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• Quantum dynamics (spinless particle) iℏ
d
dt

ψ(r, t) = Hψ(r, t)

t → − t ψ(r, t) → Kψ(r, t) ≡ ψ*(r, t)

TRS if equations of motion invariant under
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 Time Reversal Symmetry (TRS)

r → KrK−1 = r

p → KpK−1 = K
ℏ
i

d
dr

K−1 = − p

anti-unitary operator (𝒪̂Ψ, 𝒪̂Φ) = (Ψ, Φ)*|Ψ⟩ → 𝒪̂ |Ψ⟩

𝒪̂ = 𝒰̂K̂

dx
dt

=
dH
dp

dp
dt

= −
dH
dx

• Classical dynamics

t → − t r → r p → − p
TRS if equations of motion invariant under

H(r, p) = H(r, − p)⇒

KHK−1 = H⇒ [K, H] = 0

dr
dt

=
dH
dp

dp
dt

= −
dH
dr



for anti-unitary time reversal operator
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 Time Reversal Symmetry-Protected Quantum Phenomena

[𝒪̂, ℋ̂] = 0 𝒪̂

|ψ⟩ |ψ′￼⟩ = 𝒪̂ |ψ⟩and are degenerate and orthogonal

ℋ̂ = Eg
̂S2
z /2e.g. Spin-3/2

𝒪̂2 = − 1̂• Kramers’ Degeneracy (half-integer spin system                    )

⇒ exact two-fold degeneracy for TRS-respecting  ℋ̂
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 Time Reversal Symmetry-Protected Quantum Phenomena

[Kane & Mele, PRL (2005)]

• Symmetry-Protected Topological Phases

e.g.      topological insulator in 2D
ℤ2

⇒absence of elastic backscattering of helical edge states

   unless TRS broken (magnetic field, magnetic impurities)

⟨ψ′￼| ̂A |ψ⟩ = 0 for any TRS-respecting observable ̂A [𝒪̂, ̂A] = 0

time-reversed Kramers partners
|ψ⟩, |ψ′￼⟩ = 𝒪 |ψ⟩
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Symmetry Protected Topological Phases

• Free-fermion topological insulators / superconductors
[Altland-Zirnbauer: Time-reversal, charge-conjugation & sublattice symmetries]

[Schnyder, Ryu, Furusaki, Ludwig (2008); Kitaev (2009)]

• Interacting symmetry-protected topological phases

e.g. Haldane phase of spin-1 chain  

[Chen, Gu, Wen, PRB (2010)]

[Image: Wierschem & Sengupta, Mod Phys Lett B (2015)]
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Symmetry Protected Topological Phases

• Free-fermion topological insulators / superconductors
[Altland-Zirnbauer: Time-reversal, charge-conjugation & sublattice symmetries]

[Schnyder, Ryu, Furusaki, Ludwig (2008); Kitaev (2009)]

⇒ Detailed classification of topological matter at equilibrium

+ crystalline symmetries, higher order topological phases…

• Interacting symmetry-protected topological phases

e.g. SPT phase of Rydberg atoms  
[S. de Léséleuc et al., Science 2019]



   Beyond Groundstate Topology
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Unitary evolution:

1) Non-equilibrium dynamics

 — dynamical preparation of topological phases?  (cold gases)


⇒Time reversal symmetry-protected phenomena are intrinsically fragile

2) Open quantum systems

— effects of environmental couplings on topological edge modes

|Ψ(t)⟩ = 𝒯exp [−i∫
t

0
ℋ̂(t′￼) dt′￼] |Ψ(0)⟩
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Unitary evolution:

1) Non-equilibrium dynamics

 — dynamical preparation of topological phases?  (cold gases)


⇒Time reversal symmetry-protected phenomena are intrinsically fragile

2) Open quantum systems

— effects of environmental couplings on topological edge modes

|Ψ(t)⟩ = 𝒯exp [−i∫
t

0
ℋ̂(t′￼) dt′￼] |Ψ(0)⟩



• Insulating bulk with     gapless edge statesC

2D Bloch Bands [Thouless, Kohmoto, Nightingale & den Nijs, PRL 1982]

Topological invariant: Chern number C =
1

2π ∫BZ
d2k Ω(k) ∈ ℤ

Ω(k) = − i∇k × ⟨u(k) |∇ku(k)⟩ ⋅ ̂z

Berry curvature:

 No symmetry protection: Chern Insulator (2D)
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−π

−ππ

π

•     cannot change under smooth deformationsC



ν=1

k k k

E E E

ν=0 ν=?

time

C = ?C = 0 C = 1

t ≲ L /𝗏

   Non-Equilibrium Dynamics of Chern Insulator (2D)          
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What are the consequences for the topology of the system?

[Here no interactions, no disorder; results are more general]
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    Fragility of TRS-Protected Topological Phases

Quench: start in ground state of      then time evolve under H i Hf

⇒ Chern number of the many-body state is preserved
[Foster, Dzero, Gurarie & Yuzbashan, PRB 2013 & PRL 2014;


D’Alessio & Rigol, Nat. Commun. 2015; Caio, NRC & Bhaseen, PRL 2015]

k |u(k, t)⟩ = exp[−iHf(k)t] |u(k,0)⟩Time-evolving Bloch state of particle at  

Ω(k, t) = − i∇k × ⟨u(k, t) |∇ku(k, t)⟩ ⋅ ̂z

ν=1

k k k

E E E

ν=0 ν=?

time

C = ?C = 0 C = 1
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   Non-Equilibrium Dynamics of Chern Insulator (2D)              

    Fragility of TRS-Protected Topological Phases

⇒ Obstruction to (fast) preparation of a state with differing Chern number
[for slow ramps,                , deviations can be small]τ ≫ L /𝗏

Does the same hold for symmetry-protected topology?

Direct experimental observation, by tomography of Bloch states 
[Fläschner et al., Science 2016]

|u(k)⟩ ⟶ ( cos[θ(k)/2]
sin[θ(k)/2]eiϕ(k))



  Dynamics of Symmetry-Protected Topology
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[Max McGinley & NRC, PRL 2018]

•      breaks symmetry ⇒ topological invariant lostℋ̂f

• What if       respects the symmetry?ℋ̂f

[                  ]Anti-unitary symmetries 

Symmetry is lost in the time-evolved state 

𝒪̂e−iℋ̂ft𝒪̂−1 = e+iℋ̂ft

𝒪̂i𝒪̂−1 = − i

Topological “invariant” time-varying even if symmetries respected

[𝒪̂, ℋ̂i] = 0Symmetry:

• Start in ground state of       then time evolve under ℋ̂i ℋ̂f

⇒ some symmetry-protected 

       topological invariant

[𝒪̂, ℋ̂f] = 0



topological

(gapless surface state)

J > J′￼

trivial

(no surface state)

J < J′￼

   Symmetry-Protected Topology: SSH Model
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Topological Insulators

[Hasan & Kane, RMP 2010]

Many generalizations when symmetries included:
“symmetry-protected” topological insulators/superconductors

– Time-reversal symmetry (non-magnetic material in = 0)

)3D bulk insulator with metallic 2D surfaces

– Su-Schrie↵er Heeger model

A B A B A B A B
0 0 0 0

H = �
✓

0 0 + e�i

0 + ei 0

◆
“chiral” symmetry

� H = �H �

)1D band insulator with gapless edge modes

Nigel Cooper Cavendish Laboratory, University of Cambridge Controlling Quantum Matter: From Ultracold Atoms to Solids Humboldt Kolleg, Vilnius, 30 July 2018 Max McGinley & NRC, arXiv:1804.05756 .Topology of (1D) Quantum Systems Out of Equilibrium

H(k) = − ( 0 J′￼+ Je−ik

J′￼+ Jeik 0 )sublattice symmetry ⇒                     |u(k)⟩ =
1

2 ( 1
eiϕ(k))

[θ(k) = π/2]

⇒

|u(k)⟩ ⟶ ( cos[θ(k)/2]
sin[θ(k)/2]eiϕ(k))

ΦZak = i∫⟨u(k) |∂ku(k)⟩ dk = π × winding numberSymmetry-protected

topological invariant:



  Example: Su-Schrieffer-Heeger Model
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Topological “invariant”         time-varying even
though Hamiltonian always respects symmetry

ΦZak

time-variations appear as a current: I(t) =
1

2π
dΦZak

dt

Is there a topological classification of non-equilibrium systems?



Non-equilibrium: 

connected by (finite) time evolution governed

by a symmetric Hamiltonian

  Non-Equilibrium Topological Classification
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[Max McGinley & NRC, PRB 2019; PRR 2019]

Equilibrium: 

smoothly connected under a gapped 

symmetric Hamiltonian with 



   Nigel Cooper,  University of Cambridge     Fragility of TRS-Protected Topological Phases

[Altland-Zirnbauer: Time-reversal, charge-conjugation & sublattice symmetries]

  Non-Equilibrium Topological Classification

• Interacting symmetry-protected topological phases [Max McGinley & NRC, PRR 2019]

6

Class Symmetries Spatial dimension d
T C S 0 1 2 3 4 5 6 7

A 0 0 0 Z 0 Z 0 Z 0 Z 0
AIII 0 0 1 0 Z ! 0 0 Z ! 0 0 Z ! 0 0 Z ! 0
AI + 0 0 Z 0 0 0 2Z 0 Z2 ! 0 Z2 ! 0
BDI + + 1 Z2 Z ! Z2 0 0 0 2Z ! 0 0 Z2 ! 0
D 0 + 0 Z2 Z2 Z 0 0 0 2Z 0
DIII � + 1 0 Z2 ! 0 Z2 ! 0 Z ! 0 0 0 0 2Z ! 0
AII � 0 0 2Z 0 Z2 ! 0 Z2 ! 0 Z 0 0 0
CII � � 1 0 2Z ! 0 0 Z2 ! 0 Z2 Z ! Z2 0 0
C 0 � 0 0 0 2Z 0 Z2 Z2 Z 0
CI + � 1 0 0 0 2Z ! 0 0 Z2 ! 0 Z2 ! 0 Z ! 0

Even primary (IVB1) Even descendants (IVB2) Odd primary (IVB3) Odd descendants (IVB4) 2Z series (IVB5)

TABLE II. Classification of topological insulators out of equilibrium. The non-equilibrium classification describes the set of
topological classes which remain distinct after time evolution under a Hamiltonian possessing the set of symmetries in question,
as outlined in Section III. The ten symmetry classes of the ten-fold way are listed on the left, and defined by the presence (+,�,
1) or absence (0) of time-reversal (T), particle-hole (C), and chiral (S) symmetries [13, 36]. For each symmetry class and spatial
dimension d, the equilibrium and non-equilibrium classifications are given. A single entry indicates that the classification does
not change out of equilibrium, whilst the notation G1 ! G2 indicates that the classification changes from G1 in equilibrium to
G2 out of equilibrium. The di↵erent series of the classification are coloured as described in the main text, and the references
to the discussions of each series are given below the table. Systems in dimension d > 7 have the same classification as the
corresponding system in (d� 8) dimensions (Bott periodicity).

which is characterized by the second Chern number Ch2.
Because the reference Hamiltonian ⇢ref is ~k-independent,
we can contract the subregions ✓ = ±⇡ to a single point,
and so the higher dimensional momentum space is a ‘sus-
pension’ ⌃(BZ), as illustrated in Figure 2.

Following Teo and Kane [37], one can show that the
super-TRS condition (3) forces the contributions to Ch2
for ✓ > 0 and ✓ < 0 to be equal, and so we need only
consider one hemisphere, which we call ⌃N (BZ). The
Chern form ch2 can be written as a total derivative of
a 3-form called the Chern-Simons form ch2 = dQ3 [14],
and so the integral over ✓ > 0 can be computed as a
surface integral on the boundary ✓ = 0, i.e. the physical
BZ. We then have

Ch2 = 2

Z

⌃N (BZ)

ch2 = 2

Z

BZ

Q3 =: 2CS3, (4)

where CS3 is the Chern-Simons (CS) invariant, which is
entirely determined by the physical system at ✓ = 0.

The CS invariant is gauge invariant only up to an inte-
ger. This gauge dependence reflects the fact that di↵er-
ent embeddings of ⇢(A)(~k) in 4D can yield Chern num-
bers that di↵er by an even integer. Ch2 mod 2 defines
a Z2-valued topological invariant which can characterize
the 3D system unambiguously – this relates the first de-
scendant (3D) to the primary series (4D) in class AII. A
similar construction is also possible for the second descen-
dants, which are classified by the Fu-Kane (FK) invariant
[38]

FKd=2n =

Z

BZ1/2

chn �
Z

@BZ1/2

Q2n�1, (5)

where BZ1/2 is the half of the BZ where one of the mo-
menta 0  ki < ⇡, and @BZ1/2 is its boundary. To

✓ = 0

✓ = +⇡

✓ = �⇡

⌃N (BZ)

⌃S(BZ)

⇢ref

⇢ref

BZ

FIG. 2. The physical Brillouin zone (BZ) as the equator of
a higher dimensional momentum space ⌃(BZ) parametrized

by (~k, ✓). At the poles ✓ = ±⇡, the BZ is contracted to

a point, representing the ~k-independent reference state. We
also identify the two poles, ensuring periodicity in ✓.

avoid ambiguity, this quantity must be calculated in a
particular gauge that is specified by the TRS (or PHS)
symmetry operator.

2. Chiral classes

Systems with only Chiral symmetry (class AIII) in odd
dimensions also inherit their topology from a higher di-
mensional insulator in a similar way. The procedure is
slightly di↵erent to the above, in that the higher dimen-

[Max McGinley & NRC, PRB 2019]

• e.g. Haldane phase…

• Free-fermion topological insulators / superconductors
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  Non-Equilibrium Topological Classification: Physical Consequences

1) Preparation of topological states

e.g. Su-Schrieffer-Heeger model (class BDI in 1D):  ℤ → ℤ2

 Topological “invariant” can be changed by even integers

[Max McGinley & NRC, PRB 2019; PRR 2019]

Determines which states can be quickly interconverted dynamically 

by symmetry-respecting Hamiltonians

External symmetry-respecting noise

2) Stability of “topologically protected” surface states

Determines which symmetry-protected topological quantum registers decohere

[Image: Wierschem & Sengupta, Mod Phys Lett B (2015)]

TRS broken by time-history / preparation sequence of non-equilibrium state



   Beyond Groundstate Topology
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Unitary evolution:

1) Non-equilibrium dynamics

 — dynamical preparation of topological phases?  (cold gases)


2) Open quantum systems

— effects of environmental couplings on topological edge modes

|Ψ(t)⟩ = 𝒯




￼ ￼



 Open Quantum Systems
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Arrow of Time

ΔS > 0

Quantum Approach: System + Environment

typically shows increasing entropy

(due to growth of entanglement)


ρS = TrE[ρtotal]
Reduced density matrix

Can emerge from time-reversal 

symmetric microscopic laws
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Impose strongest possible symmetry condition: 
 [𝒪̂, ̂Aα] = [𝒪̂, B̂α] = 0

 Open Quantum Systems: Symmetries
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e.g. charge conservation: [𝒪̂, ̂Aα ⊗ B̂α] = 0 ⇒ charge consv. of S+E

[𝒪̂, ̂Aα] = 0 ⇒ charge consv. of S

TRS: [𝒪̂, ̂Aα] = [𝒪̂, B̂α] = 0 ⇒ both       and        TR-even̂Aα B̂α

Symmetric environment

and coupling  

[𝒪̂, ℋ̂] = 0
[𝒪̂, ℋ̂S] = 0

Symmetric system

with symmetry

protected features

ℋ̂ = ℋ̂S + ℋ̂E + ℋ̂SE

ℋ̂SE = ∑
α

̂Aα ⊗ B̂α ( ̂Aα = ̂A†
α , B̂α = B̂†

α)

[Max McGinley & NRC, Nature Physics 16, 1181 (2020)]
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Spin-3/2

Simple Example (No topology!)
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ℋ̂S = Eg
̂S2
z /2

Two-fold degenerate ground state preserved if symmetry maintained


 — e.g. TRS (Kramers degeneracy)                             (antiunitary)


 — or dihedral group formed by                                (unitary) 

⇒ “qubit” encoded in ground states remains coherent

|ψ⟩S = α |1/2⟩ + β | − 1/2⟩

𝒪̂x,y,z = eiπ ̂Sx,y,z

𝒪̂ = e−iπ ̂SyK̂

Can this environment cause decoherence?

Environment couples only via symmetry-preserving ̂Aα [𝒪̂, ̂Aα] = 0
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Simple Example: Results
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ℋ̂ = ℋ̂S +
M

∑
α=1

̂Aα ⊗ B̂α + ℋ̂E Bath of harmonic 
oscillators


T ≪ Eg

[Caldeira & Leggett, PRL 1981]

Unitary symmetry:  direct transition vanishes to all orders in

        ⇒ decoherence rate ∼ e−Eg/T

V = ||ℋ̂SE||

Antiunitary symmetry:  transition at second order in


                                                ⇒ decoherence rate ∼
V4T2s+3

E4
gω2s+2

c

Jαβ(ω) ∼ V2ωsω−s−1
c e−ω/ωc[spectral density                                     ]

V

Direct transition forbidden to 

lowest order in                  by 

strong symmetry [𝒪̂, ̂Aα] = 0

V = ||ℋ̂SE||

TRS cannot be “factorized” between system and environment
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Open Quantum Systems: Physical Consequences
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Decoherence of Kramers degenerate pairs or zero modes

e.g. end spin-1/2 modes of 

Haldane phase stabilised by

time-reversal symmetry

Backscattering of helical edge states [Max McGinley & NRC, PRB 103, 235164 (2021)]

Coulomb interaction with 2-level system

⇒ Non-quantized conductance down to low     without magnetism/exchangeT

Ĥint = ∫ dr ̂ρel(r) ⊗ [ ̂σxVx(r) + ̂σzVz(r)]

spin-lattice relaxation in paramagnets
[Image: Wierschem & Sengupta, Mod Phys Lett B (2015)]



• Fast interconversion of (certain) symmetry-protected 
topological states by symmetry-respecting Hamiltonians

  Summary: Fragility of TRS-protected phenomena
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1) Non-equilibrium dynamics [Max McGinley & NRC, PRL 121, 090401 (2018)]

2) Open quantum systems

• Decoherence of topological protected boundary modes

Unitarity symmetry: Γ ∼ e−Eg/T

Γ ∼ V4 T2s+3Antiunitarity symmetry: 

[Max McGinley & NRC, Nature Physics 16, 1181 (2020)]

• Sensitivity of topologically protected 
boundary modes to external noise

TRS broken by time-history / preparation sequence of non-equilibrium state

TRS cannot be factorized between system and environment


