Exploring Four-Dimensional Quantum Hall Physics

Hannah Price
University of Birmingham, UK

Many thanks to:

Birmingham

Ben McCanna

Singapore

Wang You, Baile Zhang, Yidong Chong

Munich:
Michael Lohse, Christian Schweizer, Immanuel Bloch

Zurich:
Martin Lebrat, Samuel Hausler, Laura Corman, Tilman Esslinger

EPFL:
Jean-Philippe Brantut
Jena:
Martin Wimmer, Monika Monika, Ulf Peschel

Birmingham Cold Atoms: Tom Easton, Aaron Smith, Giovanni Barontini

Barcelona:
Alexandre Dauphin, Maria Maffei, Maciej Lewenstein, Pietro Massignan

Naples:
Francesco Di Colandrea, Alessio D’Errico,
Lorenzo Marrucci, Filippo Cardano

Overview

- Introduction to 4D Quantum Hall (QH) physics
- Using electrical circuits to realise a 4D QH model
- Superfluid vortices in four spatial dimensions

Four spatial dimensions

NerdBoy1392, CC BY-SA 3.0 https://creativecommons.org/licenses/by-sa/3.0, via Wikimedia Commons

Some Key Differences in 4D

1. In 4D, avoid cross products

$$
\mathbf{B}=\nabla \times \mathbf{A} \quad \longrightarrow \quad B_{\nu \mu}=\partial_{\nu} A_{\mu}-\partial_{\mu} A_{\nu}
$$

$$
\begin{array}{cc}
\text { In 2D, } & \text { In 3D, } \\
B_{x y} & B_{x y}, B_{x z}, B_{y z}
\end{array}
$$

(hence can treat like a 3D vector)

$$
\begin{gathered}
\text { In 4D, } \\
B_{x y}, B_{x z}, B_{x w}, B_{y z}, B_{y w}, B_{z w}
\end{gathered}
$$

Some Key Differences in 4D

2. Intersections of orthogonal Cartesian planes

In 3D,
pairs of planes intersect at a line

$$
x y, x z, z y
$$

In 4D,
pairs of planes can intersect at a point

$$
x y, x z, x w, z y, y w, z w
$$

Classical Particle in a Magnetic Field

$$
\begin{gathered}
F_{\mu}=q v_{\nu} B_{\mu \nu} \\
\omega=\frac{q|B|}{m}
\end{gathered}
$$

x

$$
B_{x z}
$$

$$
B_{x y}, B_{x z}, B_{y z} \rightarrow B_{x^{\prime} z^{\prime}}
$$

$$
x=\cos (\omega t), z=\sin (\omega t)
$$

$$
x^{\prime}=\cos (\omega t), z^{\prime}=\sin (\omega t)
$$

Classical Particle in a Magnetic Field

4D

e.g. $B_{x z}, B_{y w} \neq 0$

$$
\omega=\frac{q B_{x z}}{m}, \quad \omega^{\prime}=\frac{q B_{y w}}{m}
$$

$$
\begin{aligned}
x=\cos (\omega t), z & =\sin (\omega t), \\
y=\cos \left(\omega^{\prime} t\right), w & =\sin \left(\omega^{\prime} t\right)
\end{aligned}
$$

$B_{y w}=2 B_{x z}$

z

x

2D Quantum Hall Effect

$$
\psi_{n, \mathbf{k}}(\mathbf{r})=e^{i \mathbf{k} \cdot \mathbf{r}} u_{n, k}(\mathbf{r}) \quad \hat{H}_{\mathbf{k}} u_{n, \mathbf{k}}=\mathcal{E}_{n}(\mathbf{k}) u_{n, \mathbf{k}}
$$

Berry connection

Berry curvature

$$
\mathcal{A}_{n}(\mathbf{k})=i\left\langle u_{n, \mathbf{k}}\right| \frac{\partial}{\partial \mathbf{k}}\left|u_{n, \mathbf{k}}\right\rangle
$$

$$
\Omega_{n}(\mathbf{k})=\nabla \times \mathcal{A}_{n}(\mathbf{k})
$$

$$
\Omega_{n}^{\mu \nu}=i\left[\left\langle\left.\frac{\partial u_{n}}{\partial k_{\mu}} \right\rvert\, \frac{\partial u_{n}}{\partial k_{\nu}}\right\rangle-\left\langle\left.\frac{\partial u_{n}}{\partial k_{\nu}} \right\rvert\, \frac{\partial u_{n}}{\partial k_{\mu}}\right\rangle\right]
$$

1st Chern Number (of a single non-degenerate band)
N.B. Always requires time-reversal symmetrybreaking (e.g. magnetic fields)

$$
\nu_{1}^{\gamma \delta}=\frac{1}{2 \pi} \int_{2 \mathrm{DBZ}} \Omega^{\gamma \delta} d k_{\gamma} d k_{\delta}
$$

Quantized response

$$
j_{\gamma}=\frac{q^{2}}{h} E_{\delta} \nu_{1}^{\gamma \delta}
$$

And then in 3D, can have a triad of first Chern numbers...

2nd Chern Number in 4D

2nd Chern Number (of a single non-degenerate band)
Avron et al, Phys. Rev. Lett. 61, 1329 (1988)....

$$
\nu_{2}=\frac{1}{32 \pi^{2}} \int_{4 \mathrm{DBZ}} \epsilon^{i j k l} \Omega^{i j} \Omega^{k l} d^{4} \mathbf{k}
$$

N.B. Does not require time-reversal symmetry-breaking!

- Algorithm to calculate the 2 nd Chern number Mochol-Grzelak et al, Quantum Sci. and Tech. 4 (1), 014009 (2019)
- Dimensional reduction to get Tls

Qi et al, Phys. Rev. B 78, 195424 (2008)

- 2nd Chern Number and second-order Tls Petrides and Zilberberg, PRR. 2, 022049 (2020)
- 3rd Chern Number in 6D and so on...

Petrides, HMP, Zilberberg Phys. Rev. B 98, 125431 (2018) and references there-in

- Measuring 2nd Chern Number in a parameter space

Kolodrubetz, PRL. 117, 015301 (2016)
Cold atoms: Sugawa et al., Science 360,1429 (2018)

- Superconducting systems

Riwar et al, Nat. Comm., 7, 11167 (2016)
Weisbrich et al, PRX Quantum 2, 010310 (2021)

- Other types of 4D topology, e.g.

4D tensor monopoles
Palumbo and Goldman, PRL121, 170401 (2018)
Zhu et al, PRB 102, 081109 (2020)
Superconducting Qudits: Tan et al., PRL. 126, 017702 (2021)

2nd Chern Number in 4D

Quantized response $\quad j_{\mu}=\frac{q^{3}}{2 h^{2}} \varepsilon^{\mu \gamma \delta \nu} E_{\nu} B_{\gamma \delta} \nu_{2}$

Zhang et al, Science 294, 823 (2001), Qi et al, Phys. Rev. B 78, 195424 (2008)....

- Observed signatures in topological pumping:

Kraus, Ringel, Zilberberg, PRL. 111, 226401 (2013)
Cold atoms: Lohse, Schweizer, HMP, Zilberberg, Bloch, Nature 553, 55 (2018)
Photonics: Zilberberg et al., Nature 553, 59 (2018)
Acoustics: Chen et al, Phys. Rev. X 11, 011016 (2021).

- Proposal for measurements with synthetic dimensions

HMP, Zilberberg, Ozawa, Carusotto \& Goldman, PRL 115, 195303 (2015) Ozawa, HMP, Goldman, Zilberberg, and Carusotto, PRA 93, 043827 (2016) HMP, Zilberberg, Ozawa, Carusotto \& Goldman, PRB 93, 245113 (2016)...

- Optical diffraction patterns

Di Colandrea et al, arXiv:2106.08837

- Surface states in 4D Electrical Circuits

M. Ezawa, Phys. Rev. B 100, 075423 (2019)
R. Yu, Y. X. Zhao, and A. P. Schnyder, Nat. Sci. Rev. (2020), HMP, Phys. Rev. B 101, 205141 (2020)
Wang, HMP, Zhang, Chong, Nat. Comm. 11, 2356 (2020)
Zhang et al Phys. Rev. B 102, 100102 (2020)...

Overview

- Introduction to 4D Quantum Hall physics
- Using electrical circuits to realise a 4D QH model

Wang You, Baile Zhang, Yidong Chong
Singapore

- Superfluid vortices in four spatial dimensions

Electrical circuits for topological models

Network of resistors, inductors, capacitors...
voltage between

behaviour governed by the circuit Laplacian
which can be related to a
desired (topological) tight-binding Hamiltonian

Ningyuan et al Phys. Rev. X 5, 021031 (2015)
Albert et al, Phys. Rev. Lett. 114, 173902 (2015)
Lee et al, Communications Physics, Volume 1, 39 (2018)
Imhof et al, Nat Phys, 14, 925 (2018)
Ezawa, Phys. Rev. B 99, 201411 (2019)
Dong et al, Phys. Rev. Research 3, 023056 (2021).....

In more detail

maps to desired on-site terms
current flowing to ground

Impedance Measurements

Run a current through the circuit and measure the response

$$
V_{r}=\sum_{j}\left(L^{-1}\right)_{r j} I_{j}=Z_{r} I_{r} \quad Z_{r}=\frac{i}{\alpha} \lim _{\epsilon \rightarrow 0} \sum_{n} \frac{\left|\psi_{n}(r)\right|^{2}}{E_{n}-E+i \epsilon}
$$

at the working frequency get
Local DOS of desired TB model at the target energy
e.g. edge states $->$ LDOS localised at edges of the system

Our goal

Make a 4DQH model our target TB model by exploiting the connectivity of an electrical circuit

What sort of 4DQH model can we engineer easily in a circuit?

4D QH via connectivity

+ some long-range hoppings e.g.:

... negative hoppings - positive hoppings

$$
\begin{aligned}
H(\mathbf{k})= & J\left[\left(2 \cos k_{x}+\cos k_{y}\right) \Gamma_{1}+\sin k_{y} \Gamma_{2}+\left(2 \cos k_{z}+\cos k_{w}\right) \Gamma_{3}+\sin k_{w} \Gamma_{4}+m \Gamma_{5}\right] \\
& +\left[2 J^{\prime} \cos \left(2 k_{x}+2 k_{z}\right)+2 J^{\prime \prime} \cos \left(2 k_{x}-2 k_{z}\right)\right] \Gamma_{5}
\end{aligned}
$$

$$
\Gamma_{1}=\left(\begin{array}{cccc}
0 & 0 & 1 & 0 \\
0 & 0 & 0 & -1 \\
1 & 0 & 0 & 0 \\
0 & -1 & 0 & 0
\end{array}\right), \Gamma_{2}=\left(\begin{array}{cccc}
0 & 0 & -i & 0 \\
0 & 0 & 0 & -i \\
i & 0 & 0 & 0 \\
0 & i & 0 & 0
\end{array}\right), \Gamma_{3}=\left(\begin{array}{cccc}
0 & 0 & 0 & 1 \\
0 & 0 & 1 & 0 \\
0 & 1 & 0 & 0 \\
1 & 0 & 0 & 0
\end{array}\right), \Gamma_{4}=\left(\begin{array}{cccc}
0 & 0 & 0 & -i \\
0 & 0 & i & 0 \\
0 & -i & 0 & 0 \\
i & 0 & 0 & 0
\end{array}\right), \Gamma_{5}=\left(\begin{array}{cccc}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & -1 & 0 \\
0 & 0 & 0 & -1
\end{array}\right),
$$

- spinless time-reversal symmetry
- trivial first Chern numbers
- nontrivial (even) second Chern number

Aside: 4D Dirac Cones

When there are no gap-opening terms with Γ_{5}

Around a single 4D Dirac cone $H \approx \mathbf{d}(\mathbf{q}) \cdot \boldsymbol{\Gamma}$

$$
\mathbf{d}(\mathbf{q}) \approx\left(v_{x} q_{x}, v_{y} q_{y}, v_{z} q_{z}, v_{w} q_{w}, m\right)
$$

$$
\nu_{2}=\frac{3}{8 \pi^{2}} \int_{\mathrm{BZ}} d^{4} \mathbf{k} \epsilon^{a b c d e} \hat{d}_{a} \partial_{k_{x}} \hat{d}_{b} \partial_{k_{y}} \hat{d}_{c} \partial_{k_{z}} \hat{d}_{d} \partial_{k_{w}} \hat{d}_{e}
$$

Aside: 4D topological transitions

$\nu_{2}=\frac{3}{8 \pi^{2}} \int_{\mathrm{BZ}} d^{4} \mathbf{k} \epsilon^{a b c d e} \hat{d}_{a} \partial_{k_{x}} \hat{d}_{b} \partial_{k_{y}} \hat{d}_{c} \partial_{k_{z}} \hat{d}_{d} \partial_{k_{w}} \hat{d}_{e}$
integrand

when $\quad d_{5}=-m \rightarrow d_{5}=m$
Type 1: $\quad d_{1}, d_{2}, d_{3}, d_{4}$
Type 2: $\quad d_{1}, d_{2}, d_{3}, d_{4}$
even no/ minus signs —> increases integrand odd no/ minus signs \longrightarrow decreases integrand

Aside: Time-reversal symmetry

Imagine we have a Type 1 cone

What about time-reversal symmetry
e.g, for spinless particles $H^{*}(\mathbf{k})=H(-\mathbf{k})$

$$
\begin{aligned}
d_{1,3}(\mathbf{k}) & =d_{1,3}(-\mathbf{k}), \\
d_{2,4}(\mathbf{k}) & =-d_{2,4}(-\mathbf{k})
\end{aligned} \quad \begin{aligned}
& \Gamma_{1,3}^{*}=\Gamma_{1,3} \\
& \Gamma_{2,4}^{*}=-\Gamma_{2,4}
\end{aligned}
$$

Then the TRS-partner Dirac cone:

$$
-\mathbf{K}
$$

$$
\left(+q_{x},-q_{y},+q_{z},-q_{w}\right) \quad \rightarrow \text { Also Type } 1
$$

So can have 2 nd Chern number with TRS

Back to our model

+ some long-range hoppings

ative hoppings - positive hoppings

Trivial	4D QH	Trivial	m / J
$\nu_{2}=0$	$\nu_{2}=-2$	$\nu_{2}=0$	
$J^{\prime}=-J^{\prime \prime}=2 J$			

3D Surface States

Aim: build this model in a circuit and observe these surface states in the LDOS (i.e. impedance measurements)

Surface state dispersion : 3D Weyl points at

$$
k_{y}=k_{w}=0, k_{z}= \pm 2 \pi / 3
$$

Open b.c. along x

4D Circuit Design

$$
D_{i j}\left(f_{0}\right)=i \alpha H_{i j}\left(f_{0}\right)
$$

Positive (negative) values of the Hamiltonian correspond to capacitances (inductances)

Grounding (incl. on-site energies)

-Positive NN hoppings

$$
C_{0}=1 \mathrm{nF} \quad \leftrightarrow \quad J=1
$$

- Positive long-range hoppings

$$
C^{\prime}=2 C_{0} \quad \leftrightarrow \quad J^{\prime}=2
$$

..-Negative NN hoppings

$$
L_{0}=2 \mathrm{mH} \quad \leftrightarrow-J=-1
$$

- Negative long-range hoppings

$$
L^{\prime}=L_{0} / 2 \quad \leftrightarrow \quad J^{\prime \prime}=-2
$$

$$
2 \pi f_{0}=1 / \sqrt{L_{0} C_{0}}
$$

$$
\alpha=2 \pi f_{0} C_{0}
$$

4D Circuit Experiment

no/unit cells in x, z (with 2 sites in y, w)

144 sites ($6 \times 2 \times 6 \times 2$)

and with periodic bc along " y " and " w "

Observing the 3D Surface States

3D Surface states

Conclusions (Part I)

- Topoelectric circuits!
- Simulation of 4D topological models in a circuit
- Observed 3D surface states due to 2nd Chern number
- Synthetic dimensions to see 4D QH response?
- Other higher-dimensional topological effects?

[^0]
Overview

- Introduction to 4D Quantum Hall physics
- Using electrical circuits to realise a 4D QH model
- Superfluid vortices in four spatial dimensions

Motivation: 4DQH with magnetic fields

$$
\text { e.g. } B_{x z}, B_{y w} \neq 0
$$

4D Landau levels

Then what happens to mean-field interacting bosons?

equivalent to:
Gross-Pitaevskii equation
in doubly rotating frame

$$
\left[-\frac{\hbar^{2}}{2 m} \nabla^{2}+g|\psi|^{2}-\omega_{x y} L_{x y}-\omega_{z w} L_{z w}\right] \psi=\mu \psi
$$

Reminder: Vortices in 2D and 3D

Classical trajectories

x

Quantum vortex

and profile from solving GPE

$$
\begin{array}{ll}
\psi=\sqrt{\rho} e^{i S} & \oint_{C} \mathbf{v} \cdot d \mathbf{r}=\frac{\hbar}{m}[\Delta S]_{C} \\
\mathbf{v}=\frac{\hbar}{m} \nabla S & {[\Delta S]_{C}=2 \pi k}
\end{array}
$$

can be energetically stabilised by rotation/ magnetic field (e.g. in $x-y$ plane)

$$
\left[-\frac{\hbar^{2}}{2 m} \nabla^{2}+g|\psi|^{2}-\omega_{x y} L_{x y}\right] \psi=\mu \psi
$$

Single 4D Vortex Plane

in 2D, vortex core: OD point

in 3D, vortex core:
1D line

in $\mathbf{4 D}$, vortex core: 2D plane?

For $\quad \omega_{x y} \neq 0, \omega_{z w}=0$ NB this is a "simple rotation":
$\left(\begin{array}{cc}R(\alpha) & 0 \\ 0 & I\end{array}\right)$, where $R(\alpha)=\left(\begin{array}{cc}\cos \alpha & -\sin \alpha \\ \sin \alpha & \cos \alpha\end{array}\right)$
 $\psi \rightarrow f_{k_{1}}\left(r_{1}\right) e^{i k_{1} \theta_{1}}$

Expect that core is entire $x-y$ plane

\square
And if instead had:

$$
\omega_{x y}=0, \omega_{z w} \neq 0
$$

Single 4D Vortex Plane

$\omega_{x y} \neq 0, \omega_{z w}=0$

Solve the 4D GPE with imaginary time-evolution:
$\left[-\frac{\hbar^{2}}{2 m} \nabla^{2}+g|\psi|^{2}-\omega_{x y} L_{x y}\right] \psi=\mu \psi$,

$$
\underset{\text { expect }}{\text { remember }} \quad \psi \rightarrow f\left(r_{1}\right) e^{i k_{1} \theta_{1}}
$$

$$
\omega_{x y}=2 \omega_{\text {crit }}^{2 D}
$$

McCanna and HMP, Phys. Rev. Research 3, 023105 (2021)

Intersecting 4D Vortex Planes?

What about?

$$
\omega_{x y}=\omega_{z w} \neq 0
$$

(i.e. like 4D Landau levels)

NB this is a "double rotation":
$\left(\begin{array}{cc}R(\alpha) & 0 \\ 0 & R(\alpha)\end{array}\right)$, where $R(\alpha)=\left(\begin{array}{cc}\cos \alpha & -\sin \alpha \\ \sin \alpha & \cos \alpha\end{array}\right)$

Vortex core could be e.g. entire z-w plane plus the entire $x-y$ plane?

Intersecting 4D Vortex Planes

$\omega_{x y}=\omega_{z w} \neq 0$

So is this simply a product of vortex planes?

Solve 4D GPE with ansatz $\psi=f\left(r_{1}, r_{2}\right) e^{i k_{1} \theta_{1}+i k_{2} \theta_{2}}$

vortex in plane 1 (xy plane)

Radial function compared to product

Intersecting 4D Vortex Planes

$\omega_{x y}=\omega_{z w} \neq 0$

Full solutions of the 4D GPE with imaginary time-evolution: $\left[-\frac{\hbar^{2}}{2 m} \nabla^{2}+g|\psi|^{2}-\omega_{x y} L_{x y}-\omega_{z w} L_{z w}\right] \psi=\mu \psi$,

we expect

$$
\psi=f\left(r_{1}, r_{2}\right) e^{i k\left(\theta_{1}+\theta_{2}\right)}
$$

$$
\omega_{x y}=\omega_{z w} \approx 2.5 \omega_{\text {crit }}^{2 D}
$$

Good agreement with expectations!

Unequal frequencies....

$\omega_{x y}>\omega_{z w} \quad$ vortex planes begin to tilt towards zw plane, and reconnect at

vortex cores from solving full 4D GPE with double rotation
but also other weirder states can happen...

Conclusions (Part II)

- Make connections to experiments on synthetic dimensions?
- Vortex lattices?
- Other types of topological excitations in higher dimensions?

Summary

4D QH in a topoelectric circuit

4D superfluid vortices

And thanks again to:

and for your attention!

Birmingham

Ben McCanna

Singapore

Wang You, Baile Zhang, Yidong Chong

Munich:
Michael Lohse, Christian Schweizer, Immanuel Bloch

Zurich:
Martin Lebrat, Samuel Hausler, Laura Corman, Tilman Esslinger

EPFL: Jean-Philippe Brantut

Jena:

Martin Wimmer, Monika Monika, Ulf Peschel

Birmingham Cold Atoms: Tom Easton, Aaron Smith, Giovanni Barontini

Barcelona:
Alexandre Dauphin, Maria Maffei, Maciej Lewenstein, Pietro Massignan

Naples:
Francesco Di Colandrea, Alessio D’Errico,
Lorenzo Marrucci, Filippo Cardano

4D Quantum Hall Systems

Gapped phases of quadratic fermionic Hamiltonians without extra symmetries

[^0]: M. Ezawa, Phys. Rev. B 100, 075423 (2019)
 R. Yu, Y. X. Zhao, and A. P. Schnyder, Nat. Sci. Rev. (2020),

 HMP, Phys. Rev. B 101, 205141 (2020)
 Y. Wang, HMP, B. Zhang, and Y. D. Chong, Nat. Comm. 11, 2356 (2020)

 Zhang et al Phys. Rev. B 102, 100102 (2020)...

