\downarrow - impurity in a Fermi sea of \uparrow-majorities

+ interactions

$\begin{array}{lll}\text { Realization: } & \text { - Doped semiconductors } & \text { Smoka et al., Science } 346 \text { (2014)... } \\ & \text { - Ultracold atoms } & \text { Schirotzek et al., PRL } 33 \text { (2009)... }\end{array}$

Typical questions: • Ground state (bound state - yes or no?)

- Impurity spectrum (Edge singularity)
- Transport: Impurity drag Cotete, Pienika et al., PRX 9 (2019)..

Local kinematic properties of impurity are modified

Modification of impurity topology by non-trivial medium?

Modification of impurity topology by non-trivial medium?

Strong coupling limit: Grusdt et al., Nature Com. 7 (2016), PRB 100 (2019)

- impurity binds to topological excitation of majority medium
- inherits its topological properties

Modification of impurity topology by non-trivial medium?

2

*

What about weak coupling?
Camacho-Guardian et al., PRB 99 (R) (2019),
D.P. et al., PRB 103 (2021)

Controlled combination of ultracold gas expertise on polarons \& topology

Collaborators: Arturo Camacho-Guardian (Cambridge) Georg Bruun (Aarhus)
Pietro Massignan (Barcelona)
Nathan Goldman (Brussels)
Moshe Goldstein (Tel Aviv)

Topological majorities
2D Chern insulator (no symmetries enforced)

$$
H_{\uparrow}(\boldsymbol{k})=h_{i}(\boldsymbol{k}) \sigma_{i} \quad \mathcal{C} \in \mathbb{Z}
$$

- Haldane model

- Gapped Dirac cone with quadratic part - continuum model C quantized (not half-quantized) due to spectator fermions

Trivial impurity

- Trivial quadratic band $H_{\downarrow}(\boldsymbol{k})=k^{2} / 2 M$

Short-ranged interaction

$$
\begin{aligned}
& H_{\mathrm{int}}=\frac{g}{A_{0}} \sum_{\ell=A, B} \sum_{\boldsymbol{k}, \boldsymbol{p}, \boldsymbol{q}} c_{\uparrow, \ell}^{\dagger}(\boldsymbol{k}+\boldsymbol{q}) c_{\uparrow, \ell}(\boldsymbol{k}) c_{\downarrow}^{\dagger}(\boldsymbol{p}-\boldsymbol{q}) c_{\downarrow}(\boldsymbol{p})= \\
& \frac{g}{A_{0}} \sum_{\boldsymbol{k}, \boldsymbol{p}, \boldsymbol{q}} c_{\uparrow, \alpha}^{\dagger}(\boldsymbol{k}+\boldsymbol{q}) c_{\uparrow, \beta}(\boldsymbol{k}) c_{\downarrow}^{\dagger}(\boldsymbol{p}-\boldsymbol{q}) c_{\downarrow}(\boldsymbol{p}) W_{\alpha \beta}(\boldsymbol{k}, \boldsymbol{q}) \\
& \text { projectors on band basis }
\end{aligned}
$$

- Topology related to transport: $\quad \sigma_{x y}=-\frac{\mathcal{C}}{2 \pi}$
- Force induces transversal majority current

- Topology related to transport: $\quad \sigma_{x y}=-\frac{\mathcal{C}}{2 \pi}$
- Force induces transversal majority current
- Does majority drag impurity behind?

- Topology related to transport: $\sigma_{x y}=-\frac{\mathcal{C}}{2 \pi}$
- Force induces transversal majority current
- Does majority drag impurity behind?

- Drag transconductivity $\quad \sigma_{\downarrow \uparrow} \equiv \lim _{\omega \rightarrow 0} \frac{1}{-i \omega A_{0}}\left[-\left.\left\langle\hat{J}_{\downarrow}^{x} \hat{Y}_{\uparrow}^{y}\right\rangle(i \Omega)\right|_{i \Omega \rightarrow \omega+i 0^{+}}\right]$.

Not quantized (impurity band is not filled), but does it follow $\sigma_{x y}$? Leading contribution: $\mathrm{O}\left(\mathrm{g}^{2}\right)$

- Impurity transconductivity $\sigma_{x y, \downarrow} \sim\left\langle J_{\downarrow}^{x} J_{\downarrow}^{y}\right\rangle$ starts at $\mathrm{O}\left(\mathrm{g}^{4}\right)$

Diagram for $\sigma_{x y}$
Current carried by virtual particles and holes

Diagram for $\sigma_{x y}$
Current carried by virtual particles and holes

Diagrams for $\sigma_{\uparrow \downarrow}$ Impurity scatters with particles or holes

- Particles and holes drag impurity in opposite directions \leftarrow
\bigoplus

- Particles and holes drag impurity in opposite directions

$\left(g^{2 n+1}\right)$
- Particles and holes drag impurity in opposite directions

- Particles and holes drag impurity in opposite directions

- Cancellation in particle-hole symmetric case, as for Coulomb drag in two-layer systems
Kamenev and Oreg, PRB 52 (1995)
- Haldane model

$$
\sigma_{\downarrow \uparrow}(g)=-\sigma_{\downarrow \uparrow}(-g)
$$

to all orders in g

$$
\phi= \pm \pi / 2, \Delta=0
$$

- Drag vanishes at p-h symmetric lines $\phi= \pm \pi / 2$
- Drag does not vanish in trivial phase (time-reversal broken everywhere)
- Phase boundaries clearly visible due to sharp jump of $\sigma_{\downarrow \uparrow}$

- Drag comes from Dirac- and spectator majorities

- Dirac contribution changes sign across topological phase transition $\&$ becomes singular (Berry curvature $=\frac{1}{2} \operatorname{sign}(m) \delta(\boldsymbol{k})$)

$$
\Delta \sigma_{\uparrow \downarrow}=\Delta \mathcal{C} \times g^{2} n_{\downarrow} \int d \boldsymbol{q} f\left(t^{\prime}, \phi ; \boldsymbol{q}\right)
$$

- Spectator fermions yield smooth background contribution
- Exact analytical expressions for continuum model
"Simply" measure current:
- in-situ observation of atomic cloud Aidelsburger et al., Nat. Phys. 11 (2015)
- state-dependent time-of-flight cheuk et al., PRL 109 (2012)
- Raman spectroscopy Ness etal., PRX 10 (2020)

Alternative: Circular dichroism Tran et al., Sci. Adv. 3 (2017)

- Shine system with left- and right- polarized fields (lattice shaking), measure differential depletion

$$
\Delta \Gamma_{\uparrow}(\omega)=\Gamma_{\uparrow,+}(\omega)-\Gamma_{\downarrow,-}(\omega) \quad A_{0} E^{2} \mathcal{C}=-\int_{0}^{\infty} d \omega \Delta \Gamma_{\uparrow}(\omega)
$$

Asteria et al., Nat. Phys. 15 (2019)

- For trivial impurity: without coupling to majority: $\Delta \Gamma_{\downarrow}(\omega)=0$
- With coupling $\sigma_{\downarrow \uparrow}=\frac{1}{4 \pi A_{0} E^{2}} \int_{0}^{\infty} d \omega \Delta \Gamma_{\downarrow}(\omega)$

$$
\Delta \Gamma_{\downarrow}(\omega)=\sum_{q>0} \Delta \Gamma_{\downarrow}(\boldsymbol{q}, \omega)
$$

- Compare $\Delta \sigma_{\uparrow \downarrow}=\Delta \mathcal{C} \times g^{2} n_{\downarrow} \int d \boldsymbol{q} f\left(t^{\prime}, \phi ; \boldsymbol{q}\right)$

Independent Chern number estimate at every q

- Impurity weakly interacting with Chern insulator
- Hall Drag sensitively depends on particle-hole symmetry
- Hall Drag jumps across phase transition $\sim \Delta \mathcal{C}$
- Detection: circular Dichroism

To Do:

- Strong coupling - bound state formation
- Genuine many-body effects in bound state topology?

