
2/15Fermi polarons

• Doped semiconductors Smolka et al., Science 346 (2014)...

Schirotzek et al., PRL 33 (2009)...• Ultracold atoms 
Realization:

Local kinematic properties of impurity are modified 

Typical questions: • Ground state (bound state – yes or no?)
• Impurity spectrum (Edge singularity)
• Transport: Impurity drag Cotlet, Pientka et al., PRX 9 (2019)...
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Modification of impurity topology by non-trivial medium?



"topological Fermi polaron"? 3/15

Modification of impurity topology by non-trivial medium?

• impurity binds to topological excitation of majority medium 
• inherits its topological properties 

Strong coupling limit: Grusdt et al., Nature Com. 7 (2016), PRB 100 (2019)



"topological Fermi polaron"? 3/15

Modification of impurity topology by non-trivial medium?

What about weak coupling?  Camacho-Guardian et al., PRB 99 (R) (2019),  
D.P. et al., PRB 103 (2021)

Controlled combination of ultracold gas expertise on polarons & topology 
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Collaborators: Arturo Camacho-Guardian (Cambridge)  
Georg Bruun (Aarhus) 
Pietro Massignan (Barcelona) 
Nathan Goldman (Brussels) 
Moshe Goldstein (Tel Aviv) 

Thanks
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2D Chern insulator 
(no symmetries enforced)

Topological majorities 

• Haldane model 

• Gapped Dirac cone with  
quadratic part – continuum model

Dirac fermions 

"spectator fermions"

C quantized (not half-quantized )  
due to spectator fermions
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Trivial impurity • Graphene
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• Trivial quadratic band 

Short-ranged interaction

3

Figure 2. Diagram representing Eq. (7), with ↵ = 1,� = 2.
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where ↵,� refer to band indices and the Einstein summa-
tion convention is implied. The standard diagrammatical
representation of Eq. (7) is shown in Fig. 2. The Mat-
subara Green function G",1 describes the propagation of
a hole in the filled lower band, while G",2 represents a
particle in the upper band. The frequency integral in Eq.
(7) only receives contributions when ↵ 6= �, and thus one
can view creation of virtual particle-hole pairs as the ori-
gin of the conductivity. These quasiparticles are virtual,
since the external field does not provide enough energy
(⌦ ! 0) to overcome the band gap.

Evaluation of Eqs. (7) and (4) is straightforward. Note
that the O(⌦0) part of (7) vanishes upon k-integration.
One finds
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Inserting current matrix elements and dispersions into
Eq. (8) produces Eq. (3).

After this noninteracting prelude, we are ready to
attack the polaron problem. We consider a minority
particle species indexed by #, with a trivial quadratic
Hamiltonian H#(p):

H#(p) = ✏#(p)c
†
#(p)c#(p), ✏#(p) =

p
2

2M
. (9)

We can view the impurities as governed by a similar tight-
binding Hamiltonian as the majority, but with a chemical
potential almost at the bottom of the lower band, around
which the dispersion is approximated by an e↵ective mass
M . Higher impurity bands can be safely neglected.

The majority and minority particles interact via an
onsite-interaction Hint [19], which does not distinguish

between the sublattices (recall that the sublattices give
rise to the two-band structure):

Hint =
g
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where we have rotated to the band space in the second
line. Now we imagine a constant and uniform force
E = Eey acting on both majority and minority particles
[33]. Due to the interaction Hint, a transverse impurity
current Jx

# will be induced; without interaction, there is
none due to time reversal symmetry of the impurities.
To quantify this e↵ect, we must compute the Hall drag
transconductivity
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!!0
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x
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����
i⌦!!+i0+

#
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This computation will be done to second order in the
impurity-majority coupling g, since the first order con-
tribution vanishes [19]; thus, attractive and repulsive in-
teractions lead to the same result. We point out that such
perturbative expansion is well-controlled for small g, and
no resummation is needed, in contrast with the recent
evaluation of longitudinal polaron drag in the metallic
case [34].

As in the case of Coulomb drag in two-layer systems
[22], the O(g2) contribution corresponds to the two dia-
grams shown in Fig. 3. We evaluate these diagrams to
leading order in the small impurity density n#. The dia-
grams involve an impurity loop and are therefore propor-
tional to n#, unlike the single-particle polaron diagrams
which have an impurity “backbone” [35]. It is convenient
to identify the impurity lines that represent filled states
(=̂ impurity holes). Since these carry vanishing momenta
in the small density limit, impurity lines coupled to the
current vertex, Jx

# (q) = qx/M , are excluded. Thus, the
central (red) line corresponds to a filled state. We may
set its momentum to zero as done in Fig. 3, and the in-
tegration over filled states then simply produces a factor
of n#.

projectors on band basis
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• Topology related to transport: 

• Force induces transversal majority current 
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• Topology related to transport: 

• Force induces transversal majority current 

• Does majority drag impurity behind? 
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• Topology related to transport: 

• Force induces transversal majority current 

• Does majority drag impurity behind? 

Leading contribution: O(g2)

TOPOLOGICAL TRANSPORT OF MOBILE IMPURITIES PHYSICAL REVIEW B 103, 245106 (2021)

1; ωk, k

2; Ω + ωk, k

Particle

Hole

Jx
↑,12(k)Jy

↑,21(k)

Ω Ω

FIG. 2. Diagram representing Eq. (5), with α = 1, β = 2.

The imaginary time correlator in Eq. (4) can be written as

−⟨Ĵx
↑Ĵy

↑⟩ (i#)

= A0

∫

k
G↑,α (ωk, k)G↑,β (# + ωk, k)Jx
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∫
d kdωk

(2π )3
, G↑,α (ωk, k) = 1

iωk − ϵ↑,α (k)
, (5)

where α,β refer to band indices and the Einstein summation
convention is implied. Jx/y

↑,αβ are current matrix elements in
the diagonal basis (see Appendix A for details). The standard
diagrammatical representation of Eq. (5) is shown in Fig. 2.
The Matsubara Green’s function G↑,1 describes the propaga-
tion of a hole in the filled lower band, while G↑,2 represents
a particle in the upper band. The frequency integral in Eq. (5)
only receives contributions when α ̸= β, and thus one can
view the creation of virtual particle-hole pairs as the origin
of the conductivity. These quasiparticles are virtual, since the
external field does not provide enough energy (# → 0) to
overcome the band gap.

The evaluation of Eqs. (5) and (4) is straightforward. One
finds

σxy = −i
∫

d k
(2π )2

Jx
↑,12(k)Jy

↑,21(k) − Jx
↑,21(k)Jy

↑,12(k)

[ϵ↑,1(k) − ϵ↑,2(k)]2

= − 1
2π

C. (6)

Inserting current matrix elements and dispersions into Eq. (6)
produces Eq. (3). After this noninteracting prelude, we are
ready to attack the polaron problem. We consider a minority
particle species indexed by ↓, with a trivial quadratic Hamil-
tonian H↓(p):

H↓(p) = ϵ↓(p)c†
↓(p)c↓(p), ϵ↓(p) = p2

2M
. (7)

We can view the impurities as governed by a similar
tight-binding Hamiltonian as the majority, but with a chem-
ical potential almost at the bottom of the lower band,
around which the dispersion is approximated by an ef-
fective mass M. Higher impurity bands can be safely
neglected.

The majority and minority particles interact via an on-site
interaction Hint [18], which does not distinguish between the
sublattices (recall that the sublattices give rise to the two-band

Jy
↑,αβ(k) Jx

↓ (q)

β; ωk, k

α; Ω + ωk, k Ω + ωq, q

ωq, q

Jy
↑,αβ(k) Jx

↓ (−q)

β; ωk, k

α; Ω + ωk,k Ω + ωq,−q

ωq,−q

ωq + ω̃,0

2; ωk + ω̃, k − q

ωq + ω̃,0

1; Ω + ωk − ω̃, k − q

FIG. 3. Leading contributions to the drag transconductivity.
Dashed lines represent impurities, and dotted lines interaction matrix
elements W [see Eq. (8)]. The energy-momentum structure of the
central part and the colored elements are explained in the main text.

structure):
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∑

k,p,q

c†
↑,α (k+ q)c↑,β (k)c†

↓(p− q)c↓(p)Wαβ (k, q),

Wαβ (k, q) ≡ [U †
↑ (k+ q)U↑(k)]αβ, (8)

where we have rotated to the band space in the second line.
Now we imagine a constant and uniform force E = Eey acting
on both majority and minority particles [33]. Due to the inter-
action Hint, a transverse impurity current Jx

↓ will be induced;
without an interaction, there is none due to time-reversal
symmetry of the impurities. To quantify this effect, we must
compute the Hall drag transconductivity

σ↓↑ ≡ lim
ω→0

1
−iωA0

[−⟨Ĵx
↓Ĵy

↑⟩ (i#)|i#→ω+i0+]. (9)

This computation will be done to second order in the
impurity-majority coupling g, since the first-order contribu-
tion vanishes [18]; thus, attractive and repulsive interactions
lead to the same result. We point out that such a perturbative
expansion is well controlled for small g, and no resummation
is needed, in contrast with the recent evaluation of longitudi-
nal polaron drag in the metallic case [34].

As in the case of Coulomb drag in two-layer systems [20],
the O(g2) contribution corresponds to the two diagrams shown
in Fig. 3. We evaluate these diagrams to leading order in
the small impurity density n↓. The diagrams involve an
impurity loop and are therefore proportional to n↓, unlike
the single-particle polaron diagrams which have an impurity
“backbone” [35]. It is convenient to identify the impurity
lines that represent filled states (=̂impurity holes). Since these
carry vanishing momenta in the small density limit, impu-
rity lines coupled to the current vertex, Jx

↓(q) = qx/M, are
excluded. Thus, the central (red) line corresponds to a filled
state. We may set its momentum to zero as done in Fig. 3,

245106-3

• Drag transconductivity

Not quantized (impurity band is not filled), but does it follow      ? 

• Impurity transconductivity 
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Current carried by virtual  
particles and holes
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Diagrams for 
Impurity scatters with  
particles or holes
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• Particles and holes drag impurity in opposite directions
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• Particles and holes drag impurity in opposite directions

• Cancellation in particle-hole symmetric case, as for Coulomb drag in  
two-layer systems    
Kamenev and Oreg, PRB 52 (1995)

• Haldane model                               
� = ±⇡/2,� = 0
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to all orders in g
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• Drag vanishes at p-h symmetric  
  lines   � = ±⇡/2
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• Drag does not vanish in trivial 
phase (time-reversal broken 
everywhere)   

• Phase boundaries clearly visible 
due to sharp jump of �#"

<latexit sha1_base64="FRjBgE92vNT9cYoWpzRjtbtQLO0=">AAACBHicbVC7TsMwFHXKq5RXgLGLRYXEVCWoCMYKFsYi0YfURJHjOq1V24lsh6qKOrDwKywMIMTKR7DxN7hpBmg5kuWjc+699j1hwqjSjvNtldbWNza3ytuVnd29/QP78Kij4lRi0sYxi2UvRIowKkhbU81IL5EE8ZCRbji+mfvdByIVjcW9nibE52goaEQx0kYK7Kqn6JCjIPMG8UQgKeOJlyb5PQvsmlN3csBV4hakBgq0AvvLTMEpJ0JjhpTqu06i/QxJTTEjs4qXKpIgPEZD0jdUIE6Un+VLzOCpUQYwiqU5QsNc/d2RIa7UlIemkiM9UsveXPzP66c6uvIzKpJUE4EXD0UpgzqG80TggEqCNZsagrCk5q8Qj5BEWJvcKiYEd3nlVdI5r7uN+sVdo9a8LuIogyo4AWfABZegCW5BC7QBBo/gGbyCN+vJerHerY9Fackqeo7BH1ifP1SimTA=</latexit>



11/15Jump

• Spectator fermions yield smooth background contribution

• Exact analytical expressions for continuum model 
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• Drag comes from Dirac- and spectator majorities 

• Dirac contribution changes sign across topological phase transition  
 & becomes singular (Berry curvature =                     )
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"Simply" measure current: 

• in-situ observation of atomic cloud Aidelsburger et al., Nat. Phys. 11 (2015)  
• state-dependent time-of-flight Cheuk et al., PRL 109 (2012) 
• Raman spectroscopy Ness et al., PRX 10 (2020)
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Alternative: Circular dichroism  Tran et al., Sci. Adv. 3 (2017)

LETTERS NATURE PHYSICS

exists between the Floquet and spectroscopic drives, ω ω≫Fl sp. In 
our setting, this separation is obtained through the choice of a large 
energy offset ωΔ ≈ ℏ ≫ JAB Fl , noting that the tunnelling ω~ ℏJ sp sets 
the energy scale of the probed Floquet bands. We have validated this 
approach through a numerical study of the interplay between the 
two drives, in particular, the role of micromotion (Supplementary 
Information). We find that the separation of timescales indeed sup-
presses micro-motion effects and that, for our parameters, they 
can lead to an error of the integrated depletion rates of about 0.1. 
While the spectroscopy drive commutes with the Floquet drive in 
our experiment, our numerical analysis also indicates that special 
care is required whenever this commutation relation is not satis-
fied, which could be the case in other Floquet-based settings. In 
particular, we find that additional effects, such as a renormalization 
of the observed coupling strengths, can appear in these situations 
(Supplementary Information).

Our measurements start with spin-polarized fermions filling 
up the lowest band of the bare lattice. We adiabatically prepare the 
atoms in the lowest Floquet band by ramping the Floquet amplitude 
and frequency (Fig. 2). We then resonantly couple the two lowest 
Floquet bands via a spectroscopy pulse realized by an additional 
lattice shaking, which is either circular (with chirality + or −) or, 
for comparison, linear (along the x or y directions). The spectros-
copy drive has varying frequency ωsp and forcing amplitude Esp 
(Methods). We monitor the transfer between the Floquet bands 
by adiabatically mapping the Floquet bands onto the bare bands, 
and subsequently onto the first and second Brillouin zones using 
adiabatic band mapping28. The populations in the Floquet bands 
η1,2 = N1,2/[N1 + N2] are obtained by counting the atoms N1 and N2 in 
the respective Brillouin zones (Fig. 2). We note that the experimen-
tal depletion rates Γ reflect the change in the fractional population 
dη1/dt rather than a change in the total atom number (as in refs. 4,5,7). 
This motivates the normalization used in equation (1) in terms of 
Acell (with λ= ∕A 2 3 3cell

2 ), instead of the two-dimensional (2D) 
system size Asyst (Methods).

The spectroscopy drive couples the two Floquet bands and 
leads to a depletion of the lower band, characterized by the rate Γ. 
We start with an initial population fraction in the lower band of 
η1(0) = 60–75%, due to the compromise between adiabaticity and 
Floquet heating during the preparation ramp29. Due to dephasing in 
the inhomogeneous system, the population of the upper band can be 
described as completely incoherent28; therefore, the excess popula-
tion of the lower band Δη(t) = η1(t) − η2(t) decays to zero with time t. 
We fit Δη(t)/Δη(0) with an exponential decay − Γ ∕E E texp( 2 ( ) )sp sp

ref 2 ,  
and we obtain the desired depletion rate Γ at a spectroscopy ampli-

tude of = . ∕E E a0 006sp
ref

r lat (Methods); see Fig. 3a. We choose a fixed 
duration for the rectangular spectroscopy pulse of t = 5 ms, as a 
compromise between frequency resolution and pulse duration, and 
we vary the spectroscopy amplitude Esp. To obtain a good signal-to-
noise ratio, we probe at driving amplitudes beyond linear response. 
However, the procedure of fitting the exponential decay allows 
one to obtain the slope in the linear response regime, described by 
Fermi’s golden rule (dashed line in Fig. 3a).

The spectra Γ±(ωsp) resulting from the circular-driving probe 
are shown in Fig. 3b,c. As expected, these spectra strongly depend 
on the chirality of the spectroscopy drive. Specifically, the over-
all signal is larger when the Floquet and spectroscopy drives have 
opposite chirality (the Floquet drive has negative chirality through-
out the manuscript). These absorption spectra offer a unique 
characterization of our Floquet band structure and signal the chi-
ral (time-reversal-symmetry-breaking) nature of the engineered 
Haldane model20. We fit the spectra with a heuristic function, 

ωΓ = + +γ ω ω γ ω± π + − ∕
c( ) a b

sp
1

1 [( ) ]sp 0
2

sp
, composed of a Lorentzian peak 

of width γ at ω0 and a 1/ωsp term, which captures an additional heat-
ing feature at low frequencies. We attribute this heating to the initial 
jump in the lattice velocity on switching on/off the spectroscopy 
pulse; it is independent of the chirality of the spectroscopy drive 
and hence does not affect the topological response. Introducing the 
differential rate ΔΓ± = (Γ+ − Γ−)/2, our data in Fig. 3b,c can also be 
interpreted as a measurement of the dissipative (that is, imaginary) 
part of the antisymmetric optical conductivity4,13

σ ω ω ω= ℏ ΔΓ ∕± A E( ) ( ) 4 (2)xy
I cell sp

2

The corresponding curves obtained by multiplying the dif-
ferential rate by ω are shown in Fig. 3d. We note that the optical 
conductivity of a neutral gas30 was also recently measured in a non-
topological system31.

The topological response in equation (1) becomes vis-
ible when evaluating the frequency-integrated differential rate 

∫ ω ω ωΔΓ = Γ −Γ ∕± + −d [ ( ) ( )] 2p
int

sp sp s ; this integration is taken 
over the Lorentzian part of the fit to the spectra (Supplementary 
Information). We evaluate ΔΓ ∕± Aint

cell in units of ∕ℏE( )sp
2, which, 

according to the prediction in equation (1), should be quantized in 
terms of the Chern number C. As the central result of these studies, 
we find a value 0.92(12), very close to the predicted value of C = 1, in 
the centre of the non-trivial topological region (Fig. 3b); this value 
of the extracted Chern number is comparable to those reported in 
recent cold-atom experiments28,32,33. In the trivial region (C = 0), far 
away from the topological phase transition, we measure a value of 
0.12(4) (Fig. 3c). Our measurements thus demonstrate a first exper-
imental manifestation of quantized circular dichroism.

Furthermore, we analysed the behaviour of the circular dichroic 
signal across the topological phase transition, which can be mapped 
out by changing the Floquet frequency (Fig. 4a). Instead of mea-
suring a sharp transition, we obtain a smooth falloff of the signal 
ΔΓ ∕± Aint

cell, a behaviour that is found to be generic in cold-atom 
studies of topological phase transitions28,32. Beyond the effects due 
to finite size, temperature and inhomogeneity caused by the har-
monic trap, which are all inherent to current cold-atom settings, the 
absence of a sharp jump can also be attributed to a series of addi-
tional effects that are specific to our spectroscopic measurement 
(Supplementary Information). First of all, our spectra are affected 
by a Fourier broadening of 200 Hz. Then, close to the phase transi-
tions, the small bandgap leads to a breakdown of the rotating-wave 
approximation on which the theory of ref. 4 relies. Finally, while  
the predicted detrimental effect of edge states4 does not seem to  
contribute to our central dichroic signal (which we attribute to  
the spatial separation of bulk and edge states in our harmonically 

Quantized transport Quantized depletionba

E
ne

rg
y

Quasimomentum

Г– Г+

j⊥

∆Г±
int /Acell = (1 /ħ2 )CE 2

Г±
Esp

E

j⊥ = (e2 /h)CE sp

Fig. 1 | Quantized responses in topological matter. Topological invariants, 
such as the Chern number, can be revealed via a quantized response to 
a drive. a, In the quantum (anomalous) Hall effect, the Hall conductance 
relating the transverse current density j⊥ to the applied electric field E 
follows a quantization law dictated by the Chern number C of the populated 
Bloch band1,9. b, Our experiment studies a distinct quantization law4, which 
involves the depletion rates Γ± of a Bloch band (inset) on circular shaking, 
where (±) refer to the drive orientation. The differential integrated rate 
ΔΓ±

int also reveals the Chern number C, but is quadratic with respect to the 
driving strength Esp, reflecting its dissipative (interband) nature.
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Asteria et al.,  
Nat. Phys. 15 (2019)

• Shine system with left- and right- polarized fields (lattice shaking), 
measure differential depletion 

7

Figure 6. Impurity Hall drag �#" in the Haldane model. (a) Majority phase diagram. �0 = 6
p
3t0 is the value of � where

the phase transition occurs for � = ⇡/2. (b) �#" from numerical evaluation of Eq. (D2) for t0 = 0.2. Cuts through the phase
diagram along the dashed lines are shown in the next panels. (c) �#" as function of � for � = 0 and two values of t0. (d) �#"
as function of � for � = ⇡/4 and same two values of t0. The abscissa is rescaled by �0(t

0).

Chern insulators have also been successfully realized
in ultracold gas systems. Here, an established technique
for measuring topological quantum numbers [37, 38] is
the in-situ observation of the center of mass displace-
ment of the atomic cloud upon the action of an external
force. In the present polaron context, this measurement
would have to be performed in a state-dependent man-
ner to extract the Hall drag. In addition, one could con-
duct either a state-dependent time-of-flight measurement
[39, 40], or Raman spectroscopy (as recently implemented
for polarons [41]), to infer the in-trap momentum distri-
bution of the impurity, in view of evaluating the current
response of the impurity to an applied force.

All these transport experiments would extract the Hall
drag from the linear current response to an external,
linearly polarized electric field, which is the standard
point of view. However, recent theoretical works have
shown [25–27, 42, 43] that topological invariants can also
be obtained from a measurement of excitation rates to
second order in the amplitudes of circularly polarized
fields, which was verified in the experiment of Ref. [28].
For the Hall drag �#", a relation to an impurity excit-
ation rate can be established as well, as we now show.
Measuring such excitation rates may be a simpler route
to detect �#" experimentally, in both ultracold gas and
solid state systems.

To set the stage, we first rephrase the results of Ref.

[25] for the majority sector (non-interacting Chern insu-
lator). The particles are coupled to external left or right
circular polarized electrical fields:

E±(t) = 2E (cos(!t), ± sin(!t))T , (22)

with ! a fixed drive frequency. In the temporal gauge,
the time-dependent light-matter Hamiltonian reads

H",±(t) =
2E

!

⇣
Ĵ
x
" sin(!t)⌥ Ĵ

y
" cos(!t)

⌘
. (23)

When this perturbation is switched on, particles are
excited from the lower to the upper band. One can
define the associated depletion rates of initially occu-
pied states with momentum k, �",±(k,!), which de-
pend on the polarization of the driving field (“circu-
lar dichroism”). In Ref. [25], these rates are obtained
from Fermi’s Golden Rule. Let ��"(!) be the di↵er-
ence in total depletion rates for a fixed frequency !,
��"(!) ⌘ 1/2

P
k(�",+(k,!) � �",�(k,!)). Then the

Chern number C follows the simple relation [44]:

A0E
2
C = �

Z 1

0
d!��"(!) . (24)

This integration has to be understood as an average of
��"(!) over di↵erent drive frequencies, obtained by re-
peating the experiment many times [28].

��"(!) = �",+(!)� �#,�(!)

<latexit sha1_base64="t6iwLZzsSl1L1Q/2qIQ2Kci2BTU="></latexit>
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• For trivial impurity: without coupling to majority:��#(!) = 0
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involving the currents Ĵy
# , Ĵ

x
" . Per the Feynman rules (cf.

App. F), these diagrams come with a relative minus sign,
and then yield a factor of two for the total di↵erential
rate, since �xy,#" = ��yx,#" for both the continuum and
the Haldane model, as one can check easily. Modulo the
antisymmetrization discussed above, we therefore have

�#" =
1

4⇡A0E
2

Z 1

0
d!��#(!) . (30)

This result can also be rephrased in terms of excita-
tion instead of depletion rates. Since the impurities are
initially prepared at the bottom of the band, one can
write

Z 1

0
d!��#(!) =

X

q>0

Z 1

0
d!��#,exc(q,!) , (31)

meaning that the impurities are excited into states with
higher momentum which are initially empty. These q-
states correspond to the intermediate impurity lines in
Fig. 9. Via Eq. (30) we can then define a q-resolved
impurity drag as

�#" ⌘

X

q>0

�#"(q) . (32)

This provides an alternative view on, say, the topo-
logical jump ��#". For the Haldane model, it can be
phrased as ��#" = �C

R
dqfjump(q), where fjump(q) is

a known function, see Eqs. (21), (D4). If the excitation
rates defined in Eq. (31) can be experimentally detected
in q-resolved fashion (for instance with band mapping
techniques [46–48]), so can the q-resolved impurity drag
�#"(q). Measuring �#"(q) at two points in the phase dia-
gram close to the topological boundary then gives direct
access to fjump(q). Taken the other way around, suppos-
ing that fjump(q) is known for the model realized in the
experiment, at each q-point an independent estimate of
the change in Chern number across the phase transition
�C is possible.

VI. Conclusions

In this work we have studied to which extent a topolo-
gically trivial impurity can be Hall-dragged by majority
excitations in a Chern insulator, looking at two di↵er-
ent models in a controlled perturbative setting. Since
the impurity Hall drag is sensitive to the dispersion of
the majority particles and holes, there is no one-to-one
correspondence to the Chern number; nevertheless, the
change in Chern number across a topological transition
is clearly reflected by a discontinuous jump in the drag
transconductivity �#". This transconductivity can be
extracted either from transport experiments, or from a
measurement of impurity excitation rates upon driving
the system by a circularly polarized field.

A worthwhile goal for future study is the extension to
the strong-coupling limit, in particular the analysis of

impurity-majority bound state formation. These bound
states may have rather rich physics: they could inherit
the topological characteristics of the majority particles
[15, 16], have opposite chirality as found for Haldane
model in the two-body limit [49], or even be topological
when the single-particle state are trivial [50–52].
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A. Basis rotation

The unitary matrix defined in Eq. (5) reads

U"(k) =

✓
U",A1(k) U",A2(k)
U",B1(k) U",B2(k)

◆
, (A1)

U",A1(k) =
h3(k)� h(k)p

2h(k)(h(k)� h3(k))

U",A2(k) =
h3(k) + h(k)p

2h(k)(h(k) + h3(k))

U",B1(k) =
h1(k) + ih2(k)p

2h(k)(h(k)� h3(k))
,

U",B2(k) =
h1(k) + ih2(k)p

2h(k)(h(k) + h3(k))
,

where A,B refer to the sublattice- and 1, 2 to the diagonal
band basis. The same expressions apply for the Haldane
model as well.
In the band basis, the second-quantized current oper-

ator is given by

Ĵ
x/y
" =

X

k

c
†
",↵(k)J

x/y
",↵�(k)c",�(k), (A2)

• With coupling
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Independent Chern number estimate at every q
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!anks for y"r a#ention!

• Impurity weakly interacting with Chern insulator 
• Hall Drag sensitively depends on particle-hole symmetry 
• Hall Drag jumps across phase transition  
• Detection: circular Dichroism
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To Do: 

• Strong coupling – bound state formation 
• Genuine many-body effects in bound state topology? 


