |\Psi_2
angle$$





Nigel Cooper, University of Cambridge

Non-Equilibrium Topological Classification

• Free-fermion topological insulators / superconductors

[Altland-Zirnbauer:Time-reversal, charge-conjugation & sublattice symmetries]

[Max McGinley & NRC, PRB 2019]

Class	Sy	Symmetries			Spatial dimension d									
	Т	С	S	0	1	2	3	4	5	6	7			
А	0	0	0	\mathbb{Z}	0	\mathbb{Z}	0	\mathbb{Z}	0	\mathbb{Z}	0			
AIII	0	0	1	0	$\mathbb{Z} o 0$	0	$\mathbb{Z} \to 0$	0	$\mathbb{Z} \to 0$	0	$\mathbb{Z} o 0$			
AI	+	0	0	\mathbb{Z}	0	0	0	$2\mathbb{Z}$	0	$\mathbb{Z}_2 \to 0$	$\mathbb{Z}_2 \to 0$			
BDI	+	+	1	\mathbb{Z}_2	$\mathbb{Z} \to \mathbb{Z}_2$	0	0	0	$2\mathbb{Z} \to 0$	0	$\mathbb{Z}_2 o 0$			
D	0	+	0	\mathbb{Z}_2	\mathbb{Z}_2	\mathbb{Z}	0	0	0	$2\mathbb{Z}$	0			
DIII	_	+	1	0	$\mathbb{Z}_2 \to 0$	$\mathbb{Z}_2 \to 0$	$\mathbb{Z} o 0$	0	0	0	$2\mathbb{Z} \to 0$			
AII	_	0	0	$2\mathbb{Z}$	0	$\mathbb{Z}_2 o 0$	$\mathbb{Z}_2 o 0$	\mathbb{Z}	0	0	0			
CII	_	_	1	0	$2\mathbb{Z} \to 0$	0	$\mathbb{Z}_2 \to 0$	\mathbb{Z}_2	$\mathbb{Z} \to \mathbb{Z}_2$	0	0			
\mathbf{C}	0	_	0	0	0	$2\mathbb{Z}$	0	\mathbb{Z}_2	\mathbb{Z}_2	\mathbb{Z}	0			
CI	+	—	1	0	0	0	$2\mathbb{Z} \to 0$	0	$\mathbb{Z}_2 \to 0$	$\mathbb{Z}_2 \to 0$	$\mathbb{Z} o 0$			

• Interacting symmetry-protected topological phases [Max McGinley & NRC, PRR 2019]

Non-Equilibrium Topological Classification: Physical Consequences

1) Preparation of topological states

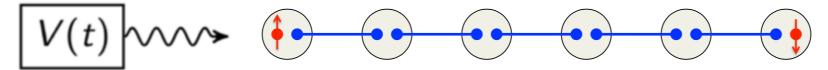
Determines which states can be quickly interconverted dynamically by symmetry-respecting Hamiltonians

e.g. Su-Schrieffer-Heeger model (class BDI in ID): $\mathbb{Z} \to \mathbb{Z}_2$

Topological "invariant" can be changed by even integers

2) Stability of "topologically protected" surface states

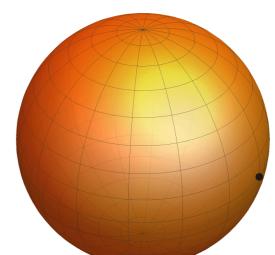
External symmetry-respecting noise



[Image:Wierschem & Sengupta, Mod Phys Lett B (2015)]

Determines which symmetry-protected topological quantum registers decohere

TRS broken by time-history / preparation sequence of non-equilibrium state



[Max McGinley & NRC, PRB 2019; PRR 2019]

Nigel Cooper, University of Cambridge

Beyond Groundstate Topology

1) Non-equilibrium dynamics

Unitary evolution:
$$|\Psi(t)\rangle = \mathcal{T}\exp\left[-i\int_{0}^{t}\hat{\mathscr{H}}(t') dt'\right]|\Psi(0)\rangle$$

- dynamical preparation of topological phases? (cold gases)

— effects of environmental couplings on topological edge modes

Nigel Cooper, University of Cambridge

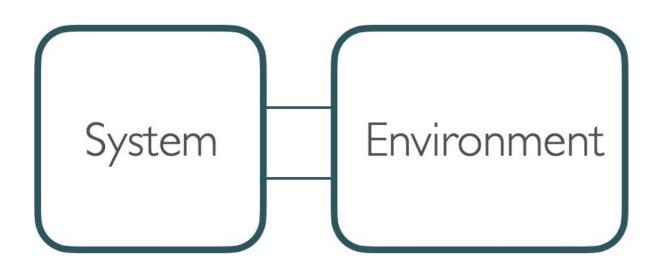
Open Quantum Systems

Arrow of Time

Can emerge from time-reversal symmetric microscopic laws

 $\Delta S > 0$

Quantum Approach: System + Environment



Reduced density matrix

 $\rho_S = \mathrm{Tr}_E[\rho_{\mathrm{total}}]$

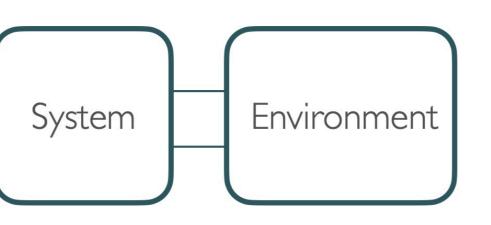
typically shows increasing entropy (due to growth of entanglement)

Open Quantum Systems: Symmetries

$$\hat{\mathcal{H}} = \hat{\mathcal{H}}_{S} + \hat{\mathcal{H}}_{E} + \hat{\mathcal{H}}_{SE}$$

Symmetric system $[\hat{\mathcal{O}}, \hat{\mathcal{H}}_S] = 0$

with symmetry protected features



Symmetric environment and coupling $[\hat{O}, \hat{\mathcal{H}}] = 0$

[Max McGinley & NRC, Nature Physics 16, 1181 (2020)]

$$\hat{\mathscr{H}}_{SE} = \sum_{\alpha} \hat{A}_{\alpha} \otimes \hat{B}_{\alpha} \qquad (\hat{A}_{\alpha} = \hat{A}_{\alpha}^{\dagger}, \hat{B}_{\alpha} = \hat{B}_{\alpha}^{\dagger})$$

Impose strongest possible symmetry condition: $[\hat{O}, \hat{A}_{\alpha}] = [\hat{O}, \hat{B}_{\alpha}] = 0$

e.g. charge conservation: $[\hat{O}, \hat{A}_{\alpha} \otimes \hat{B}_{\alpha}] = 0 \implies$ charge consv. of S+E $[\hat{O}, \hat{A}_{\alpha}] = 0 \implies$ charge consv. of S

TRS: $[\hat{\mathcal{O}}, \hat{A}_{\alpha}] = [\hat{\mathcal{O}}, \hat{B}_{\alpha}] = 0 \implies \text{both } \hat{A}_{\alpha} \text{ and } \hat{B}_{\alpha} \text{ TR-even}$

Simple Example (No topology!)

Spin-3/2
$$\hat{\mathscr{H}}_{S} = E_{g}\hat{S}_{z}^{2}/2$$
 $\frac{3/2}{1/2}$ $-3/2$ E_{g}

Two-fold degenerate ground state preserved if symmetry maintained — e.g.TRS (Kramers degeneracy) $\hat{O} = e^{-i\pi\hat{S}_y}\hat{K}$ (antiunitary) — or dihedral group formed by $\hat{O}_{x,y,z} = e^{i\pi\hat{S}_{x,y,z}}$ (unitary)

⇒ "qubit" encoded in ground states remains coherent

$$|\psi\rangle_S = \alpha |1/2\rangle + \beta |-1/2\rangle$$

Environment couples only via symmetry-preserving \hat{A}_{α} [$\hat{O}, \hat{A}_{\alpha}$] = 0

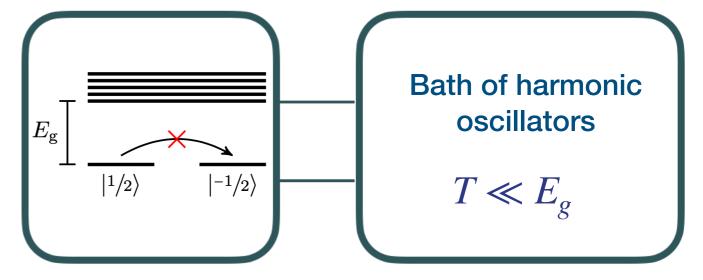
Can this environment cause decoherence?

Nigel Cooper, University of Cambridge

Simple Example: Results

$$\hat{\mathcal{H}} = \hat{\mathcal{H}}_{S} + \sum_{\alpha=1}^{M} \hat{A}_{\alpha} \otimes \hat{B}_{\alpha} + \hat{\mathcal{H}}_{E}$$

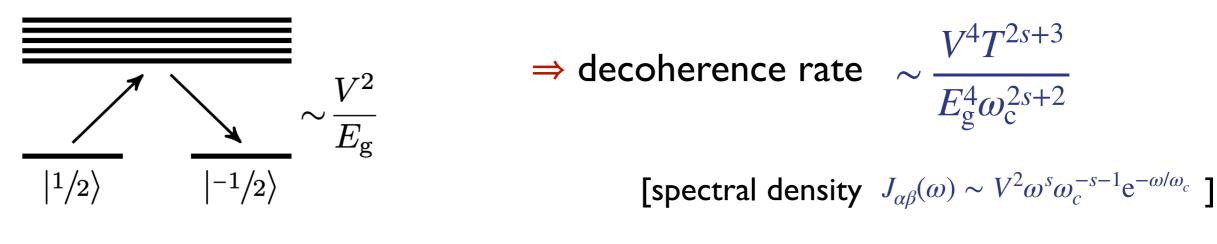
Direct transition forbidden to lowest order in $V = \| \hat{\mathscr{H}}_{SE} \|$ by strong symmetry $[\hat{\mathcal{O}}, \hat{A}_{\alpha}] = 0$



[Caldeira & Leggett, PRL 1981]

Unitary symmetry: direct transition vanishes to all orders in $V = \| \hat{\mathscr{H}}_{SE} \|$ \Rightarrow decoherence rate $\sim e^{-E_g/T}$

Antiunitary symmetry: transition at second order in V



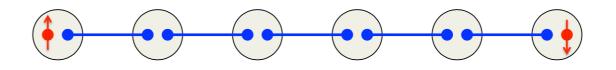
TRS cannot be "factorized" between system and environment

Nigel Cooper, University of Cambridge

Open Quantum Systems: Physical Consequences

Decoherence of Kramers degenerate pairs or zero modes

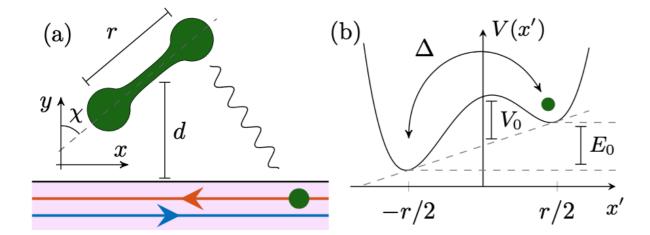
e.g. end spin-1/2 modes of Haldane phase stabilised by time-reversal symmetry



[Image:Wierschem & Sengupta, Mod Phys Lett B (2015)]

Backscattering of helical edge states

[Max McGinley & NRC, PRB **103**, 235164 (2021)]



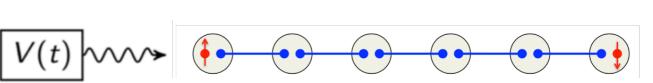
Coulomb interaction with 2-level system $\hat{H}_{\text{int}} = \int d\mathbf{r} \,\hat{\rho}_{\text{el}}(\mathbf{r}) \otimes \left[\hat{\sigma}_x V_x(\mathbf{r}) + \hat{\sigma}_z V_z(\mathbf{r})\right]$

 \Rightarrow Non-quantized conductance down to low T without magnetism/exchange

Summary: Fragility of TRS-protected phenomena

I) Non-equilibrium dynamics [Max McGinley & NRC, PRL 121, 090401 (2018)]

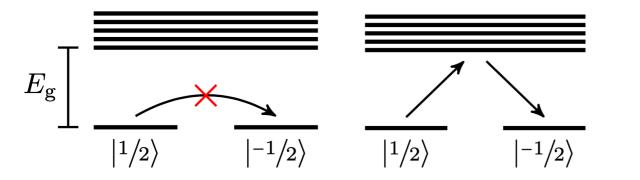
- Fast interconversion of (certain) symmetry-protected topological states by symmetry-respecting Hamiltonians
- Sensitivity of topologically protected boundary modes to external noise



TRS broken by time-history / preparation sequence of non-equilibrium state

2) Open quantum systems [Max McGinley & NRC, Nature Physics 16, 1181 (2020)]

• Decoherence of topological protected boundary modes



Unitarity symmetry: $\Gamma \sim e^{-E_g/T}$

Antiunitarity symmetry: $\Gamma \sim V^4 T^{2s+3}$

TRS cannot be factorized between system and environment

Nigel Cooper, University of Cambridge

