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Overview

• Introduction to 4D Quantum Hall (QH) physics 

• Using electrical circuits to realise a 4D QH model 

• Superfluid vortices in four spatial dimensions



Four spatial dimensions

NerdBoy1392, CC BY-SA 3.0 <https://creativecommons.org/licenses/by-sa/3.0>, via Wikimedia Commons



Some Key Differences in 4D

B = r⇥A B⌫µ = @⌫Aµ � @µA⌫

In 2D, In 3D, 

In 4D, 

Bxy Bxy, Bxz, Byz ! Bx0z0

Bxy, Bxz, Bxw, Byz, Byw, Bzw

(hence can treat like a 3D vector)

and similarly for Berry curvature…

1. In 4D, avoid cross products 

Figure: User:Acdx, Public domain, via Wikimedia Commons



Some Key Differences in 4D
2. Intersections of orthogonal Cartesian planes

In 3D, 

Figure: I, Sakurambo, CC BY-SA 3.0 <http://creativecommons.org/licenses/by-sa/3.0/>, via Wikimedia Commons

xy, xz, zy

pairs of planes intersect at a line
In 4D, 

xy, xz, xw, zy, yw, zw
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Figure S1. Pump cycle of the 2D topological charge pump. The 4D tight-binding parameter space (�Jx, �x, �Jy, �y) is
visualized using the transformation of Eq. (S.23). (a) Changing the pump parameter 'x leads to a periodic modulation of �Jx

and �x along a closed trajectory as shown in the inset for a full pump cycle 'x = 0 ! 2⇡. This pump path (green) encircles the
degeneracy point at the origin (grey), where the gap between the two lowest subbands of the Rice-Mele model closes. The surface
in the main plot shows the same trace transformed according to Eq. (S.23) and with 'y 2 [0.46⇡, 0.54⇡]. The spacing of the
mesh grid illustrating 'x is ⇡/10. (b) For a given 'x, a large system simultaneously samples all values of 'y. This corresponds
to a closed path in the �Jy-�y parameter space where a singularity occurs at the origin as well (inset). The main plot shows
the transformed path for 'x 2 [0.46⇡, 0.54⇡]. (c) In a full pump cycle, such a system thus covers a closed surface in the 4D
parameter space by translating the path shown in (b) along the trajectory from (a). (d) In the transformed parameter space,
the singularities at (�Jx = 0, �x = 0) and (�Jy = 0, �y = 0) correspond to two planes that touch at the origin. (e) Cut around
r3 = 0 showing both the pump path from (c) (red/blue) as well as the singularities from (d) (grey). While they intersect in the
3D space (r1, r2, r3), the value of r4 is different on both surfaces and the 4D pump path thus fully encloses the degeneracy planes.
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Correspondingly, the imbalance for the ground state of
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in the Fock basis {|2, 0i , |1, 1i , |0, 2i}. Here, U denotes
the on-site interaction energy for two atoms localized on
the same lattice site.

REMOVAL OF DOUBLY-OCCUPIED SITES

After preparing the Mott insulator with unit filling in
the long lattices, sites containing two atoms are converted

to singly-occupied ones using microwave-dressed spin-
changing collisions [S11] and a resonant optical push-
out pulse. For this, the lattice depths are increased to
Vs,x = 70(2)Er,s, Vl,x = 30(1)Er,s, Vl,y = 70(2)Er,l and
Vz = 100(3)Ez in 5 ms to maximize the on-site inter-
action energy. The atoms, which are initially in the
(F = 1,mF = �1) hyperfine state, are converted to
(F = 1,mF = 0) with an adiabatic radio-frequency
transfer. By ramping a magnetic offset field in the
presence of a microwave field, a Landau-Zener sweep is
performed that adiabatically converts pairs of mF = 0
atoms on the same lattice site to an mF = +1 and an
mF = �1 atom via coherent spin-changing collisions.
Subsequently, the mF = �1 atoms are removed by an
adiabatic microwave transfer to (F = 2,mF = �2) fol-
lowed by a resonant optical pulse after lowering the lat-
tices to Vs,x = 0Er,s, Vl,x = 30(1)Er,l, Vl,y = 40(1)Er,l

and Vz = 40(1)Ez.

MEASUREMENT OF BAND EXCITATIONS

Band excitations in the y-direction are measured by
adiabatically ramping the superlattice phase '(0)

y from its
initial value to ⇡/2±0.156(5)⇡ and subsequently increas-
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Figure S1. Pump cycle of the 2D topological charge pump. The 4D tight-binding parameter space (�Jx, �x, �Jy, �y) is
visualized using the transformation of Eq. (S.23). (a) Changing the pump parameter 'x leads to a periodic modulation of �Jx

and �x along a closed trajectory as shown in the inset for a full pump cycle 'x = 0 ! 2⇡. This pump path (green) encircles the
degeneracy point at the origin (grey), where the gap between the two lowest subbands of the Rice-Mele model closes. The surface
in the main plot shows the same trace transformed according to Eq. (S.23) and with 'y 2 [0.46⇡, 0.54⇡]. The spacing of the
mesh grid illustrating 'x is ⇡/10. (b) For a given 'x, a large system simultaneously samples all values of 'y. This corresponds
to a closed path in the �Jy-�y parameter space where a singularity occurs at the origin as well (inset). The main plot shows
the transformed path for 'x 2 [0.46⇡, 0.54⇡]. (c) In a full pump cycle, such a system thus covers a closed surface in the 4D
parameter space by translating the path shown in (b) along the trajectory from (a). (d) In the transformed parameter space,
the singularities at (�Jx = 0, �x = 0) and (�Jy = 0, �y = 0) correspond to two planes that touch at the origin. (e) Cut around
r3 = 0 showing both the pump path from (c) (red/blue) as well as the singularities from (d) (grey). While they intersect in the
3D space (r1, r2, r3), the value of r4 is different on both surfaces and the 4D pump path thus fully encloses the degeneracy planes.
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Figure: Lohse, Schweizer, Price, Zilberberg, Bloch, Nature 553, 55–58 (2018)
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Bxy, Bxz, Byz ! Bx0z0

x0 = cos(!t), z0 = sin(!t)

Fµ = qv⌫Bµ⌫

Classical Particle in a Magnetic Field



4D
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2D Quantum Hall Effect
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N.B. Always requires time-reversal symmetry-
breaking (e.g. magnetic fields)

And then in 3D, can have a triad of first Chern numbers… 



2nd Chern Number in 4D
2nd Chern Number (of a single non-degenerate band)

⌫2 =
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32⇡2
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Avron et al, Phys. Rev. Lett. 61, 1329 (1988).… 

• 2nd Chern Number and second-order TIs  
Petrides and Zilberberg, PRR. 2, 022049 (2020)


• Algorithm to calculate the 2nd Chern number
Mochol-Grzelak et al, Quantum Sci. and Tech. 4 (1), 014009 (2019)

• Dimensional reduction to get TIs
Qi et al, Phys. Rev. B  78, 195424 (2008)

• 3rd Chern Number in 6D and so on…
Petrides, HMP, Zilberberg Phys. Rev. B 98, 125431 (2018)


 and references there-in

• Measuring 2nd Chern Number in a parameter space  
Kolodrubetz, PRL. 117, 015301 (2016)

Cold atoms: Sugawa et al., Science 360,1429 (2018)

• Other types of 4D topology, e.g. 

4D tensor monopoles 
Palumbo and Goldman, PRL121, 170401 (2018)

Zhu et al, PRB 102, 081109 (2020)

Superconducting Qudits: Tan et al., PRL. 126, 017702 (2021)

• Superconducting systems
Riwar et al, Nat. Comm., 7, 11167 (2016)
Weisbrich et al, PRX Quantum 2, 010310 (2021)

N.B. Does not require time-reversal 
symmetry-breaking!



2nd Chern Number in 4D
Quantized response jµ =

q3

2h2
"µ��⌫E⌫B��⌫2

Zhang et al, Science 294, 823 (2001), 
Qi et al, Phys. Rev. B  78, 195424 (2008)….

• Observed signatures in topological pumping: 

Kraus, Ringel, Zilberberg, PRL. 111, 226401 (2013)


Cold atoms: Lohse, Schweizer, HMP, Zilberberg, Bloch, Nature 553, 55 (2018)
Photonics: Zilberberg et al., Nature 553, 59 (2018)

Acoustics: Chen et al, Phys. Rev. X 11, 011016 (2021). 

• Surface states in 4D Electrical Circuits

2

logical pumps have the drawback of being inherently lim-
ited to probing specific quasi-static solutions of the high-
dimensional system, without realising a genuine high-
dimensional lattice. Moreover, in those experiments the
second Chern number in 4D is not truly independent of
the first Chern numbers in 2D (which are nonzero).

Our 4D lattice is implemented using electric circuits
with carefully chosen capacitive and inductive connec-
tions. The lattice model has two topologically distinct
phases: a 4DQH phase and a conventional insulator,
with the choice of phase governed by a parameter m

that maps to certain combinations of capacitances and
inductances. Using impedance measurements that are
equivalent to finding the local density of states (LDOS),
we show that the 4DQH phase hosts surface states on
the 3D surface, while the conventional insulator phase
has only bulk states. Varying the driving frequency, we
show that the topological surface states span a frequency
range corresponding to a bulk bandgap, as predicted by
theory. Our experimental results also agree well with cir-
cuit simulations. This work demonstrates that electric
circuits are a flexible and practical way to realise higher-
dimensional lattices, paving the way for the exploration
of other previously-inaccessible topological phases.

4DQH model and circuit realization.— The 4D lattice
model is shown schematically in Fig. 1(a). The spatial co-
ordinates are denoted x, y, z, and w. The lattice contains
four sublattices labelled A, B, C and D, with sites con-
nected by real nearest neighbour hoppings ±J . The four
bands host two pairs of Dirac points in the Brillouin zone;
each pair is the time-reversed counterpart of the other.
To control the pairs separately, long-range hoppings with
amplitudes ±J

0 and ±J
00 are added within the x-z plane

[these long-range hoppings are omitted from Fig. 1(a) for
clarity, but are shown in Fig. 1(c)]. Upon adding mass
+m to the A and B sites, and �m to the C and D sites,
the Dirac masses for the di↵erent Dirac point pairs close
at m=J

0�2J 00 and m=J
00�2J 0. These gap closings are

topological transitions, such that, for J 00=�J
0, the sec-

ond Chern number of the lower bands is -2 (nontrivial)
if |m|<3|J 0|. Since T is unbroken, the first Chern num-
ber is always zero, so the model exhibits QH behaviour
stemming purely from the second Chern number [37].

For the experiment, we set J = 1 and J
0 = �J

00 = 2, so
that the topological transition of the bulk lattice occurs
at m = ±6. We take a finite 4D lattice with three unit
cells (6 sites) in the x and z directions, and one unit cell
(2 sites) in y and w. Periodic boundary conditions are
applied along y and w to mitigate finite-size e↵ects, and
are implemented using nearest neighbor type connections
between opposite ends of the lattice. The lattice has a
total of 144 sites, of which we consider 16 to be bulk sites
(defined as being more than 2 sites away from a surface)
and 128 to be surface sites. The fact that the surface
sites greatly outnumber the bulk sites is characteristic of
high dimensional systems.

b

FIG. 1: Model of the 4D Quantum Hall lattice and its circuit
implementation. (a) Schematic of the 4D tight-binding model.
Each unit cell consists of four sites labelled A-D. Hollow and
filled circles respectively denote positive (m) and negative
(�m) on-site masses, while yellow solid lines and blue dashes
respectively denote positive (J) and negative (�J) hoppings.
(c) Long-range hoppings of the tight-binding lattice. (b) Pho-
tographs of the circuit. (c) Schematic of the circuit; positive
(negative) masses are realised by capacitors (inductors) con-
necting the sites to ground, and hoppings are realised using
capacitors or inductors connecting di↵erent sites.

Circuit realization.— The finite 4D lattice is imple-
mented with a set of connected printed circuit boards,
shown in Fig. 1(b). Each site i of the tight-binding model
maps to a node on the circuit, and the mass term maps to
a circuit component of conductance �Dii connecting the
node to ground. Each hopping Jij between sites i and
j maps to a circuit element of conductance Dij connect-
ing the nodes. We add extra grounding components with
conductance D0

ii in parallel with �Dii. If an external AC
current Ii flows into each node i at frequency f , and Vi

is the complex AC voltage on that node, Kirchho↵’s law

M. Ezawa, Phys. Rev. B 100, 075423 (2019)

R. Yu, Y. X. Zhao, and A. P. Schnyder, Nat. Sci. Rev. (2020),

HMP, Phys. Rev. B 101, 205141 (2020)


Wang, HMP, Zhang, Chong, Nat. Comm. 11, 2356 (2020)
Zhang et al Phys. Rev. B 102, 100102 (2020)…

• Proposal for measurements with synthetic dimensions

HMP, Zilberberg, Ozawa, Carusotto & Goldman, PRL 115, 195303 (2015) 
Ozawa, HMP, Goldman, Zilberberg, and Carusotto, PRA 93, 043827 (2016) 
HMP, Zilberberg, Ozawa, Carusotto & Goldman, PRB 93, 245113 (2016)…

Di Colandrea et al, arXiv:2106.08837

• Optical diffraction patterns

2

Lens

(c)

SLM
f

Camera

Lens

Figure 1. (a) Energy spectrum of the 2D Hofstadter model, with equal hopping amplitudes tx = tz. The Hall conductivities
of the gaps are encoded in the color scale. (b) The Wannier diagram shows the integrated density of states below the gaps.
The size of the dots is proportional to the amplitude of the gaps. (c) Experimental setup. A spatial light modulator (SLM)
generates a grating with characteristic function ��(x) = sign[cos(2⇡�x) + d], whose di↵raction figure is collected by a camera,
placed in the focal plane of a lens. (d) Experimental di↵raction diagram, obtained by stacking a collection of di↵raction figures
for increasing values of �.

type response to a weak force. This is realized, for exam-
ple, by preparing a localized wavefunction and reading
out the displacement of its center-of-mass along the di-
rection perpendicular to the force [25, 36, 39, 50, 51],
or by applying dimensional reduction to obtain an ef-
fective 1D time-periodic model and observing the con-
sequent quantized displacement across the bulk of the
system (“Thouless pumping”) [52–54]. The latter ap-
proach has also been adopted for irrational values of the
flux �, which give rise, through dimensional reduction,
to 1D quasi-crystals [55], i.e. crystalline structures which
are not periodic, but nonetheless exhibit long-range or-
der [38, 56–59]. In particular, the Chern number of a 1D
quasi-crystal has been measured in a di↵raction experi-
ment through a Lorentz-type measurement in Ref. [57].

In a second line of experiments, which is the one we
follow here, one instead probes a density-type response
by gradually changing the magnetic flux piercing the lat-
tice. As first discussed by Wannier in Ref. [49], even a
small change in the flux radically modifies the underlying
band structure, thereby altering the integrated density of
states (i.e. the fraction of occupied bands). This may be
conveniently displayed in a so-called Wannier diagram,

which shows how the density of states grows linearly with
the magnetic flux. Subsequent works [60–62] proved that
the linear coe�cient which links the density of states and
the magnetic flux is proportional to the Hall conductivity.
In particular, these studies highlighted that the complete
topological information about the 2D Hofstadter model
is fully encoded in its Wannier diagram [62]. As we will
show in the following, this applies also to its generaliza-
tions to three [8, 9] and four [23–25] dimensions.

II. 2D HOFSTADTER MODEL

Let us consider spinless fermions on a square lattice
in the xz plane, subject to a magnetic flux � = p/q per
plaquette, with integers p and q (we set e = h = a = 1,
where a is the lattice spacing). In the Landau gauge
with periodic boundary conditions in the z-direction, the
eigenvalue problem reduces to the Harper equation [63],
which reads

[Enk + 2tz cos(2⇡�x+ kz)]unk(x) =

� tx

⇥
e
ikxunk(x+ 1) + e

�ikxunk(x� 1)
⇤
, (1)
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• Introduction to 4D Quantum Hall physics 

• Using electrical circuits to realise a 4D QH model

• Superfluid vortices in four spatial dimensions

Wang You, Baile Zhang, Yidong Chong
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Electrical circuits for topological models

Figure from Lee et al, Communications Physics, Volume 1, 39 (2018)

Network of resistors, inductors, capacitors…

which can be related to a 

desired (topological) tight-binding Hamiltonian

Ningyuan et al Phys. Rev. X 5, 021031 (2015)
Albert et al, Phys. Rev. Lett. 114, 173902 (2015)
Lee et al, Communications Physics, Volume 1, 39 (2018)
Imhof et al, Nat Phys, 14, 925 (2018)
Ezawa, Phys. Rev. B 99, 201411 (2019) 
Dong et al, Phys. Rev. Research 3, 023056 (2021)…..

voltage between 
node j and the 

ground

behaviour governed by the circuit Laplacian

Ii ⌘
X

j

LijVj = (�Dii +D0
ii)Vi +

X

j

Dij(Vi � Vj)

current at node i

Kirchoff’s law

nodes



In more detail

Kirchoff’s law 

current flowing to 
other nodes

current flowing to 
ground

Ii ⌘
X

j

LijVj = (�Dii +D0
ii)Vi +

X

j

Dij(Vi � Vj)

Lee et al, Communications Physics, Volume 1, 39 (2018)
Imhof et al, Nat Phys, 14, 925 (2018)….
Wang, HMP, Zhang, Chong, Nat. Comm. 11, 2356 (2020)

Design the electrical 
conductances such that: 

SUPPLEMENTARY NOTE 2: CIRCUIT DESIGN DETAILS

Here, we provide additional details on the mapping between the electric circuits and tight-

binding Hamiltonians. Let Ii be the external current injected into node i, Vj the voltage

(relative to ground) on node j, and Dij the conductance between nodes i and j for i 6= j.

Moreover, let the conductance between node i and ground be

D
(g)
ii = �Dii +D

0
ii. (2)

By Kirchho↵’s laws,

Ii = D
(g)
ii Vi +

X

j

Dij(Vi � Vj) (3)

=
X

j

"
�Dij +

 
�Dii +D

0
ii +

X

k

Dik
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�ij

#
Vj (4)

=
X

j

"
�Dij +

 
D

0
ii +

X

k 6=i

Dik

!
�ij

#
Vj. (5)

Note that in Eq. (3), the sum can be taken either over all j, or equivalently over j 6= i. We

now adjust D0
ii so that, at a reference working frequency f0,

D
0
ii(f0) +

X

j 6=i

Dij(f0) = i↵E (6)

for each node i, with some constant ↵ and target energy E. At f = f0, Eq. (5) then becomes

Ii(f0) = �i↵

X

j

h
Hij(f0)� E �ij

i
Vj(f0), (7)

Dij(f) ⌘ i↵Hij(f). (8)

We require Hij(f0) to match the target tight-binding Hamiltonian, which has parameters

J = 1, J 0 = �J
00 = 2. For real ↵, positive (negative) real values of Hij correspond to

capacitances (inductances). As described in the main text, by choosing ↵ and f0 we can

assign the following circuit elements to the lattice model’s hopping terms:

C0 $ J = 1 (positive NN hopping)

C
0 = 2C0 $ J

0 = 2 (positive long range hopping)

L0 $ �J = �1 (negative NN hopping)

L
0 = L0/2 $ J

00 = �2 (negative long range hopping)

(9)
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00 = 2. For real ↵, positive (negative) real values of Hij correspond to

capacitances (inductances). As described in the main text, by choosing ↵ and f0 we can

assign the following circuit elements to the lattice model’s hopping terms:

C0 $ J = 1 (positive NN hopping)

C
0 = 2C0 $ J

0 = 2 (positive long range hopping)

L0 $ �J = �1 (negative NN hopping)

L
0 = L0/2 $ J

00 = �2 (negative long range hopping)

(9)
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Our goal

Make a 4DQH model our target TB 
model by exploiting the connectivity 

of an electrical circuit

What sort of 4DQH model can we engineer easily in a circuit?
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(a)

(b) (c)

FIG. 1. (a) A 4D brickwall lattice with four sites per unit cell.
Solid and dotted lines denote hoppings with real amplitudes
J and �J respectively. (b) The doubly-degenerate energy
bands (Eq. S4) for ky = kw = 0, with the 4D Dirac points
labelled. (c) When m 6= 0, the Dirac points are gapped and
the integrand of Eq. 4 is nontrivial, as shown here for ky =
kw = 0 and m=�J/2. However, this lattice is topologically
trivial as the two pairs of Dirac points contribute in opposite
senses to the 2CN.

As in 2D, the topological invariant changes via topo-
logical phase transitions where band gaps close and re-
open. In the simplest case, the four bands touch at an
isolated set of Dirac points in the BZ, around each of
which d(q) ⇡ (vxqx, vyqy, vzqz, vwqw,m), where vz(vw)
is the dispersion slope with respect to qz(qw). As be-
fore, the mass, m, smoothly tunes across the transition,
with the integrand of Eq. 4 flipping sign as d5 ⇡ m

changes sign. Each isolated point that closes and opens
changes the 2CN by ±1 [55]. Again, this divides the
Dirac points into two types; the first (second) type has
an even (odd) number of minus signs within the other
components {d1, d2, d3, d4} such that the 2CN increases
(decreases) as m goes from negative to positive values.

Importantly, in 4D, preserving TRS for spinless sys-
tems does not imply equal numbers of the two types of
Dirac points. This is because when spinless or bosonic
TRS is present, d1(k) = d1(�k), d3(k) = d3(�k) and
d5(k) = d5(�k) are even, while d2(k) = �d2(�k) and
d4(k) =�d4(�k) are odd. Then, a Dirac point at K is
again paired with another Dirac point at �K, but now
these Dirac points are of the same type, as both d2 and
d4 flip sign. As a result, each TRS pair of Dirac points
will change the 2CN by ±2 across a transition.

Unlike 2D, it is therefore possible to have spinless 4D
QH models with TRS, where the 2CNs take only even
integer values, 2Z [6]. This is a key di↵erence from
previously-studied 4D systems in Class A (with broken

TRS) and Class AII (with fermionic TRS), where the
2CN takes any integer values, Z. For a four-band Class
AII model, for example, the di↵erent TRS constraints al-
low unpaired Dirac points at TRS-invariant momenta, so
that the 2CN can change by ±1 [55]. Physically, the lat-
ter may describe a lattice of particles in spatially-varying,
spin-dependent gauge fields, which is challenging to re-
alise with current technology. Instead, as we now illus-
trate, a suitable four-band model in Class AI could be
engineered for spinless particles by exploiting lattice con-
nectivity.
Proposal for 4D Model– Inspired by the 2D Hal-

dane model, our 4D proposal extends the honey-
comb/brickwall lattice into 4D. As introduced above,
these lattices are topologically-equivalent, having two
sites per unit cell and a single pair of Dirac points in the
BZ. Hereafter, we focus on the brickwall geometry, which
is most natural for synthetic dimensions, but note that
similar arguments apply to the honeycomb geometry.
To realise a four-band model like Eq. 3, we construct a

4D lattice [see Fig. S1(a)], with a four-site unit cell and
the connectivity of a 2D brickwall lattice in both x�y

and z�w planes. The Hamiltonian is [56]:

H(k) = J [(2 cos kx + cos ky)�1 + sin ky�2

+(2 cos kz + cos kw)�3 + sin kw�4 +m�5] , (5)

where J is the hopping amplitude, the lattice spacing
a = 1, and m is an energy o↵set between the A,B and
C,D sites. Note that the real-space hoppings between
B and D sites need to have an opposite sign compared
to other hoppings, as indicated in Fig. S1(a), in order to
realise the required � matrix structure [56].
When m = 0, this model has four 4D Dirac points

in the BZ, as shown in Fig. S1(b). The points at
K1,2 = (⌥2⇡/3, 0,⌥2⇡/3, 0) are a time-reversal pair of
the first type, while those at K3,4 = (±2⇡/3, 0,⌥2⇡/3, 0)
are a pair of the second type. Therefore, this model is still
topologically trivial, as shown, for example, in Fig. S1(c),
for a cut at ky=kw=0 and m=�J/2, where the contri-
butions to the 2CN (Eq. 4) cancel out for the two pairs.

As in the 2D Haldane model, another ingredient is
needed to separate out the two types of Dirac points
and engineer topological bands. In particular, we need a
mass-like term, proportional to �5, which distinguishes
between the two pairs of Dirac points. In this model,
there are many possible terms that achieve this, corre-
sponding to di↵erent long-range hoppings between alike-
sites (e.g. A ! A) [56]. As an example, we con-
sider long-range hoppings in the x � z plane along
r0 = (±2a, 0,±2a, 0) and r00 = (±2a, 0,⌥2a, 0) (e.g. see
Fig. 2(a)), giving:

H
0(k) = [2J 0 cos(2kx+ 2kz) + 2J 00 cos(2kx� 2kz)]�5, (6)

where J
0 (J 00) is the hopping amplitude along r0 (r00).

As a result, the first pair closes at m=J
0�2J 00 and the

4D brickwall lattice with 4 sites per unit cell
+ some long-range 

hoppings e.g.:

 … negative hoppings

— positive hoppings

H(k) = J [(2 cos kx + cos ky)�1 + sin ky�2 + (2 cos kz + cos kw)�3 + sin kw�4 +m�5]
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(a) (b)

FIG. 2. (a) The doubly-degenerate energy bands (Eq. 7) for
ky = kw = 0 and M = 0, with the 4D Dirac points labelled.
(b) When M ̸= 0, the Dirac points are gapped and the in-
tegrand of Eq. 5 is nontrivial, as shown here for ky = kw =0
and M =−J/2. However, this lattice is topologically trivial
as the two pairs of Dirac points contribute in opposite senses
to the 2CN.

Note that the real-space hoppings between B and D sites
need to have an opposite sign compared to other hop-
pings, as indicated in Fig. 1(a), in order to realise the

required Γ matrix structure. This model is a specific ex-
ample of the general form given in Eq. 3, corresponding
to a four-band model.
When M = 0, this model has four 4D Dirac points

in the BZ, as shown in Fig. 2(a). The points at K1,2 =
(∓2π/3, 0,∓2π/3, 0) are a time-reversal pair of the first
type, while those at K3,4 = (±2π/3, 0,∓2π/3, 0) are a
pair of the second type. Therefore, this model is still
topologically trivial, as shown, for example, in Fig. 2(b),
for a cut at ky = kw = 0 and M = −J/2, where the
contributions to the 2CN (Eq. 5) clearly cancel out for
the two pairs.
As in the 2D Haldane model, another ingredient is

needed to separate out the two types of Dirac points
and engineer topological bands. In particular, we need a
mass-like term, proportional to Γ5, which distinguishes
between the two pairs of Dirac points. As an example,
we consider long-range hoppings in the x− z plane along
r′ = (±2a, 0,±2a, 0) and r′′ = (±2a, 0,∓2a, 0) (e.g. see
Fig. 3(a)). In terms of the tight-binding real-space model,
this would correspond to adding terms:

Hl = J ′
∑

m,n,j,l

(a†m+1,n+1,j+1,l+1am,n,j,l + b†m+1,n+1,j+1,l+1bm,n,j,l − c†m+1,n+1,j+1,l+1cm,n,j,l − d†m+1,n+1,j+1,l+1dm,n,j,l + h.c)

+J ′′
∑

m,n,j,l

(a†m+1,n+1,j−1,l−1am,n,j,l + b†m+1,n+1,j−1,l−1bm,n,j,l − c†m+1,n+1,j−1,l−1cm,n,j,l − d†m+1,n+1,j−1,l−1dm,n,j,l + h.c)

where we have allowed for the hoppings along r′ =
(±2a, 0,±2a, 0) to have amplitude J ′ and those along
r′′ = (±2a, 0,∓2a, 0) to have amplitude J ′′. Apply-
ing Eq, 6 as above, the long-range hoppings lead to a
momentum-space Hamiltonian of the form (see Appendix
A):

H ′(k) = [2J ′ cos(2kx+ 2kz) + 2J ′′ cos(2kx− 2kz)]Γ5, (8)

Note that both J ′ and J ′′ can be taken to be real-valued,
however, the hoppings from A→ A, B→ B should have
different signs to those from C → C, D → D, in order
to get the required matrix structure in this momentum-
space equation.
As a result of these additional terms, the first pair of

4D Dirac cones closes at M=J ′−2J ′′ and the second at
M =J ′′−2J ′ [see Fig. 3(c)&(d)]. Provided that J ′ ≠J ′′,
these are topological transitions; for example, if J ′′ =
0 and J ′ > 0, this model has a 2CN of -2 for −2J ′ <
M<J ′, and is trivial otherwise, as can also be confirmed
numerically [57]. Note that the above terms preserve
TRS and so all 1CNs vanish by symmetry. Adding TRS-
breaking terms will separate the Dirac points within a
pair; this can give a 4D QH model, but in Class A where
the 1CNs can also be non-zero [22, 23, 28, 35].
We emphasise that the above is only one choice of long-

range hoppings that will lead to topological bands. In-
deed, it is clear that all that is required are hoppings

between alike sites chosen such that the effective mass-
term in momentum-space is proportional to Γ5 and has
a momentum-dependence such that it distinguishes be-
tween the first Dirac pair at K1 and K2 as compared
to the second pair at K3 and K4. Other examples
of appropriate terms could include: (1) hoppings along
r′′′ = (a, a, 2a, 0) and similar, leading to momentum-
space terms ∝ cos(kx + ky + 2kz)Γ5 etc, or (2) hop-
pings along r′′′′ = (a, a, a, a) and similar, leading to
momentum-space terms∝ cos(kx+ky+kz+kw)Γ5 etc. In
each case, a suitable design of these hoppings will lead to
a similar topological phase diagram that has a topological
phase with a 2CN of |2| within certain parameters, and
a trivial topological phase otherwise. As there is con-
siderable freedom therefore in choosing the long-range
hopping terms, the most suitable choice may depend on
the specific experimental implementation.
In practice, there may also be other long-range hopping

terms present experimentally which are not of the desired
type. However, the topological phase of this model will
be robust, provided that these unwanted terms are suf-
ficiently small. We note that those terms which cannot
be expressed in terms of the five Γ matrices introduced
above can also break the double-degeneracy of the energy
bands. While this may complicate the simple picture for
counting Dirac points, the 2CN can still be calculated
numerically according to the algorithm of Ref. 57.

+

2

operators as:

am,n,j,l =
1p
N

X

k

ake
�i[mk·R1+nk·R2+jk·R3+lk·R4]

bm,n,j,l =
1p
N

X

k

bke
�i[mk·R1+nk·R2+jk·R3+lk·R4]e

�ik·(R1+R3+R2+R4)/2

cm,n,j,l =
1p
N

X

k

cke
�i[mk·R1+nk·R2+jk·R3+lk·R4]e

�ik·(R1+R2)/2

dm,n,j,l =
1p
N

X

k

dke
�i[mk·R1+nk·R2+jk·R3+lk·R4]e

�ik·(R3+R4)/2 (S2)

where N is the number of cells and where the sum runs over all momenta in the BZ, we find:

Hx =
X

k

�
a
†
k b

†
k c

†
k d

†
k

�

0

BB@

0 0 2J cos kx 0
0 0 0 �2J cos kx

2J cos kx 0 0 0
0 �2J cos kx 0 0

1

CCA

0

BB@

ak

bk

ck

dk

1

CCA ,

Hy =
X

k

�
a
†
k b

†
k c

†
k d

†
k

�

0

BB@

0 0 Je
�iky 0

0 0 0 �Je
iky

Je
iky 0 0 0
0 �Je

�iky 0 0

1

CCA

0

BB@

ak

bk

ck

dk

1

CCA ,

Hx =
X

k

�
a
†
k b

†
k c

†
k d

†
k

�

0

BB@

0 0 0 2J cos kz
0 0 2J cos kz 0
0 2J cos kz 0 0

2J cos kz 0 0 0

1

CCA

0

BB@

ak

bk

ck

dk

1

CCA ,

Hw =
X

k

�
a
†
k b

†
k c

†
k d

†
k

�

0

BB@

0 0 0 Je
�ikw

0 0 Je
ikw 0

0 Je
�ikw 0 0

Je
ikw 0 0 0

1

CCA ,

0

BB@

ak

bk

ck

dk

1

CCA

Hon-site =
X

k

�
a
†
k b

†
k c

†
k d

†
k

�

0

BB@

m 0 0 0
0 m 0 0
0 0 �m 0
0 0 0 �m

1

CCA

0

BB@

ak

bk

ck

dk

1

CCA (S3)

Introducing the Dirac matrices:

�1 =

0

BB@

0 0 1 0
0 0 0 �1
1 0 0 0
0 �1 0 0

1

CCA ,�2 =

0

BB@

0 0 �i 0
0 0 0 �i

i 0 0 0
0 i 0 0

1

CCA ,�3 =

0

BB@

0 0 0 1
0 0 1 0
0 1 0 0
1 0 0 0

1

CCA ,�4 =

0

BB@

0 0 0 �i

0 0 i 0
0 �i 0 0
i 0 0 0

1

CCA ,�5 =

0

BB@

1 0 0 0
0 1 0 0
0 0 �1 0
0 0 0 �1

1

CCA ,

the above expressions can be combined and written compactly as:

H =
X

k

�
a
†
k b

†
k c

†
k d

†
k

�
H(k)

0

BB@

ak

bk

ck

dk

1

CCA

H(k) = J [(2 cos kx + cos ky)�1 + sin ky�2 + (2 cos kz + cos kw)�3 + sin kw�4 +m�5] , (S4)

as stated in the main text.
To engineer a topological phase transition, we also need to add longer-range hoppings that can separate out the

Dirac points of the two types. In the main text, we give the example of a hoppings in the x � z plane along
r0 = (±2a, 0,±2a, 0) and r00 = (±2a, 0,⌥2a, 0). In terms of the tight-binding real-space model, this would correspond

• spinless time-reversal symmetry


• trivial first Chern numbers


• nontrivial (even) second Chern number
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(a) (b)

(c) (d)

FIG. 3. (a) Example of longer-range hoppings (Eq. 8) that
can make the lattice [Fig. 1(a)] topologically nontrivial. (b)
The integrand of Eq. 5 with ky =kw =0, m=−J/2, J ′=J/2
and J ′′=0, showing that the two pairs now contribute to the
2CN in the same sense, giving a total 2CN of −2. (c)&(d)
The energy dispersion at the topological phase transitions,
corresponding, for the parameters above, to (c)m=−J and
(d) m = J/2, showing that there is only one pair of Dirac
points at each transition.

V. CONCLUSIONS

In this paper, we have reviewed the construction of
minimal 2DQH models, and extended these ideas to pro-
pose 4DQH systems with spinless TRS. We have shown
that such a 4D topological system could be engineered
by controlling the lattice connectivity, while requiring
only real-valued positive and negative hoppings. This
provides a new way to realise the 4DQH effect which
does not rely on either time-reversal symmetry breaking
and/or complicated gauge fields. This also provides a
minimal topological model for Class AI, which describes
spinless or bosonic models with TRS and which is
topologically-trivial in lower dimensions. This work
opens the way towards the experimental exploration of
a higher-dimensional topological systems by controlling
the lattice connectivity.

Note Added: In preparation of this manuscript, we
became aware of a recent proposal for an eight-band
4D crystalline topological insulator, which has bosonic
TRS [58], but which is instead topologically-protected
by reflection symmetry and which relies on spin-orbit
couplings. Since this proposal was put on arXiv, it has
been experimentally implemented in electric circuits [59].
Theoretical proposals have also been made for electric
circuits to realise a different spinless (Class AI) 4DQH
model [60], to simulate nth-Chern-number insulators [61]
and to image nodal boundary Seifert surfaces in 4D
circuits [62].
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Appendix A: Derivation of Momentum-Space
Hamiltonians

In this Appendix, we provide additional detailed steps
in the derivation of the momentum-space Hamiltonians
presented in Section IV. Firstly, as stated in the main
text, the real-space tight-binding Hamiltonian including
up to nearest-neighbour hoppings is given by

H = Hx +Hy +Hz +Hw +H0,

with hopping terms along each direction as:

Hx = J
∑

m,n,j,l

(c†m,n,j,lam,n,j,l + a†m+1,n+1,j,lcm,n,j,l

−b†m,n,j,ldm,n,j,l − d†m+1,n+1,j,lbm,n,j,l + h.c)

Hy = J
∑

m,n,j,l

(c†m−1,n,j,lam,n,j,l − b†m−1,n,j,ldm,n,j,l + h.c)

Hz = J
∑

m,n,j,l

(d†m,n,j,lam,n,j,l + a†m,n,j+1,l+1dm,n,j,l

+b†m,n,j,lcm,n,j,l + c†m,n,j+1,l+1bm,n,j,l + h.c)

Hw = J
∑

m,n,j,l

(d†m,n,j−1,lam,n,j,l + b†m,n,j−1,lcm,n,j,l + h.c)

and with on-site terms:

H0 = M
∑

m,n,j,l

(a†m,n,j,lam,n,j,l + b†m,n,j,lbm,n,j,l

−c†m,n,j,lcm,n,j,l − d†m,n,j,ldm,n,j,l).

To proceed, we Fourier-transform each operator [using
Eq. 6], such that the Hamiltonian can be written as

H =
∑

k

(

a†
k

b†
k

c†
k

d†
k

)

H(k)

⎛

⎜

⎝

ak
bk
ck
dk

⎞

⎟

⎠
, (A1)

where

H(k) = Hx(k) +Hy(k) +Hz(k) +Hw(k) +H0(k).

HMP, Phys. Rev. B 101, 205141 (2020)
Wang, HMP, Zhang, Chong, Nat. Comm. 11, 2356 (2020)
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FIG. 1. (a) A 4D brickwall lattice with four sites per unit cell.
Solid and dotted lines denote hoppings with real amplitudes
J and �J respectively. (b) The doubly-degenerate energy
bands (Eq. S4) for ky = kw = 0, with the 4D Dirac points
labelled. (c) When m 6= 0, the Dirac points are gapped and
the integrand of Eq. 4 is nontrivial, as shown here for ky =
kw = 0 and m=�J/2. However, this lattice is topologically
trivial as the two pairs of Dirac points contribute in opposite
senses to the 2CN.

As in 2D, the topological invariant changes via topo-
logical phase transitions where band gaps close and re-
open. In the simplest case, the four bands touch at an
isolated set of Dirac points in the BZ, around each of
which d(q) ⇡ (vxqx, vyqy, vzqz, vwqw,m), where vz(vw)
is the dispersion slope with respect to qz(qw). As be-
fore, the mass, m, smoothly tunes across the transition,
with the integrand of Eq. 4 flipping sign as d5 ⇡ m

changes sign. Each isolated point that closes and opens
changes the 2CN by ±1 [55]. Again, this divides the
Dirac points into two types; the first (second) type has
an even (odd) number of minus signs within the other
components {d1, d2, d3, d4} such that the 2CN increases
(decreases) as m goes from negative to positive values.

Importantly, in 4D, preserving TRS for spinless sys-
tems does not imply equal numbers of the two types of
Dirac points. This is because when spinless or bosonic
TRS is present, d1(k) = d1(�k), d3(k) = d3(�k) and
d5(k) = d5(�k) are even, while d2(k) = �d2(�k) and
d4(k) =�d4(�k) are odd. Then, a Dirac point at K is
again paired with another Dirac point at �K, but now
these Dirac points are of the same type, as both d2 and
d4 flip sign. As a result, each TRS pair of Dirac points
will change the 2CN by ±2 across a transition.

Unlike 2D, it is therefore possible to have spinless 4D
QH models with TRS, where the 2CNs take only even
integer values, 2Z [6]. This is a key di↵erence from
previously-studied 4D systems in Class A (with broken

TRS) and Class AII (with fermionic TRS), where the
2CN takes any integer values, Z. For a four-band Class
AII model, for example, the di↵erent TRS constraints al-
low unpaired Dirac points at TRS-invariant momenta, so
that the 2CN can change by ±1 [55]. Physically, the lat-
ter may describe a lattice of particles in spatially-varying,
spin-dependent gauge fields, which is challenging to re-
alise with current technology. Instead, as we now illus-
trate, a suitable four-band model in Class AI could be
engineered for spinless particles by exploiting lattice con-
nectivity.
Proposal for 4D Model– Inspired by the 2D Hal-

dane model, our 4D proposal extends the honey-
comb/brickwall lattice into 4D. As introduced above,
these lattices are topologically-equivalent, having two
sites per unit cell and a single pair of Dirac points in the
BZ. Hereafter, we focus on the brickwall geometry, which
is most natural for synthetic dimensions, but note that
similar arguments apply to the honeycomb geometry.
To realise a four-band model like Eq. 3, we construct a

4D lattice [see Fig. S1(a)], with a four-site unit cell and
the connectivity of a 2D brickwall lattice in both x�y

and z�w planes. The Hamiltonian is [56]:

H(k) = J [(2 cos kx + cos ky)�1 + sin ky�2

+(2 cos kz + cos kw)�3 + sin kw�4 +m�5] , (5)

where J is the hopping amplitude, the lattice spacing
a = 1, and m is an energy o↵set between the A,B and
C,D sites. Note that the real-space hoppings between
B and D sites need to have an opposite sign compared
to other hoppings, as indicated in Fig. S1(a), in order to
realise the required � matrix structure [56].
When m = 0, this model has four 4D Dirac points

in the BZ, as shown in Fig. S1(b). The points at
K1,2 = (⌥2⇡/3, 0,⌥2⇡/3, 0) are a time-reversal pair of
the first type, while those at K3,4 = (±2⇡/3, 0,⌥2⇡/3, 0)
are a pair of the second type. Therefore, this model is still
topologically trivial, as shown, for example, in Fig. S1(c),
for a cut at ky=kw=0 and m=�J/2, where the contri-
butions to the 2CN (Eq. 4) cancel out for the two pairs.

As in the 2D Haldane model, another ingredient is
needed to separate out the two types of Dirac points
and engineer topological bands. In particular, we need a
mass-like term, proportional to �5, which distinguishes
between the two pairs of Dirac points. In this model,
there are many possible terms that achieve this, corre-
sponding to di↵erent long-range hoppings between alike-
sites (e.g. A ! A) [56]. As an example, we con-
sider long-range hoppings in the x � z plane along
r0 = (±2a, 0,±2a, 0) and r00 = (±2a, 0,⌥2a, 0) (e.g. see
Fig. 2(a)), giving:

H
0(k) = [2J 0 cos(2kx+ 2kz) + 2J 00 cos(2kx� 2kz)]�5, (6)

where J
0 (J 00) is the hopping amplitude along r0 (r00).

As a result, the first pair closes at m=J
0�2J 00 and the
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FIG. 1. (a) A 4D brickwall lattice with four sites per unit cell.
Solid and dotted lines denote hoppings with real amplitudes
J and �J respectively. (b) The doubly-degenerate energy
bands (Eq. S4) for ky = kw = 0, with the 4D Dirac points
labelled. (c) When m 6= 0, the Dirac points are gapped and
the integrand of Eq. 4 is nontrivial, as shown here for ky =
kw = 0 and m=�J/2. However, this lattice is topologically
trivial as the two pairs of Dirac points contribute in opposite
senses to the 2CN.

As in 2D, the topological invariant changes via topo-
logical phase transitions where band gaps close and re-
open. In the simplest case, the four bands touch at an
isolated set of Dirac points in the BZ, around each of
which d(q) ⇡ (vxqx, vyqy, vzqz, vwqw,m), where vz(vw)
is the dispersion slope with respect to qz(qw). As be-
fore, the mass, m, smoothly tunes across the transition,
with the integrand of Eq. 4 flipping sign as d5 ⇡ m

changes sign. Each isolated point that closes and opens
changes the 2CN by ±1 [55]. Again, this divides the
Dirac points into two types; the first (second) type has
an even (odd) number of minus signs within the other
components {d1, d2, d3, d4} such that the 2CN increases
(decreases) as m goes from negative to positive values.

Importantly, in 4D, preserving TRS for spinless sys-
tems does not imply equal numbers of the two types of
Dirac points. This is because when spinless or bosonic
TRS is present, d1(k) = d1(�k), d3(k) = d3(�k) and
d5(k) = d5(�k) are even, while d2(k) = �d2(�k) and
d4(k) =�d4(�k) are odd. Then, a Dirac point at K is
again paired with another Dirac point at �K, but now
these Dirac points are of the same type, as both d2 and
d4 flip sign. As a result, each TRS pair of Dirac points
will change the 2CN by ±2 across a transition.

Unlike 2D, it is therefore possible to have spinless 4D
QH models with TRS, where the 2CNs take only even
integer values, 2Z [6]. This is a key di↵erence from
previously-studied 4D systems in Class A (with broken

TRS) and Class AII (with fermionic TRS), where the
2CN takes any integer values, Z. For a four-band Class
AII model, for example, the di↵erent TRS constraints al-
low unpaired Dirac points at TRS-invariant momenta, so
that the 2CN can change by ±1 [55]. Physically, the lat-
ter may describe a lattice of particles in spatially-varying,
spin-dependent gauge fields, which is challenging to re-
alise with current technology. Instead, as we now illus-
trate, a suitable four-band model in Class AI could be
engineered for spinless particles by exploiting lattice con-
nectivity.
Proposal for 4D Model– Inspired by the 2D Hal-

dane model, our 4D proposal extends the honey-
comb/brickwall lattice into 4D. As introduced above,
these lattices are topologically-equivalent, having two
sites per unit cell and a single pair of Dirac points in the
BZ. Hereafter, we focus on the brickwall geometry, which
is most natural for synthetic dimensions, but note that
similar arguments apply to the honeycomb geometry.
To realise a four-band model like Eq. 3, we construct a

4D lattice [see Fig. S1(a)], with a four-site unit cell and
the connectivity of a 2D brickwall lattice in both x�y

and z�w planes. The Hamiltonian is [56]:

H(k) = J [(2 cos kx + cos ky)�1 + sin ky�2

+(2 cos kz + cos kw)�3 + sin kw�4 +m�5] , (5)

where J is the hopping amplitude, the lattice spacing
a = 1, and m is an energy o↵set between the A,B and
C,D sites. Note that the real-space hoppings between
B and D sites need to have an opposite sign compared
to other hoppings, as indicated in Fig. S1(a), in order to
realise the required � matrix structure [56].
When m = 0, this model has four 4D Dirac points

in the BZ, as shown in Fig. S1(b). The points at
K1,2 = (⌥2⇡/3, 0,⌥2⇡/3, 0) are a time-reversal pair of
the first type, while those at K3,4 = (±2⇡/3, 0,⌥2⇡/3, 0)
are a pair of the second type. Therefore, this model is still
topologically trivial, as shown, for example, in Fig. S1(c),
for a cut at ky=kw=0 and m=�J/2, where the contri-
butions to the 2CN (Eq. 4) cancel out for the two pairs.

As in the 2D Haldane model, another ingredient is
needed to separate out the two types of Dirac points
and engineer topological bands. In particular, we need a
mass-like term, proportional to �5, which distinguishes
between the two pairs of Dirac points. In this model,
there are many possible terms that achieve this, corre-
sponding to di↵erent long-range hoppings between alike-
sites (e.g. A ! A) [56]. As an example, we con-
sider long-range hoppings in the x � z plane along
r0 = (±2a, 0,±2a, 0) and r00 = (±2a, 0,⌥2a, 0) (e.g. see
Fig. 2(a)), giving:

H
0(k) = [2J 0 cos(2kx+ 2kz) + 2J 00 cos(2kx� 2kz)]�5, (6)

where J
0 (J 00) is the hopping amplitude along r0 (r00).

As a result, the first pair closes at m=J
0�2J 00 and the

doubly-degenerate bands

When there are no gap-opening terms with�5

d̂ = d/|d|

d(q) ⇡ (vxqx, vyqy, vzqz, vwqw,m)

 Qi et al, Phys. Rev. B  78, 195424 (2008)

m = 0

H ⇡ d(q) · �Around a single 4D Dirac cone



qxqy = qz = qw = 0

integrand

Aside: 4D topological transitions⌫�2 =
1

8⇡2

Z

BZ
tr(⌦� ^ ⌦�),

=
3

8⇡2

Z

BZ
d4k✏abcded̂a@kx d̂b@ky d̂c@kz d̂d@kw d̂e

⌫2 =
1

8⇡2

Z

4DBZ
⌦ ^ ⌦ 2 Z

=
1

4⇡2

Z

4DBZ
[⌦xy⌦zw + ⌦wx⌦zy + ⌦zx⌦yw] d4k

Type 1:                                 even no/ minus signs —> increases integrand    

Type 2:                                 odd no/ minus signs —> decreases integrand

d1, d2, d3, d4

d1, d2, d3, d4

d5 = �m ! d5 = mwhen

d(q) ⇡ (vxqx, vyqy, vzqz, vwqw,m)

m = 0

No/ Type 1 Transitions = No/ Type 2 Transitions, then 2CN will be trivial

3

(a)

(b) (c)

FIG. 1. (a) A 4D brickwall lattice with four sites per unit cell.
Solid and dotted lines denote hoppings with real amplitudes
J and �J respectively. (b) The doubly-degenerate energy
bands (Eq. S4) for ky = kw = 0, with the 4D Dirac points
labelled. (c) When m 6= 0, the Dirac points are gapped and
the integrand of Eq. 4 is nontrivial, as shown here for ky =
kw = 0 and m=�J/2. However, this lattice is topologically
trivial as the two pairs of Dirac points contribute in opposite
senses to the 2CN.

As in 2D, the topological invariant changes via topo-
logical phase transitions where band gaps close and re-
open. In the simplest case, the four bands touch at an
isolated set of Dirac points in the BZ, around each of
which d(q) ⇡ (vxqx, vyqy, vzqz, vwqw,m), where vz(vw)
is the dispersion slope with respect to qz(qw). As be-
fore, the mass, m, smoothly tunes across the transition,
with the integrand of Eq. 4 flipping sign as d5 ⇡ m

changes sign. Each isolated point that closes and opens
changes the 2CN by ±1 [55]. Again, this divides the
Dirac points into two types; the first (second) type has
an even (odd) number of minus signs within the other
components {d1, d2, d3, d4} such that the 2CN increases
(decreases) as m goes from negative to positive values.

Importantly, in 4D, preserving TRS for spinless sys-
tems does not imply equal numbers of the two types of
Dirac points. This is because when spinless or bosonic
TRS is present, d1(k) = d1(�k), d3(k) = d3(�k) and
d5(k) = d5(�k) are even, while d2(k) = �d2(�k) and
d4(k) =�d4(�k) are odd. Then, a Dirac point at K is
again paired with another Dirac point at �K, but now
these Dirac points are of the same type, as both d2 and
d4 flip sign. As a result, each TRS pair of Dirac points
will change the 2CN by ±2 across a transition.

Unlike 2D, it is therefore possible to have spinless 4D
QH models with TRS, where the 2CNs take only even
integer values, 2Z [6]. This is a key di↵erence from
previously-studied 4D systems in Class A (with broken

TRS) and Class AII (with fermionic TRS), where the
2CN takes any integer values, Z. For a four-band Class
AII model, for example, the di↵erent TRS constraints al-
low unpaired Dirac points at TRS-invariant momenta, so
that the 2CN can change by ±1 [55]. Physically, the lat-
ter may describe a lattice of particles in spatially-varying,
spin-dependent gauge fields, which is challenging to re-
alise with current technology. Instead, as we now illus-
trate, a suitable four-band model in Class AI could be
engineered for spinless particles by exploiting lattice con-
nectivity.
Proposal for 4D Model– Inspired by the 2D Hal-

dane model, our 4D proposal extends the honey-
comb/brickwall lattice into 4D. As introduced above,
these lattices are topologically-equivalent, having two
sites per unit cell and a single pair of Dirac points in the
BZ. Hereafter, we focus on the brickwall geometry, which
is most natural for synthetic dimensions, but note that
similar arguments apply to the honeycomb geometry.
To realise a four-band model like Eq. 3, we construct a

4D lattice [see Fig. S1(a)], with a four-site unit cell and
the connectivity of a 2D brickwall lattice in both x�y

and z�w planes. The Hamiltonian is [56]:

H(k) = J [(2 cos kx + cos ky)�1 + sin ky�2

+(2 cos kz + cos kw)�3 + sin kw�4 +m�5] , (5)

where J is the hopping amplitude, the lattice spacing
a = 1, and m is an energy o↵set between the A,B and
C,D sites. Note that the real-space hoppings between
B and D sites need to have an opposite sign compared
to other hoppings, as indicated in Fig. S1(a), in order to
realise the required � matrix structure [56].
When m = 0, this model has four 4D Dirac points

in the BZ, as shown in Fig. S1(b). The points at
K1,2 = (⌥2⇡/3, 0,⌥2⇡/3, 0) are a time-reversal pair of
the first type, while those at K3,4 = (±2⇡/3, 0,⌥2⇡/3, 0)
are a pair of the second type. Therefore, this model is still
topologically trivial, as shown, for example, in Fig. S1(c),
for a cut at ky=kw=0 and m=�J/2, where the contri-
butions to the 2CN (Eq. 4) cancel out for the two pairs.

As in the 2D Haldane model, another ingredient is
needed to separate out the two types of Dirac points
and engineer topological bands. In particular, we need a
mass-like term, proportional to �5, which distinguishes
between the two pairs of Dirac points. In this model,
there are many possible terms that achieve this, corre-
sponding to di↵erent long-range hoppings between alike-
sites (e.g. A ! A) [56]. As an example, we con-
sider long-range hoppings in the x � z plane along
r0 = (±2a, 0,±2a, 0) and r00 = (±2a, 0,⌥2a, 0) (e.g. see
Fig. 2(a)), giving:

H
0(k) = [2J 0 cos(2kx+ 2kz) + 2J 00 cos(2kx� 2kz)]�5, (6)

where J
0 (J 00) is the hopping amplitude along r0 (r00).

As a result, the first pair closes at m=J
0�2J 00 and the
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FIG. 1. (a) A 4D brickwall lattice with four sites per unit cell.
Solid and dotted lines denote hoppings with real amplitudes
J and �J respectively. (b) The doubly-degenerate energy
bands (Eq. S4) for ky = kw = 0, with the 4D Dirac points
labelled. (c) When m 6= 0, the Dirac points are gapped and
the integrand of Eq. 4 is nontrivial, as shown here for ky =
kw = 0 and m=�J/2. However, this lattice is topologically
trivial as the two pairs of Dirac points contribute in opposite
senses to the 2CN.

As in 2D, the topological invariant changes via topo-
logical phase transitions where band gaps close and re-
open. In the simplest case, the four bands touch at an
isolated set of Dirac points in the BZ, around each of
which d(q) ⇡ (vxqx, vyqy, vzqz, vwqw,m), where vz(vw)
is the dispersion slope with respect to qz(qw). As be-
fore, the mass, m, smoothly tunes across the transition,
with the integrand of Eq. 4 flipping sign as d5 ⇡ m

changes sign. Each isolated point that closes and opens
changes the 2CN by ±1 [55]. Again, this divides the
Dirac points into two types; the first (second) type has
an even (odd) number of minus signs within the other
components {d1, d2, d3, d4} such that the 2CN increases
(decreases) as m goes from negative to positive values.

Importantly, in 4D, preserving TRS for spinless sys-
tems does not imply equal numbers of the two types of
Dirac points. This is because when spinless or bosonic
TRS is present, d1(k) = d1(�k), d3(k) = d3(�k) and
d5(k) = d5(�k) are even, while d2(k) = �d2(�k) and
d4(k) =�d4(�k) are odd. Then, a Dirac point at K is
again paired with another Dirac point at �K, but now
these Dirac points are of the same type, as both d2 and
d4 flip sign. As a result, each TRS pair of Dirac points
will change the 2CN by ±2 across a transition.

Unlike 2D, it is therefore possible to have spinless 4D
QH models with TRS, where the 2CNs take only even
integer values, 2Z [6]. This is a key di↵erence from
previously-studied 4D systems in Class A (with broken

TRS) and Class AII (with fermionic TRS), where the
2CN takes any integer values, Z. For a four-band Class
AII model, for example, the di↵erent TRS constraints al-
low unpaired Dirac points at TRS-invariant momenta, so
that the 2CN can change by ±1 [55]. Physically, the lat-
ter may describe a lattice of particles in spatially-varying,
spin-dependent gauge fields, which is challenging to re-
alise with current technology. Instead, as we now illus-
trate, a suitable four-band model in Class AI could be
engineered for spinless particles by exploiting lattice con-
nectivity.
Proposal for 4D Model– Inspired by the 2D Hal-

dane model, our 4D proposal extends the honey-
comb/brickwall lattice into 4D. As introduced above,
these lattices are topologically-equivalent, having two
sites per unit cell and a single pair of Dirac points in the
BZ. Hereafter, we focus on the brickwall geometry, which
is most natural for synthetic dimensions, but note that
similar arguments apply to the honeycomb geometry.
To realise a four-band model like Eq. 3, we construct a

4D lattice [see Fig. S1(a)], with a four-site unit cell and
the connectivity of a 2D brickwall lattice in both x�y

and z�w planes. The Hamiltonian is [56]:

H(k) = J [(2 cos kx + cos ky)�1 + sin ky�2

+(2 cos kz + cos kw)�3 + sin kw�4 +m�5] , (5)

where J is the hopping amplitude, the lattice spacing
a = 1, and m is an energy o↵set between the A,B and
C,D sites. Note that the real-space hoppings between
B and D sites need to have an opposite sign compared
to other hoppings, as indicated in Fig. S1(a), in order to
realise the required � matrix structure [56].
When m = 0, this model has four 4D Dirac points

in the BZ, as shown in Fig. S1(b). The points at
K1,2 = (⌥2⇡/3, 0,⌥2⇡/3, 0) are a time-reversal pair of
the first type, while those at K3,4 = (±2⇡/3, 0,⌥2⇡/3, 0)
are a pair of the second type. Therefore, this model is still
topologically trivial, as shown, for example, in Fig. S1(c),
for a cut at ky=kw=0 and m=�J/2, where the contri-
butions to the 2CN (Eq. 4) cancel out for the two pairs.

As in the 2D Haldane model, another ingredient is
needed to separate out the two types of Dirac points
and engineer topological bands. In particular, we need a
mass-like term, proportional to �5, which distinguishes
between the two pairs of Dirac points. In this model,
there are many possible terms that achieve this, corre-
sponding to di↵erent long-range hoppings between alike-
sites (e.g. A ! A) [56]. As an example, we con-
sider long-range hoppings in the x � z plane along
r0 = (±2a, 0,±2a, 0) and r00 = (±2a, 0,⌥2a, 0) (e.g. see
Fig. 2(a)), giving:

H
0(k) = [2J 0 cos(2kx+ 2kz) + 2J 00 cos(2kx� 2kz)]�5, (6)

where J
0 (J 00) is the hopping amplitude along r0 (r00).

As a result, the first pair closes at m=J
0�2J 00 and the
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FIG. 3. (a) Example of longer-range hoppings (Eq. 8) that
can make the lattice [Fig. 1(a)] topologically nontrivial. (b)
The integrand of Eq. 5 with ky =kw =0, m=−J/2, J ′=J/2
and J ′′=0, showing that the two pairs now contribute to the
2CN in the same sense, giving a total 2CN of −2. (c)&(d)
The energy dispersion at the topological phase transitions,
corresponding, for the parameters above, to (c)m=−J and
(d) m = J/2, showing that there is only one pair of Dirac
points at each transition.

V. CONCLUSIONS

In this paper, we have reviewed the construction of
minimal 2DQH models, and extended these ideas to pro-
pose 4DQH systems with spinless TRS. We have shown
that such a 4D topological system could be engineered
by controlling the lattice connectivity, while requiring
only real-valued positive and negative hoppings. This
provides a new way to realise the 4DQH effect which
does not rely on either time-reversal symmetry breaking
and/or complicated gauge fields. This also provides a
minimal topological model for Class AI, which describes
spinless or bosonic models with TRS and which is
topologically-trivial in lower dimensions. This work
opens the way towards the experimental exploration of
a higher-dimensional topological systems by controlling
the lattice connectivity.

Note Added: In preparation of this manuscript, we
became aware of a recent proposal for an eight-band
4D crystalline topological insulator, which has bosonic
TRS [58], but which is instead topologically-protected
by reflection symmetry and which relies on spin-orbit
couplings. Since this proposal was put on arXiv, it has
been experimentally implemented in electric circuits [59].
Theoretical proposals have also been made for electric
circuits to realise a different spinless (Class AI) 4DQH
model [60], to simulate nth-Chern-number insulators [61]
and to image nodal boundary Seifert surfaces in 4D
circuits [62].
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Appendix A: Derivation of Momentum-Space
Hamiltonians

In this Appendix, we provide additional detailed steps
in the derivation of the momentum-space Hamiltonians
presented in Section IV. Firstly, as stated in the main
text, the real-space tight-binding Hamiltonian including
up to nearest-neighbour hoppings is given by

H = Hx +Hy +Hz +Hw +H0,

with hopping terms along each direction as:

Hx = J
∑

m,n,j,l

(c†m,n,j,lam,n,j,l + a†m+1,n+1,j,lcm,n,j,l

−b†m,n,j,ldm,n,j,l − d†m+1,n+1,j,lbm,n,j,l + h.c)

Hy = J
∑

m,n,j,l

(c†m−1,n,j,lam,n,j,l − b†m−1,n,j,ldm,n,j,l + h.c)

Hz = J
∑

m,n,j,l

(d†m,n,j,lam,n,j,l + a†m,n,j+1,l+1dm,n,j,l

+b†m,n,j,lcm,n,j,l + c†m,n,j+1,l+1bm,n,j,l + h.c)

Hw = J
∑

m,n,j,l

(d†m,n,j−1,lam,n,j,l + b†m,n,j−1,lcm,n,j,l + h.c)

and with on-site terms:

H0 = M
∑

m,n,j,l

(a†m,n,j,lam,n,j,l + b†m,n,j,lbm,n,j,l

−c†m,n,j,lcm,n,j,l − d†m,n,j,ldm,n,j,l).

To proceed, we Fourier-transform each operator [using
Eq. 6], such that the Hamiltonian can be written as

H =
∑

k

(

a†
k

b†
k

c†
k

d†
k

)

H(k)

⎛

⎜

⎝

ak
bk
ck
dk

⎞

⎟

⎠
, (A1)

where

H(k) = Hx(k) +Hy(k) +Hz(k) +Hw(k) +H0(k).
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FIG. 1. (a) A 4D brickwall lattice with four sites per unit cell.
Solid and dotted lines denote hoppings with real amplitudes
J and �J respectively. (b) The doubly-degenerate energy
bands (Eq. S4) for ky = kw = 0, with the 4D Dirac points
labelled. (c) When m 6= 0, the Dirac points are gapped and
the integrand of Eq. 4 is nontrivial, as shown here for ky =
kw = 0 and m=�J/2. However, this lattice is topologically
trivial as the two pairs of Dirac points contribute in opposite
senses to the 2CN.

As in 2D, the topological invariant changes via topo-
logical phase transitions where band gaps close and re-
open. In the simplest case, the four bands touch at an
isolated set of Dirac points in the BZ, around each of
which d(q) ⇡ (vxqx, vyqy, vzqz, vwqw,m), where vz(vw)
is the dispersion slope with respect to qz(qw). As be-
fore, the mass, m, smoothly tunes across the transition,
with the integrand of Eq. 4 flipping sign as d5 ⇡ m

changes sign. Each isolated point that closes and opens
changes the 2CN by ±1 [55]. Again, this divides the
Dirac points into two types; the first (second) type has
an even (odd) number of minus signs within the other
components {d1, d2, d3, d4} such that the 2CN increases
(decreases) as m goes from negative to positive values.

Importantly, in 4D, preserving TRS for spinless sys-
tems does not imply equal numbers of the two types of
Dirac points. This is because when spinless or bosonic
TRS is present, d1(k) = d1(�k), d3(k) = d3(�k) and
d5(k) = d5(�k) are even, while d2(k) = �d2(�k) and
d4(k) =�d4(�k) are odd. Then, a Dirac point at K is
again paired with another Dirac point at �K, but now
these Dirac points are of the same type, as both d2 and
d4 flip sign. As a result, each TRS pair of Dirac points
will change the 2CN by ±2 across a transition.

Unlike 2D, it is therefore possible to have spinless 4D
QH models with TRS, where the 2CNs take only even
integer values, 2Z [6]. This is a key di↵erence from
previously-studied 4D systems in Class A (with broken

TRS) and Class AII (with fermionic TRS), where the
2CN takes any integer values, Z. For a four-band Class
AII model, for example, the di↵erent TRS constraints al-
low unpaired Dirac points at TRS-invariant momenta, so
that the 2CN can change by ±1 [55]. Physically, the lat-
ter may describe a lattice of particles in spatially-varying,
spin-dependent gauge fields, which is challenging to re-
alise with current technology. Instead, as we now illus-
trate, a suitable four-band model in Class AI could be
engineered for spinless particles by exploiting lattice con-
nectivity.
Proposal for 4D Model– Inspired by the 2D Hal-

dane model, our 4D proposal extends the honey-
comb/brickwall lattice into 4D. As introduced above,
these lattices are topologically-equivalent, having two
sites per unit cell and a single pair of Dirac points in the
BZ. Hereafter, we focus on the brickwall geometry, which
is most natural for synthetic dimensions, but note that
similar arguments apply to the honeycomb geometry.
To realise a four-band model like Eq. 3, we construct a

4D lattice [see Fig. S1(a)], with a four-site unit cell and
the connectivity of a 2D brickwall lattice in both x�y

and z�w planes. The Hamiltonian is [56]:

H(k) = J [(2 cos kx + cos ky)�1 + sin ky�2

+(2 cos kz + cos kw)�3 + sin kw�4 +m�5] , (5)

where J is the hopping amplitude, the lattice spacing
a = 1, and m is an energy o↵set between the A,B and
C,D sites. Note that the real-space hoppings between
B and D sites need to have an opposite sign compared
to other hoppings, as indicated in Fig. S1(a), in order to
realise the required � matrix structure [56].
When m = 0, this model has four 4D Dirac points

in the BZ, as shown in Fig. S1(b). The points at
K1,2 = (⌥2⇡/3, 0,⌥2⇡/3, 0) are a time-reversal pair of
the first type, while those at K3,4 = (±2⇡/3, 0,⌥2⇡/3, 0)
are a pair of the second type. Therefore, this model is still
topologically trivial, as shown, for example, in Fig. S1(c),
for a cut at ky=kw=0 and m=�J/2, where the contri-
butions to the 2CN (Eq. 4) cancel out for the two pairs.

As in the 2D Haldane model, another ingredient is
needed to separate out the two types of Dirac points
and engineer topological bands. In particular, we need a
mass-like term, proportional to �5, which distinguishes
between the two pairs of Dirac points. In this model,
there are many possible terms that achieve this, corre-
sponding to di↵erent long-range hoppings between alike-
sites (e.g. A ! A) [56]. As an example, we con-
sider long-range hoppings in the x � z plane along
r0 = (±2a, 0,±2a, 0) and r00 = (±2a, 0,⌥2a, 0) (e.g. see
Fig. 2(a)), giving:

H
0(k) = [2J 0 cos(2kx+ 2kz) + 2J 00 cos(2kx� 2kz)]�5, (6)

where J
0 (J 00) is the hopping amplitude along r0 (r00).

As a result, the first pair closes at m=J
0�2J 00 and the
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binding lattice Hamiltonian (see “Methods”). We then tune D0 so
that for f= f0,

D0
ii þ

X

j≠i

Dij ¼ iαE; ð2Þ

for some target energy E; the required value of D0 depends on the

m parameter. Equation (1) now becomes

Ii %
X

j

LijVj ¼ & iα
X

j

½Hijðf Þ & E δij(Vjðf Þ; ð3Þ

where Lij are the components of the circuit Laplacian L. The
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For ∣m∣ < 6, there is a bandgap associated with nontrivial second Chern number, accompanied by topological surface states (shaded green). For ∣m∣ > 6, the
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dispersion for a lattice with m = 0 and truncated to Nx = 30 unit cells (with open boundary
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for kz = 2⇡/3 (e).
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The gap closes at m = 6 with the Dirac point lying at ky = kw = 0.

When the lattice is truncated, surface states appear along the surface in the topologically

nontrivial phase (m  6), as shown in Fig. 1d–e. In this case, the truncation occurs along

the x direction, and the surface state cones are centered at ky = kw = 0, kz = ±2⇡/3.
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LDOS (i.e. impedance measurements)



4D Circuit Design
Dij(f0) = i↵Hij(f0)

Positive (negative) values of the Hamiltonian 
correspond to capacitances (inductances)

where

2⇡f0 = 1/
p
L0C0, ↵ = 2⇡f0C0. (10)

For each node, we determine the grounding conductance required to satisfy Eq. (6).

Suppose node i is connected to other nodes by pi type-C0 capacitors, qi type-L0 inductors,

p
0
i type-C

0 capacitors, and q
0
i type-L

0 inductors (these connections depend on which sublattice

the node lies on, and whether it lies in the bulk or on the surface). Then

X

j 6=i

Dij(f) = 2⇡ipifC0 +
qi

2⇡ifL0
+ 2⇡ip0ifC

0 +
q
0
i

2⇡ifL0

= 2⇡if C0

✓
pi + 2p0i � (qi + 2q0i)

f
2
0

f 2

◆
.

(11)

Taking f = f0 and plugging into Eq. (6) gives

D
0
ii(f0) = i↵E �

X

j 6=i

Dij(f0)

= 2⇡if0C0

�
E � pi � 2p0i + qi + 2q0i

�
.

(12)

The on-site mass term is Hii(f0) = ±m, depending on whether the node is on the A,B or

C,D sublattices. Hence, the grounding conductance must satisfy

D
(g)
ii (f0) = �Dii(f0) +D

0
ii(f0)

= 2⇡if0C0

�
E ⌥m� pi � 2p0i + qi + 2q0i

�
.

(13)

To achieve this in the experiment, we connect each node i to ground with 6 � pi type-C0

capacitors, 3� qi type-L0 inductors, 4� p
0
i type-C

0 capacitors, and 4� q
0
i type-L

0 inductors.

Additionally, (i) we connect each node to ground by an extra inductor Lg, and (ii) if node

i belongs to sublattice C or D, we connect it to ground by an extra capacitor Cm = 2mC0.

As a result, the grounding conductance of node i at an arbitrary frequency f is

D
(g)
ii = 2⇡i(6� pi)fC0 +

(3� qi)

2⇡ifL0
+ 2⇡i(4� p

0
i)fC

0 +
(4� q

0
i)

2⇡ifL0 +
1

2⇡ifLg
+ 2⇡i(m⌥m)fC0

(14)

where ⌥ refers to sublattice A,B or C,D respectively. At f = f0, this satisfies Eq. (13) if we

pick
L0

Lg
= 3 +m� E. (15)
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Kirchhoff’s law states that

Ii ¼ ð#Dii þ D0
iiÞVi þ

X

j

DijðVi # VjÞ: ð1Þ

We define Dij( f )= iαHij( f ), where α is a positive real constant.
Then capacitances (inductances) correspond to positive (nega-
tive) real values of Hij. We require that at a reference working
frequency f= f0, the values of Hij(f0) match the desired tight-
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Fig. 1 Model of the 4D Quantum Hall lattice and its circuit implementation. a Schematic of the 4D tight-binding model. Each unit cell consists of four
sites labelled A–D. Hollow and filled circles respectively denote positive (m) and negative (−m) on-site masses, while yellow solid lines and blue dashes
respectively denote positive (J) and negative (−J) hoppings. b Photographs of the circuit. c Schematic of the circuit; positive (negative) masses are realised
by capacitors (inductors) connecting the sites to ground, and hoppings are realised using capacitors or inductors connecting different sites. The
components shown here are C0= 1 nF (yellow lines), L0= 2mH (blue dashes), C0 ¼ 2 nF (purple curves), L0 ¼ 1 mH (green curves), and Cm= 2mC0 (grey
dashes). Each site is grounded by a set of additional circuit components (see Supplementary Note 2); for clarity, only the grounding components for two
sites (in the dashed red box) are depicted.
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SUPPLEMENTARY NOTE 2: CIRCUIT DESIGN DETAILS

Here, we provide additional details on the mapping between the electric circuits and tight-

binding Hamiltonians. Let Ii be the external current injected into node i, Vj the voltage

(relative to ground) on node j, and Dij the conductance between nodes i and j for i 6= j.

Moreover, let the conductance between node i and ground be

D
(g)
ii = �Dii +D

0
ii. (2)

By Kirchho↵’s laws,

Ii = D
(g)
ii Vi +

X

j

Dij(Vi � Vj) (3)

=
X

j

"
�Dij +

 
�Dii +D

0
ii +

X

k

Dik

!
�ij

#
Vj (4)

=
X

j

"
�Dij +

 
D

0
ii +

X

k 6=i

Dik

!
�ij

#
Vj. (5)

Note that in Eq. (3), the sum can be taken either over all j, or equivalently over j 6= i. We

now adjust D0
ii so that, at a reference working frequency f0,

D
0
ii(f0) +

X

j 6=i

Dij(f0) = i↵E (6)

for each node i, with some constant ↵ and target energy E. At f = f0, Eq. (5) then becomes

Ii(f0) = �i↵

X

j

h
Hij(f0)� E �ij

i
Vj(f0), (7)

Dij(f) ⌘ i↵Hij(f). (8)

We require Hij(f0) to match the target tight-binding Hamiltonian, which has parameters

J = 1, J 0 = �J
00 = 2. For real ↵, positive (negative) real values of Hij correspond to

capacitances (inductances). As described in the main text, by choosing ↵ and f0 we can

assign the following circuit elements to the lattice model’s hopping terms:

C0 $ J = 1 (positive NN hopping)

C
0 = 2C0 $ J

0 = 2 (positive long range hopping)

L0 $ �J = �1 (negative NN hopping)

L
0 = L0/2 $ J

00 = �2 (negative long range hopping)

(9)
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logical pumps have the drawback of being inherently lim-
ited to probing specific quasi-static solutions of the high-
dimensional system, without realising a genuine high-
dimensional lattice. Moreover, in those experiments the
second Chern number in 4D is not truly independent of
the first Chern numbers in 2D (which are nonzero).

Our 4D lattice is implemented using electric circuits
with carefully chosen capacitive and inductive connec-
tions. The lattice model has two topologically distinct
phases: a 4DQH phase and a conventional insulator,
with the choice of phase governed by a parameter m

that maps to certain combinations of capacitances and
inductances. Using impedance measurements that are
equivalent to finding the local density of states (LDOS),
we show that the 4DQH phase hosts surface states on
the 3D surface, while the conventional insulator phase
has only bulk states. Varying the driving frequency, we
show that the topological surface states span a frequency
range corresponding to a bulk bandgap, as predicted by
theory. Our experimental results also agree well with cir-
cuit simulations. This work demonstrates that electric
circuits are a flexible and practical way to realise higher-
dimensional lattices, paving the way for the exploration
of other previously-inaccessible topological phases.

4DQH model and circuit realization.— The 4D lattice
model is shown schematically in Fig. 1(a). The spatial co-
ordinates are denoted x, y, z, and w. The lattice contains
four sublattices labelled A, B, C and D, with sites con-
nected by real nearest neighbour hoppings ±J . The four
bands host two pairs of Dirac points in the Brillouin zone;
each pair is the time-reversed counterpart of the other.
To control the pairs separately, long-range hoppings with
amplitudes ±J

0 and ±J
00 are added within the x-z plane

[these long-range hoppings are omitted from Fig. 1(a) for
clarity, but are shown in Fig. 1(c)]. Upon adding mass
+m to the A and B sites, and �m to the C and D sites,
the Dirac masses for the di↵erent Dirac point pairs close
at m=J

0�2J 00 and m=J
00�2J 0. These gap closings are

topological transitions, such that, for J 00=�J
0, the sec-

ond Chern number of the lower bands is -2 (nontrivial)
if |m|<3|J 0|. Since T is unbroken, the first Chern num-
ber is always zero, so the model exhibits QH behaviour
stemming purely from the second Chern number [37].

For the experiment, we set J = 1 and J
0 = �J

00 = 2, so
that the topological transition of the bulk lattice occurs
at m = ±6. We take a finite 4D lattice with three unit
cells (6 sites) in the x and z directions, and one unit cell
(2 sites) in y and w. Periodic boundary conditions are
applied along y and w to mitigate finite-size e↵ects, and
are implemented using nearest neighbor type connections
between opposite ends of the lattice. The lattice has a
total of 144 sites, of which we consider 16 to be bulk sites
(defined as being more than 2 sites away from a surface)
and 128 to be surface sites. The fact that the surface
sites greatly outnumber the bulk sites is characteristic of
high dimensional systems.

b

FIG. 1: Model of the 4D Quantum Hall lattice and its circuit
implementation. (a) Schematic of the 4D tight-binding model.
Each unit cell consists of four sites labelled A-D. Hollow and
filled circles respectively denote positive (m) and negative
(�m) on-site masses, while yellow solid lines and blue dashes
respectively denote positive (J) and negative (�J) hoppings.
(c) Long-range hoppings of the tight-binding lattice. (b) Pho-
tographs of the circuit. (c) Schematic of the circuit; positive
(negative) masses are realised by capacitors (inductors) con-
necting the sites to ground, and hoppings are realised using
capacitors or inductors connecting di↵erent sites.

Circuit realization.— The finite 4D lattice is imple-
mented with a set of connected printed circuit boards,
shown in Fig. 1(b). Each site i of the tight-binding model
maps to a node on the circuit, and the mass term maps to
a circuit component of conductance �Dii connecting the
node to ground. Each hopping Jij between sites i and
j maps to a circuit element of conductance Dij connect-
ing the nodes. We add extra grounding components with
conductance D0

ii in parallel with �Dii. If an external AC
current Ii flows into each node i at frequency f , and Vi

is the complex AC voltage on that node, Kirchho↵’s law
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are implemented using nearest neighbor type connections
between opposite ends of the lattice. The lattice has a
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(defined as being more than 2 sites away from a surface)
and 128 to be surface sites. The fact that the surface
sites greatly outnumber the bulk sites is characteristic of
high dimensional systems.
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Circuit realization.— The finite 4D lattice is imple-
mented with a set of connected printed circuit boards,
shown in Fig. 1(b). Each site i of the tight-binding model
maps to a node on the circuit, and the mass term maps to
a circuit component of conductance �Dii connecting the
node to ground. Each hopping Jij between sites i and
j maps to a circuit element of conductance Dij connect-
ing the nodes. We add extra grounding components with
conductance D0

ii in parallel with �Dii. If an external AC
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impedance between node r and ground is

Vr ¼
X

j

ðL# 1ÞrjIj ¼ ZrIr: ð4Þ

It can be shown that Re½Zrðf 0Þ& is, up to a scale factor, the LDOS
of the target lattice at energy E (see “Methods”). For further
details about the circuit analysis, see Supplementary Note 2.

Experimental results. Figure 2a shows the band diagram of the
infinite bulk tight-binding model as a function of the mass
detuning parameter m. For ∣m∣ < 6, the system is in a 4DQH
phase, with a topologically nontrivial bandgap centred at E= 0,
which hosts topological surface states.

The band diagram for the 144-site tight-binding model is
shown in Fig. 2b. The colours of the curves indicate the degree
to which each eigenstate is concentrated on the surface, as
defined by

ln jψðrÞjh isurf : = jψðrÞjh ibulk
! "

; ð5Þ

where ψ(r) denotes the energy eigenfunction, whose magnitudes
are averaged over either surface or bulk sites. Due to the finite
lattice size, both the bulk and surface spectrum are split into sub-
bands. The closing of the bulk gap is shifted to ∣m∣ ≈ 4, and the
surface states occur most prominently at small values of E and ∣m∣.

We now fabricate a set of circuits with parameters
m ∈ {0, 1, …, 8} and E ∈ {0, 1}. Figure 2c–f shows the measured
LDOS (at f= f0) for four representative samples. From the
experimental data, we see that the surface LDOS is high and the
bulk LDOS is low when in the topologically nontrivial bandgap
(Fig. 2c, d). For E= 0, m= 4, which corresponds roughly to the
gap-closing point, there is no significant difference between the
surface and bulk LDOS. For E= 0, m= 8, the LDOS on all sites is
low, consistent with being in a topologically trivial bandgap.
These results also agree well with circuit simulations (see
Supplementary Note 3). The robustness of the surface states, a
feature imparted by topological protection, can be inferred from
the fact that each individual circuit component has up to 10%
deviation in its capacitance or inductance (see “Methods”). We
emphasise that the surface states cannot be explained by the first
Chern numbers, which are necessary zero since the circuit design
is T symmetric.

To confirm that the discrepancy between Fig. 2a and b is just a
finite-size effect, Fig. 3 shows calculated band edges (i.e. the pair of
eigenvalues closest to E= 0) for a series of lattices with 6, 8, 10, 14,
20, and 50 sites along both x and z (the lattices are kept two sites
wide along y and w, with periodic boundary conditions).
The colours indicate whether the eigenstate is concentrated on
the surface (red) or in the bulk (blue). As the size of the lattice
increases in x and z, the eigenvalues at large m (in the conventional
insulator regime) approach the predicted bulk band edges, while the
eigenvalues in the topological insulator regime spread over a larger
range of m corresponding to the topologically nontrivial gap.

To quantify the difference between the 4DQH and conven-
tional insulator phases, we examine the ratio of the mean
LDOS on surface sites to the mean LDOS on bulk sites, for
different values of the mass detuning parameter m (Fig. 4a).
The ratio is derived from experimental measurements per-
formed at f= f0, corresponding to E= 0; with increasing m, it
decreases sharply from around 4.5 in the 4DQH regime to
around 1 in the conventional insulator regime. Circuit
simulations produce results in agreement with the experi-
mental data (Fig. 4f).

The frequency dependence of the circuit impedance is also
consistent with the spectral features of a topological insulator at
small values of m. Figure 4b–e plots the experimentally-obtained

frequency dependence of the LDOS measure Re½Zr&, averaged
over surface or bulk sites. To interpret these results, recall that the
impedance measurements probe the response at fixed energy (in
this case, E= 0) of an effective Hamiltonian H(f) that depends
parametrically on the frequency f [Eq. (6)], and matches the
target tight-binding model at f= f0. For m= 0 (Fig. 4b), the
circuit exhibits a strong edge response and suppressed bulk
response at f= f0, consistent with the fact that H(f0) has a
topologically nontrivial gap at E= 0. For f ≠ f0, the effective
Hamiltonian H(f) deviates from the target model (e.g. the positive
and negative hoppings become unequal in magnitude, lifting the
band degeneracy), but remains in Class AI. So long as the gap
remains open, H(f) must possess a topologically nontrivial gap at
E= 0 associated with the same second Chern number. The
signatures of the topological bandgap persist as m is slightly
increased (Fig. 4c); upon further increasing m, the bulk gap closes
and thereafter the surface and bulk LDOS measures exhibit no
notable frequency dependent features (Fig. 4d, e). These
experimental results are in good agreement with simulations
(Fig. 4g–j).

Discussion
We have used electric circuits to implement a 4D lattice hosting a 4D
Quantum Hall phase. This is the first experimental demonstration of
a topological lattice with a 4D structure, and of a Class AI topological
insulator. This is also the first experimental exploration of a 4DQH
model with nontrivial second Chern number but trivial first Chern
numbers. Using impedance measurements, we have demonstrated
that the LDOS on the 3D surface is enhanced in the 4DQH phase,
due to the presence of topological surface states, and that the
enhanced surface response spans the frequency range of the bulk
bandgap. The gap-closing associated with a topological phase tran-
sition is clearly observed, despite being shifted by finite-size effects. In
future work, it is desirable to find ways to probe the detailed features
of the 3D surface states, which are predicted to be two robust isolated
Weyl points of the same chirality, a situation that does not occur in
lower-dimensional topological models37. The successful imple-
mentation of 4D lattices of very substantial size (144 sites) shows that
electric circuits are an excellent platform for exploring exotic band
topological effects, and a promising alternative to the synthetic
dimensions approach to realising higher-dimensional lattices51.
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states that

Ii = (�Dii +D
0
ii)Vi +

X

j

Dij(Vi � Vj). (1)

We define

Dij(f) = i↵Hij(f), (2)

where ↵ is a positive real constant. Then capacitances
(inductances) correspond to positive (negative) real Hij .
We require that at a reference working frequency f = f0,
the values of Hij(f0) match the desired tight-binding lat-
tice Hamiltonian. We map the positive nearest neigh-
bor hopping J = 1 to capacitance C0 = 1nF by taking
↵ = 2⇡f0C0. The long-range hopping J

0 then maps to
capacitance C 0 = 2nF. By setting f0 = 1/(2⇡

p
L0C0 ) ⇡

113 kHz, the negative nearest neighbor hopping maps to
inductance L0 = 2mH, and the negative long-range hop-
ping J

00 = �2 maps to inductance L
0 = 1mH.

The grounding conductance of node i is parameterised
as �Dii +D

0
ii. We tune D

0
ii so that for f = f0 and Dii

obeying Eq. (2),D0
ii+

P
j 6=i Dij = i↵E for a target energy

E. The required D
0
ii is dependent on the m parameter.

Eq. (1) now becomes [55]

Ii(f) ⌘
X

j

LijVj = �i↵

X

j

h
Hij(f)� E �ij

i
Vj(f). (3)

Here, Lij are the components of the circuit Laplacian L.
In our experiments, we measure the impedance be-

tween a given node r and the common ground by applying
a 1V sine wave of frequency f0 on that node, and mea-
suring the voltage Vr and the current Ir. The impedance
between node r and the ground is the rth diagonal term
of the inverse of the circuit Laplacian L:

Vr =
X

j

(L�1)rjIj = ZrIr. (4)

Using Eq. (3), one can show that [20]

Zr =
i

↵
lim
✏!0

X

n

| n(r)|2

En � E + i✏
, (5)

where  n(r) is the n-th energy eigenstate’s amplitude on
site r, and En is the corresponding eigenenergy. There-
fore Re[Zr] = (1/⇡↵)

P
n �(E � En) | n(r)|2 is, up to a

scale factor, the LDOS of the target lattice at energy E

when measured at f = f0.
Experimental results.— Fig. 2(a) shows the band dia-

gram of the infinite bulk tight-binding model as a func-
tion of the mass detuning parameter m. For |m| < 6, the
system is in a 4DQH phase, with a topologically nontriv-
ial bandgap centered at E = 0, which hosts topological
surface states. The band diagram for the 144-site tight-
binding model is shown in Fig. 2(b). The colors of the
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FIG. 2: (a) Calculated band diagram for the infinite 4D lat-
tice. The bulk bands are shown in gray. For |m| < 6, there is
a bandgap associated with nontrivial second Chern number,
accompanied by topological surface states (shaded green). For
|m| > 6, the bandgap is trivial. (b) Calculated band diagram
for 144-site lattice with periodic boundary conditions along
y and w. Colors indicate the degree of surface concentration
of the energy states, as defined in the main text. Due to
finite-size e↵ects, surface states occur at |m| . 2 and the gap
closing is shifted to |m| ⇡ 4. The parameters correspond-
ing to subplots (c)–(f) are indicated with pink dots. (c)–(f)
Experimentally obtained LDOS maps for di↵erent m and E,
measured at working frequency f = f0. Surface states are ob-
served in (c) and (d), consistent with theoretical predictions.

curves indicate the degree to which each eigenstate is
concentrated on the surface, as defined by

ln [ h| (r)|isurf. / h| (r)|ibulk ] , (6)

where  (r) denotes the energy eigenfunction, whose mag-
nitudes are averaged over either surface or bulk sites.
Due to the finite lattice size, both the bulk and surface
spectrum is split into sub-bands. The closing of the bulk
gap is shifted to |m| ⇡ 4, and the surface states occur
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a bandgap associated with nontrivial second Chern number,
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|m| > 6, the bandgap is trivial. (b) Calculated band diagram
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of the energy states, as defined in the main text. Due to
finite-size e↵ects, surface states occur at |m| . 2 and the gap
closing is shifted to |m| ⇡ 4. The parameters correspond-
ing to subplots (c)–(f) are indicated with pink dots. (c)–(f)
Experimentally obtained LDOS maps for di↵erent m and E,
measured at working frequency f = f0. Surface states are ob-
served in (c) and (d), consistent with theoretical predictions.

curves indicate the degree to which each eigenstate is
concentrated on the surface, as defined by

ln [ h| (r)|isurf. / h| (r)|ibulk ] , (6)

where  (r) denotes the energy eigenfunction, whose mag-
nitudes are averaged over either surface or bulk sites.
Due to the finite lattice size, both the bulk and surface
spectrum is split into sub-bands. The closing of the bulk
gap is shifted to |m| ⇡ 4, and the surface states occur
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While this work was being done, we became aware of related
theoretical proposals to use circuits to realise high-dimensional
TIs55,56.

Methods
Circuit implementation and experimental procedure. The implementation of the
LC circuit, so as to map its impedance response to a target Hamiltonian, follows a
design strategy similar to recent works, which targeted different topological
models20–23,26–28. As explained in the main text, positive and negative hoppings in
the tight-binding Hamiltonian are represented by capacitors and inductors
respectively. Defining the complex conductance between sites i and j as D ij= iαHij,
we take α= 2πf0C0 to map the positive nearest neighbour hopping J= 1 to capa-
citance C0= 1 nF, and the long-range hopping J 0 to capacitance C0 ¼ 2 nF, at f=
f0. Next, setting f 0 ¼ 1=ð2π

ffiffiffiffiffiffiffiffiffiffi
L0C0

p
Þ $ 113 kHz maps the negative nearest

neighbour hopping to inductance L0= 2 mH, and the negative long-range hopping
J″=−2 to L0 ¼ 1 mH. Each site is connected to ground by additional components
to satisfy Eq. (2); see Supplementary Note 2. The required capacitances are
obtained by connecting 1 nH capacitors (Murata GCM155R71H102KA37D) in
series or parallel, and the inductances are achieved by connecting 1 mH inductors
(Taiyo Yuden LB2518T102K).

The circuit is divided into several printed circuit boards (PCBs), stacked on top
of each other. Each PCB is divided into 6 × 6= 36 nodes, corresponding to the
dimensions of the 4D lattice in the x–z plane (see Fig. 1c of the main text). Each x–
z lattice plane actually consists of several PCBs stacked with vertical electrical
interconnects, in order to fit all the necessary circuit components.

We measure the impedance between any given node r and the common ground
by applying a 1 V sine wave of frequency f0 on that node, and measuring the
voltage Vr and the current Ir. As stated in Eq. 4, the impedance between node r and
the ground is the rth diagonal term of the inverse of the circuit Laplacian L. Using
Eq. (3), one obtains20,27

Zr ¼ i
α
lim
ϵ!0

X

n

jψnðrÞj
2

En % E þ iϵ
; ð6Þ

where ψn(r) is the n-th energy eigenstate’s amplitude on site r, and En is the
corresponding eigenenergy. Thus, if the impedance measurement is performed at
f= f0, then Re½Zr ( ¼ ð1=παÞ

P
nδðE % EnÞ jψnðrÞj

2 is equivalent to the lattice’s
LDOS at energy E. With resistances present, the eigenenergies in Eq. (6) acquire an
imaginary part, which has the effect of smoothing out the impedance curves (see
Supplementary Note 3).

Circuit simulations. All circuit simulations are performed with ngspice, a free
software circuit simulator. We assign to each 1 nF capacitor a 10Ω resistance,
consistent with the resistance in the manufacturer-supplied SPICE model at
our operating frequency. For each 1 mH inductor, we assign a 24Ω resistance
consistent with the manufacturer-provided data sheet. Each resistance is applied in
series with the corresponding capacitive or inductive element. Other sources of
resistance, such as the PCB interconnects, are much harder to characterise and

were thus not accounted for in the circuit simulations. To model the disorder in the
capacitors and inductors, we apply 10% uniformly-distributed disorder to each
capacitance and inductance, consistent with the stated tolerances in their data
sheets. The simulations are performed like the experiments: i.e. sine wave voltage
source is applied to each node, and the steady-state voltage and current are used to
determine the complex impedance.

Data availability
The circuit measurement data that support the findings of this study are available in DR-
NTU(data) with the identifier “https://doi.org/10.21979/N9/KXL3TD”57.

Code availability
Ngspice and Python code used for circuit simulation and generating all plots can be
found in DR-NTU(data) with the identifier “https://doi.org/10.21979/N9/KXL3TD”57.
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While this work was being done, we became aware of related
theoretical proposals to use circuits to realise high-dimensional
TIs55,56.

Methods
Circuit implementation and experimental procedure. The implementation of the
LC circuit, so as to map its impedance response to a target Hamiltonian, follows a
design strategy similar to recent works, which targeted different topological
models20–23,26–28. As explained in the main text, positive and negative hoppings in
the tight-binding Hamiltonian are represented by capacitors and inductors
respectively. Defining the complex conductance between sites i and j as D ij= iαHij,
we take α= 2πf0C0 to map the positive nearest neighbour hopping J= 1 to capa-
citance C0= 1 nF, and the long-range hopping J 0 to capacitance C0 ¼ 2 nF, at f=
f0. Next, setting f 0 ¼ 1=ð2π

ffiffiffiffiffiffiffiffiffiffi
L0C0

p
Þ $ 113 kHz maps the negative nearest

neighbour hopping to inductance L0= 2 mH, and the negative long-range hopping
J″=−2 to L0 ¼ 1 mH. Each site is connected to ground by additional components
to satisfy Eq. (2); see Supplementary Note 2. The required capacitances are
obtained by connecting 1 nH capacitors (Murata GCM155R71H102KA37D) in
series or parallel, and the inductances are achieved by connecting 1 mH inductors
(Taiyo Yuden LB2518T102K).

The circuit is divided into several printed circuit boards (PCBs), stacked on top
of each other. Each PCB is divided into 6 × 6= 36 nodes, corresponding to the
dimensions of the 4D lattice in the x–z plane (see Fig. 1c of the main text). Each x–
z lattice plane actually consists of several PCBs stacked with vertical electrical
interconnects, in order to fit all the necessary circuit components.

We measure the impedance between any given node r and the common ground
by applying a 1 V sine wave of frequency f0 on that node, and measuring the
voltage Vr and the current Ir. As stated in Eq. 4, the impedance between node r and
the ground is the rth diagonal term of the inverse of the circuit Laplacian L. Using
Eq. (3), one obtains20,27

Zr ¼ i
α
lim
ϵ!0

X

n

jψnðrÞj
2

En % E þ iϵ
; ð6Þ

where ψn(r) is the n-th energy eigenstate’s amplitude on site r, and En is the
corresponding eigenenergy. Thus, if the impedance measurement is performed at
f= f0, then Re½Zr ( ¼ ð1=παÞ

P
nδðE % EnÞ jψnðrÞj

2 is equivalent to the lattice’s
LDOS at energy E. With resistances present, the eigenenergies in Eq. (6) acquire an
imaginary part, which has the effect of smoothing out the impedance curves (see
Supplementary Note 3).

Circuit simulations. All circuit simulations are performed with ngspice, a free
software circuit simulator. We assign to each 1 nF capacitor a 10Ω resistance,
consistent with the resistance in the manufacturer-supplied SPICE model at
our operating frequency. For each 1 mH inductor, we assign a 24Ω resistance
consistent with the manufacturer-provided data sheet. Each resistance is applied in
series with the corresponding capacitive or inductive element. Other sources of
resistance, such as the PCB interconnects, are much harder to characterise and

were thus not accounted for in the circuit simulations. To model the disorder in the
capacitors and inductors, we apply 10% uniformly-distributed disorder to each
capacitance and inductance, consistent with the stated tolerances in their data
sheets. The simulations are performed like the experiments: i.e. sine wave voltage
source is applied to each node, and the steady-state voltage and current are used to
determine the complex impedance.

Data availability
The circuit measurement data that support the findings of this study are available in DR-
NTU(data) with the identifier “https://doi.org/10.21979/N9/KXL3TD”57.

Code availability
Ngspice and Python code used for circuit simulation and generating all plots can be
found in DR-NTU(data) with the identifier “https://doi.org/10.21979/N9/KXL3TD”57.
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logical pumps have the drawback of being inherently lim-
ited to probing specific quasi-static solutions of the high-
dimensional system, without realising a genuine high-
dimensional lattice. Moreover, in those experiments the
second Chern number in 4D is not truly independent of
the first Chern numbers in 2D (which are nonzero).

Our 4D lattice is implemented using electric circuits
with carefully chosen capacitive and inductive connec-
tions. The lattice model has two topologically distinct
phases: a 4DQH phase and a conventional insulator,
with the choice of phase governed by a parameter m

that maps to certain combinations of capacitances and
inductances. Using impedance measurements that are
equivalent to finding the local density of states (LDOS),
we show that the 4DQH phase hosts surface states on
the 3D surface, while the conventional insulator phase
has only bulk states. Varying the driving frequency, we
show that the topological surface states span a frequency
range corresponding to a bulk bandgap, as predicted by
theory. Our experimental results also agree well with cir-
cuit simulations. This work demonstrates that electric
circuits are a flexible and practical way to realise higher-
dimensional lattices, paving the way for the exploration
of other previously-inaccessible topological phases.

4DQH model and circuit realization.— The 4D lattice
model is shown schematically in Fig. 1(a). The spatial co-
ordinates are denoted x, y, z, and w. The lattice contains
four sublattices labelled A, B, C and D, with sites con-
nected by real nearest neighbour hoppings ±J . The four
bands host two pairs of Dirac points in the Brillouin zone;
each pair is the time-reversed counterpart of the other.
To control the pairs separately, long-range hoppings with
amplitudes ±J

0 and ±J
00 are added within the x-z plane

[these long-range hoppings are omitted from Fig. 1(a) for
clarity, but are shown in Fig. 1(c)]. Upon adding mass
+m to the A and B sites, and �m to the C and D sites,
the Dirac masses for the di↵erent Dirac point pairs close
at m=J

0�2J 00 and m=J
00�2J 0. These gap closings are

topological transitions, such that, for J 00=�J
0, the sec-

ond Chern number of the lower bands is -2 (nontrivial)
if |m|<3|J 0|. Since T is unbroken, the first Chern num-
ber is always zero, so the model exhibits QH behaviour
stemming purely from the second Chern number [37].

For the experiment, we set J = 1 and J
0 = �J

00 = 2, so
that the topological transition of the bulk lattice occurs
at m = ±6. We take a finite 4D lattice with three unit
cells (6 sites) in the x and z directions, and one unit cell
(2 sites) in y and w. Periodic boundary conditions are
applied along y and w to mitigate finite-size e↵ects, and
are implemented using nearest neighbor type connections
between opposite ends of the lattice. The lattice has a
total of 144 sites, of which we consider 16 to be bulk sites
(defined as being more than 2 sites away from a surface)
and 128 to be surface sites. The fact that the surface
sites greatly outnumber the bulk sites is characteristic of
high dimensional systems.

b

FIG. 1: Model of the 4D Quantum Hall lattice and its circuit
implementation. (a) Schematic of the 4D tight-binding model.
Each unit cell consists of four sites labelled A-D. Hollow and
filled circles respectively denote positive (m) and negative
(�m) on-site masses, while yellow solid lines and blue dashes
respectively denote positive (J) and negative (�J) hoppings.
(c) Long-range hoppings of the tight-binding lattice. (b) Pho-
tographs of the circuit. (c) Schematic of the circuit; positive
(negative) masses are realised by capacitors (inductors) con-
necting the sites to ground, and hoppings are realised using
capacitors or inductors connecting di↵erent sites.

Circuit realization.— The finite 4D lattice is imple-
mented with a set of connected printed circuit boards,
shown in Fig. 1(b). Each site i of the tight-binding model
maps to a node on the circuit, and the mass term maps to
a circuit component of conductance �Dii connecting the
node to ground. Each hopping Jij between sites i and
j maps to a circuit element of conductance Dij connect-
ing the nodes. We add extra grounding components with
conductance D0

ii in parallel with �Dii. If an external AC
current Ii flows into each node i at frequency f , and Vi

is the complex AC voltage on that node, Kirchho↵’s law
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Superfluid Vortices in Four Spatial Dimensions
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Quantum vortices in superfluids have been an important research area for many decades. Natu-
rally, research on this topic has focused on two and three-dimensional superfluids, in which vortex
cores form points and lines, respectively. Very recently, however, there has been growing interest
in the quantum simulation of systems with four spatial dimensions; this raises the question of how
vortices would behave in a higher-dimensional superfluid. In this paper, we begin to establish the
phenomenology of vortices in 4D superfluids under rotation, where the vortex core can form a plane.
In 4D, the most generic type of rotation is a “double rotation” with two angles (or frequencies).
We show, by solving the Gross-Pitaesvkii equation, that the simplest case of equal-frequency double
rotation can stabilise a pair of vortex planes intersecting at a point. This opens up a wide number
of future research topics, including into realistic experimental models; unequal-frequency double
rotations; the stability and potential reconnection dynamics of intersecting vortex surfaces; and the
possibility of closed vortex surfaces.

Quantum vortices are fundamental topological excita-
tions of superfluids, which have been widely studied for
many years [1–7]. Unlike a lot of many-body phenom-
ena, vortices can be understood at the mean-field level
through the Gross Pitaevskii equation (GPE) [1]. A su-
perfluid vortex consists of a local density depletion within
the “vortex core”, around which the superfluid circulates.
In 2D and 3D superfluids, this vortex core forms a point
and a line respectively, as sketched in Fig 1. Vortices
have an associated energy cost, but can be stabilised by
rotation of the superfluid [2, 3], or equivalently by artifi-
cial magnetic fields [8–10].

While research has so far naturally focused on vor-
tices in 2D and 3D superfluids, there is growing inter-
est in simulating systems with four spatial dimensions.
This is thanks to experimental and theoretical investi-
gations of 4D physics in topological pumping [11–13],
high-dimensional parameter spaces [14–17] and electric
circuits with high connectivity [18–22], as well as propos-
als for engineering 4D systems using “synthetic dimen-
sions” [23, 24]. The latter, in particular, opens up the
prospect of being able to explore higher-dimensional su-
perfluids with artificial gauge fields. In this approach,
“synthetic dimensions” are built by coupling together
the internal states of cold atoms [25–35], photonic sys-
tems [24, 36–42] and other platforms [43–46]. Such de-
grees of freedom are then reinterpreted as lattice coordi-
nates in a new direction, increasing the e↵ective system
dimensionality, while providing straightforward ways to
realise artificial magnetic fields [47], and hence mimic ro-
tation in a higher-dimensional space.

The potential of synthetic dimensions for reaching 4D
with (for example) ultracold bosonic atoms [23, 33] mo-
tivates the question of how superfluid vortices behave in
higher dimensions. In this paper, we take an initial step
in this direction by exploring the 4D GPE under rotation,

⇤ bdm375@student.bham.ac.uk
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Quantum vortices in superfluids have been an important research area for many decades. Natu-
rally, research on this topic has focused on two and three-dimensional superfluids, in which vortex
cores form points and lines, respectively. Very recently, however, there has been growing interest
in the quantum simulation of systems with four spatial dimensions; this raises the question of how
vortices would behave in a higher-dimensional superfluid. In this paper, we begin to establish the
phenomenology of vortices in 4D superfluids under rotation, where the vortex core can form a plane.
In 4D, the most generic type of rotation is a “double rotation” with two angles (or frequencies).
We show, by solving the Gross-Pitaesvkii equation, that the simplest case of equal-frequency double
rotation can stabilise a pair of vortex planes intersecting at a point. This opens up a wide number of
future research topics, including unequal-frequency double rotations; the stability and reconnection
dynamics of intersecting vortex surfaces; and the possibility of closed vortex surfaces.

Quantum vortices are fundamental topological excita-
tions of superfluids, which have been widely studied for
many years [1–7]. Unlike a lot of many-body phenom-
ena, vortices can be understood at the mean-field level
through the Gross Pitaevskii equation (GPE) [1]. A su-
perfluid vortex consists of a local density depletion within
the “vortex core”, around which the superfluid circulates.
In 2D and 3D superfluids, this vortex core forms a point
and a line respectively, as sketched in Fig 1. Vortices
have an associated energy cost, but can be stabilised by
rotation of the superfluid [2, 3], or equivalently by artifi-
cial magnetic fields [8–10].

While research has so far naturally focused on vor-
tices in 2D and 3D superfluids, there is growing inter-
est in simulating systems with four spatial dimensions.
This is thanks to experimental and theoretical investi-
gations of 4D physics in topological pumping [11–13],
high-dimensional parameter spaces [14–17] and electric
circuits with high connectivity [18–22], as well as propos-
als for engineering 4D systems using “synthetic dimen-
sions” [23, 24]. The latter, in particular, opens up the
prospect of being able to explore higher-dimensional su-
perfluids with artificial gauge fields. In this approach,
“synthetic dimensions” are built by coupling together
the internal states of cold atoms [25–35], photonic sys-
tems [24, 36–42] and other platforms [43–46]. Such de-
grees of freedom are then reinterpreted as lattice coordi-
nates in a new direction, increasing the e↵ective system
dimensionality, while providing straightforward ways to
realise artificial magnetic fields [47], and hence mimic ro-
tation in a higher-dimensional space.

The potential of synthetic dimensions for reaching 4D
with (for example) ultracold bosonic atoms [23, 33] mo-
tivates the question of how superfluid vortices behave
in higher dimensions. In this Letter, we explore this by
studying the 4D GPE equation under rotation, with local
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FIG. 1. (Colour online) Sketch of minimal vortex structures,
stabilised for di↵erent system dimensionalities (columns) and
types of rotation (rows). Here, “simple” and “double” indi-
cate rotations with one or two planes of rotation respectively,
as discussed in the text. In 2D and 3D, only simple rotations
exist, stabilising vortex cores as a point and line, respectively,
about which the superfluid rotates (black arrow). In 4D space
(shown as 3D cross-sections coloured according to w value),
both types of rotation exist, leading to a richer vortex phe-
nomenology. In 4D, equal-frequency double rotations can lead
to a new type of vortex configuration consisting of two vortex
planes intersecting at a point, while simple rotations stabilise
a single vortex plane. In these sketches, a vortex plane ap-
pears either as a line persisting for all w (lines of varying
colour), or as a plane for a particular w value (purple disc),
depending on the rotation plane. Note that in the 4D column
we have omitted the arrow indicating superfluid motion.

atom-atom interactions. The 4D GPE equation can be
justified physically as a description of low-temperature
interacting bosons in 4D [48–51]. It is also a minimal
model, which allows us explore the simplest examples of
4D vortices without complications that depend on how
the synthetic dimension is implemented [25–32, 35]. The
inclusion of more realistic experimental details, such as
lattices, anisotropies, and long-range interactions in the

FIG. 1. (Colour online) Sketch of minimal vortex structures,
stabilised for di↵erent system dimensionalities (columns) and
types of rotation (rows). Here, “simple” and “double” indi-
cate rotations with one or two planes of rotation respectively,
as discussed in the text. In 2D and 3D, only simple rotations
exist, stabilising vortex cores as a point and line, respectively,
about which the superfluid rotates (black arrow). In 4D space
(shown as 3D cross-sections coloured according to w value),
both types of rotation exist, leading to a richer vortex phe-
nomenology. In 4D, equal-frequency double rotations can lead
to a new type of vortex configuration consisting of two vortex
planes intersecting at a point, while simple rotations stabilise
a single vortex plane. In these sketches, a vortex plane ap-
pears either as a line persisting for all w (lines of varying
colour), or as a plane for a particular w value (purple disc),
depending on the rotation plane. Note that in the 4D column
we have omitted the arrow indicating superfluid motion.

with local atom-atom interactions. This is chosen as a
minimal model, which naturally extends a standard text-
book problem to 4D in order to establish basic aspects of
4D vortex physics. More realistic models for experiments
will depend on the specific synthetic-dimension imple-
mentation chosen, and are likely to include other e↵ects,
such as lattices and unusual interactions with respect to
the synthetic dimension, that will further enrich the pos-
sible vortex states, but will go beyond the current work.
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Quantum vortices in superfluids have been an important research area for many decades. Natu-
rally, research on this topic has focused on two and three-dimensional superfluids, in which vortex
cores form points and lines, respectively. Very recently, however, there has been growing interest
in the quantum simulation of systems with four spatial dimensions; this raises the question of how
vortices would behave in a higher-dimensional superfluid. In this paper, we begin to establish the
phenomenology of vortices in 4D superfluids under rotation, where the vortex core can form a plane.
In 4D, the most generic type of rotation is a “double rotation” with two angles (or frequencies).
We show, by solving the Gross-Pitaesvkii equation, that the simplest case of equal-frequency double
rotation can stabilise a pair of vortex planes intersecting at a point. This opens up a wide number
of future research topics, including into realistic experimental models; unequal-frequency double
rotations; the stability and potential reconnection dynamics of intersecting vortex surfaces; and the
possibility of closed vortex surfaces.

Quantum vortices are fundamental topological excita-
tions of superfluids, which have been widely studied for
many years [1–7]. Unlike a lot of many-body phenom-
ena, vortices can be understood at the mean-field level
through the Gross Pitaevskii equation (GPE) [1]. A su-
perfluid vortex consists of a local density depletion within
the “vortex core”, around which the superfluid circulates.
In 2D and 3D superfluids, this vortex core forms a point
and a line respectively, as sketched in Fig 1. Vortices
have an associated energy cost, but can be stabilised by
rotation of the superfluid [2, 3], or equivalently by artifi-
cial magnetic fields [8–10].

While research has so far naturally focused on vor-
tices in 2D and 3D superfluids, there is growing inter-
est in simulating systems with four spatial dimensions.
This is thanks to experimental and theoretical investi-
gations of 4D physics in topological pumping [11–13],
high-dimensional parameter spaces [14–17] and electric
circuits with high connectivity [18–22], as well as propos-
als for engineering 4D systems using “synthetic dimen-
sions” [23, 24]. The latter, in particular, opens up the
prospect of being able to explore higher-dimensional su-
perfluids with artificial gauge fields. In this approach,
“synthetic dimensions” are built by coupling together
the internal states of cold atoms [25–35], photonic sys-
tems [24, 36–42] and other platforms [43–46]. Such de-
grees of freedom are then reinterpreted as lattice coordi-
nates in a new direction, increasing the e↵ective system
dimensionality, while providing straightforward ways to
realise artificial magnetic fields [47], and hence mimic ro-
tation in a higher-dimensional space.

The potential of synthetic dimensions for reaching 4D
with (for example) ultracold bosonic atoms [23, 33] mo-
tivates the question of how superfluid vortices behave in
higher dimensions. In this paper, we take an initial step
in this direction by exploring the 4D GPE under rotation,
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Quantum vortices in superfluids have been an important research area for many decades. Natu-
rally, research on this topic has focused on two and three-dimensional superfluids, in which vortex
cores form points and lines, respectively. Very recently, however, there has been growing interest
in the quantum simulation of systems with four spatial dimensions; this raises the question of how
vortices would behave in a higher-dimensional superfluid. In this paper, we begin to establish the
phenomenology of vortices in 4D superfluids under rotation, where the vortex core can form a plane.
In 4D, the most generic type of rotation is a “double rotation” with two angles (or frequencies).
We show, by solving the Gross-Pitaesvkii equation, that the simplest case of equal-frequency double
rotation can stabilise a pair of vortex planes intersecting at a point. This opens up a wide number of
future research topics, including unequal-frequency double rotations; the stability and reconnection
dynamics of intersecting vortex surfaces; and the possibility of closed vortex surfaces.

Quantum vortices are fundamental topological excita-
tions of superfluids, which have been widely studied for
many years [1–7]. Unlike a lot of many-body phenom-
ena, vortices can be understood at the mean-field level
through the Gross Pitaevskii equation (GPE) [1]. A su-
perfluid vortex consists of a local density depletion within
the “vortex core”, around which the superfluid circulates.
In 2D and 3D superfluids, this vortex core forms a point
and a line respectively, as sketched in Fig 1. Vortices
have an associated energy cost, but can be stabilised by
rotation of the superfluid [2, 3], or equivalently by artifi-
cial magnetic fields [8–10].

While research has so far naturally focused on vor-
tices in 2D and 3D superfluids, there is growing inter-
est in simulating systems with four spatial dimensions.
This is thanks to experimental and theoretical investi-
gations of 4D physics in topological pumping [11–13],
high-dimensional parameter spaces [14–17] and electric
circuits with high connectivity [18–22], as well as propos-
als for engineering 4D systems using “synthetic dimen-
sions” [23, 24]. The latter, in particular, opens up the
prospect of being able to explore higher-dimensional su-
perfluids with artificial gauge fields. In this approach,
“synthetic dimensions” are built by coupling together
the internal states of cold atoms [25–35], photonic sys-
tems [24, 36–42] and other platforms [43–46]. Such de-
grees of freedom are then reinterpreted as lattice coordi-
nates in a new direction, increasing the e↵ective system
dimensionality, while providing straightforward ways to
realise artificial magnetic fields [47], and hence mimic ro-
tation in a higher-dimensional space.

The potential of synthetic dimensions for reaching 4D
with (for example) ultracold bosonic atoms [23, 33] mo-
tivates the question of how superfluid vortices behave
in higher dimensions. In this Letter, we explore this by
studying the 4D GPE equation under rotation, with local
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FIG. 1. (Colour online) Sketch of minimal vortex structures,
stabilised for di↵erent system dimensionalities (columns) and
types of rotation (rows). Here, “simple” and “double” indi-
cate rotations with one or two planes of rotation respectively,
as discussed in the text. In 2D and 3D, only simple rotations
exist, stabilising vortex cores as a point and line, respectively,
about which the superfluid rotates (black arrow). In 4D space
(shown as 3D cross-sections coloured according to w value),
both types of rotation exist, leading to a richer vortex phe-
nomenology. In 4D, equal-frequency double rotations can lead
to a new type of vortex configuration consisting of two vortex
planes intersecting at a point, while simple rotations stabilise
a single vortex plane. In these sketches, a vortex plane ap-
pears either as a line persisting for all w (lines of varying
colour), or as a plane for a particular w value (purple disc),
depending on the rotation plane. Note that in the 4D column
we have omitted the arrow indicating superfluid motion.

atom-atom interactions. The 4D GPE equation can be
justified physically as a description of low-temperature
interacting bosons in 4D [48–51]. It is also a minimal
model, which allows us explore the simplest examples of
4D vortices without complications that depend on how
the synthetic dimension is implemented [25–32, 35]. The
inclusion of more realistic experimental details, such as
lattices, anisotropies, and long-range interactions in the

FIG. 1. (Colour online) Sketch of minimal vortex structures,
stabilised for di↵erent system dimensionalities (columns) and
types of rotation (rows). Here, “simple” and “double” indi-
cate rotations with one or two planes of rotation respectively,
as discussed in the text. In 2D and 3D, only simple rotations
exist, stabilising vortex cores as a point and line, respectively,
about which the superfluid rotates (black arrow). In 4D space
(shown as 3D cross-sections coloured according to w value),
both types of rotation exist, leading to a richer vortex phe-
nomenology. In 4D, equal-frequency double rotations can lead
to a new type of vortex configuration consisting of two vortex
planes intersecting at a point, while simple rotations stabilise
a single vortex plane. In these sketches, a vortex plane ap-
pears either as a line persisting for all w (lines of varying
colour), or as a plane for a particular w value (purple disc),
depending on the rotation plane. Note that in the 4D column
we have omitted the arrow indicating superfluid motion.

with local atom-atom interactions. This is chosen as a
minimal model, which naturally extends a standard text-
book problem to 4D in order to establish basic aspects of
4D vortex physics. More realistic models for experiments
will depend on the specific synthetic-dimension imple-
mentation chosen, and are likely to include other e↵ects,
such as lattices and unusual interactions with respect to
the synthetic dimension, that will further enrich the pos-
sible vortex states, but will go beyond the current work.
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Quantum vortices in superfluids have been an important research area for many decades. Natu-
rally, research on this topic has focused on two and three-dimensional superfluids, in which vortex
cores form points and lines, respectively. Very recently, however, there has been growing interest
in the quantum simulation of systems with four spatial dimensions; this raises the question of how
vortices would behave in a higher-dimensional superfluid. In this paper, we begin to establish the
phenomenology of vortices in 4D superfluids under rotation, where the vortex core can form a plane.
In 4D, the most generic type of rotation is a “double rotation” with two angles (or frequencies).
We show, by solving the Gross-Pitaesvkii equation, that the simplest case of equal-frequency double
rotation can stabilise a pair of vortex planes intersecting at a point. This opens up a wide number
of future research topics, including into realistic experimental models; unequal-frequency double
rotations; the stability and potential reconnection dynamics of intersecting vortex surfaces; and the
possibility of closed vortex surfaces.

Quantum vortices are fundamental topological excita-
tions of superfluids, which have been widely studied for
many years [1–7]. Unlike a lot of many-body phenom-
ena, vortices can be understood at the mean-field level
through the Gross Pitaevskii equation (GPE) [1]. A su-
perfluid vortex consists of a local density depletion within
the “vortex core”, around which the superfluid circulates.
In 2D and 3D superfluids, this vortex core forms a point
and a line respectively, as sketched in Fig 1. Vortices
have an associated energy cost, but can be stabilised by
rotation of the superfluid [2, 3], or equivalently by artifi-
cial magnetic fields [8–10].

While research has so far naturally focused on vor-
tices in 2D and 3D superfluids, there is growing inter-
est in simulating systems with four spatial dimensions.
This is thanks to experimental and theoretical investi-
gations of 4D physics in topological pumping [11–13],
high-dimensional parameter spaces [14–17] and electric
circuits with high connectivity [18–22], as well as propos-
als for engineering 4D systems using “synthetic dimen-
sions” [23, 24]. The latter, in particular, opens up the
prospect of being able to explore higher-dimensional su-
perfluids with artificial gauge fields. In this approach,
“synthetic dimensions” are built by coupling together
the internal states of cold atoms [25–35], photonic sys-
tems [24, 36–42] and other platforms [43–46]. Such de-
grees of freedom are then reinterpreted as lattice coordi-
nates in a new direction, increasing the e↵ective system
dimensionality, while providing straightforward ways to
realise artificial magnetic fields [47], and hence mimic ro-
tation in a higher-dimensional space.

The potential of synthetic dimensions for reaching 4D
with (for example) ultracold bosonic atoms [23, 33] mo-
tivates the question of how superfluid vortices behave in
higher dimensions. In this paper, we take an initial step
in this direction by exploring the 4D GPE under rotation,
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Quantum vortices in superfluids have been an important research area for many decades. Natu-
rally, research on this topic has focused on two and three-dimensional superfluids, in which vortex
cores form points and lines, respectively. Very recently, however, there has been growing interest
in the quantum simulation of systems with four spatial dimensions; this raises the question of how
vortices would behave in a higher-dimensional superfluid. In this paper, we begin to establish the
phenomenology of vortices in 4D superfluids under rotation, where the vortex core can form a plane.
In 4D, the most generic type of rotation is a “double rotation” with two angles (or frequencies).
We show, by solving the Gross-Pitaesvkii equation, that the simplest case of equal-frequency double
rotation can stabilise a pair of vortex planes intersecting at a point. This opens up a wide number of
future research topics, including unequal-frequency double rotations; the stability and reconnection
dynamics of intersecting vortex surfaces; and the possibility of closed vortex surfaces.

Quantum vortices are fundamental topological excita-
tions of superfluids, which have been widely studied for
many years [1–7]. Unlike a lot of many-body phenom-
ena, vortices can be understood at the mean-field level
through the Gross Pitaevskii equation (GPE) [1]. A su-
perfluid vortex consists of a local density depletion within
the “vortex core”, around which the superfluid circulates.
In 2D and 3D superfluids, this vortex core forms a point
and a line respectively, as sketched in Fig 1. Vortices
have an associated energy cost, but can be stabilised by
rotation of the superfluid [2, 3], or equivalently by artifi-
cial magnetic fields [8–10].

While research has so far naturally focused on vor-
tices in 2D and 3D superfluids, there is growing inter-
est in simulating systems with four spatial dimensions.
This is thanks to experimental and theoretical investi-
gations of 4D physics in topological pumping [11–13],
high-dimensional parameter spaces [14–17] and electric
circuits with high connectivity [18–22], as well as propos-
als for engineering 4D systems using “synthetic dimen-
sions” [23, 24]. The latter, in particular, opens up the
prospect of being able to explore higher-dimensional su-
perfluids with artificial gauge fields. In this approach,
“synthetic dimensions” are built by coupling together
the internal states of cold atoms [25–35], photonic sys-
tems [24, 36–42] and other platforms [43–46]. Such de-
grees of freedom are then reinterpreted as lattice coordi-
nates in a new direction, increasing the e↵ective system
dimensionality, while providing straightforward ways to
realise artificial magnetic fields [47], and hence mimic ro-
tation in a higher-dimensional space.

The potential of synthetic dimensions for reaching 4D
with (for example) ultracold bosonic atoms [23, 33] mo-
tivates the question of how superfluid vortices behave
in higher dimensions. In this Letter, we explore this by
studying the 4D GPE equation under rotation, with local
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FIG. 1. (Colour online) Sketch of minimal vortex structures,
stabilised for di↵erent system dimensionalities (columns) and
types of rotation (rows). Here, “simple” and “double” indi-
cate rotations with one or two planes of rotation respectively,
as discussed in the text. In 2D and 3D, only simple rotations
exist, stabilising vortex cores as a point and line, respectively,
about which the superfluid rotates (black arrow). In 4D space
(shown as 3D cross-sections coloured according to w value),
both types of rotation exist, leading to a richer vortex phe-
nomenology. In 4D, equal-frequency double rotations can lead
to a new type of vortex configuration consisting of two vortex
planes intersecting at a point, while simple rotations stabilise
a single vortex plane. In these sketches, a vortex plane ap-
pears either as a line persisting for all w (lines of varying
colour), or as a plane for a particular w value (purple disc),
depending on the rotation plane. Note that in the 4D column
we have omitted the arrow indicating superfluid motion.

atom-atom interactions. The 4D GPE equation can be
justified physically as a description of low-temperature
interacting bosons in 4D [48–51]. It is also a minimal
model, which allows us explore the simplest examples of
4D vortices without complications that depend on how
the synthetic dimension is implemented [25–32, 35]. The
inclusion of more realistic experimental details, such as
lattices, anisotropies, and long-range interactions in the

FIG. 1. (Colour online) Sketch of minimal vortex structures,
stabilised for di↵erent system dimensionalities (columns) and
types of rotation (rows). Here, “simple” and “double” indi-
cate rotations with one or two planes of rotation respectively,
as discussed in the text. In 2D and 3D, only simple rotations
exist, stabilising vortex cores as a point and line, respectively,
about which the superfluid rotates (black arrow). In 4D space
(shown as 3D cross-sections coloured according to w value),
both types of rotation exist, leading to a richer vortex phe-
nomenology. In 4D, equal-frequency double rotations can lead
to a new type of vortex configuration consisting of two vortex
planes intersecting at a point, while simple rotations stabilise
a single vortex plane. In these sketches, a vortex plane ap-
pears either as a line persisting for all w (lines of varying
colour), or as a plane for a particular w value (purple disc),
depending on the rotation plane. Note that in the 4D column
we have omitted the arrow indicating superfluid motion.

with local atom-atom interactions. This is chosen as a
minimal model, which naturally extends a standard text-
book problem to 4D in order to establish basic aspects of
4D vortex physics. More realistic models for experiments
will depend on the specific synthetic-dimension imple-
mentation chosen, and are likely to include other e↵ects,
such as lattices and unusual interactions with respect to
the synthetic dimension, that will further enrich the pos-
sible vortex states, but will go beyond the current work.
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Quantum vortices in superfluids have been an important research area for many decades. Natu-
rally, research on this topic has focused on two and three-dimensional superfluids, in which vortex
cores form points and lines, respectively. Very recently, however, there has been growing interest
in the quantum simulation of systems with four spatial dimensions; this raises the question of how
vortices would behave in a higher-dimensional superfluid. In this paper, we begin to establish the
phenomenology of vortices in 4D superfluids under rotation, where the vortex core can form a plane.
In 4D, the most generic type of rotation is a “double rotation” with two angles (or frequencies).
We show, by solving the Gross-Pitaesvkii equation, that the simplest case of equal-frequency double
rotation can stabilise a pair of vortex planes intersecting at a point. This opens up a wide number of
future research topics, including unequal-frequency double rotations; the stability and reconnection
dynamics of intersecting vortex surfaces; and the possibility of closed vortex surfaces.

Quantum vortices are fundamental topological excita-
tions of superfluids, which have been widely studied for
many years [1–7]. Unlike a lot of many-body phenom-
ena, vortices can be understood at the mean-field level
through the Gross Pitaevskii equation (GPE) [1]. A su-
perfluid vortex consists of a local density depletion within
the “vortex core”, around which the superfluid circulates.
In 2D and 3D superfluids, this vortex core forms a point
and a line respectively, as sketched in Fig 1. Vortices
have an associated energy cost, but can be stabilised by
rotation of the superfluid [2, 3], or equivalently by artifi-
cial magnetic fields [8–10].

While research has so far naturally focused on vor-
tices in 2D and 3D superfluids, there is growing inter-
est in simulating systems with four spatial dimensions.
This is thanks to experimental and theoretical investi-
gations of 4D physics in topological pumping [11–13],
high-dimensional parameter spaces [14–17] and electric
circuits with high connectivity [18–22], as well as propos-
als for engineering 4D systems using “synthetic dimen-
sions” [23, 24]. The latter, in particular, opens up the
prospect of being able to explore higher-dimensional su-
perfluids with artificial gauge fields. In this approach,
“synthetic dimensions” are built by coupling together
the internal states of cold atoms [25–35], photonic sys-
tems [24, 36–42] and other platforms [43–46]. Such de-
grees of freedom are then reinterpreted as lattice coordi-
nates in a new direction, increasing the e↵ective system
dimensionality, while providing straightforward ways to
realise artificial magnetic fields [47], and hence mimic ro-
tation in a higher-dimensional space.

The potential of synthetic dimensions for reaching 4D
with (for example) ultracold bosonic atoms [23, 33] mo-
tivates the question of how superfluid vortices behave
in higher dimensions. In this Letter, we explore this by
studying the 4D GPE equation under rotation, with local
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FIG. 1. (Colour online) Sketch of minimal vortex structures,
stabilised for di↵erent system dimensionalities (columns) and
types of rotation (rows). Here, “simple” and “double” indi-
cate rotations with one or two planes of rotation respectively,
as discussed in the text. In 2D and 3D, only simple rotations
exist, stabilising vortex cores as a point and line, respectively,
about which the superfluid rotates (black arrow). In 4D space
(shown as 3D cross-sections coloured according to w value),
both types of rotation exist, leading to a richer vortex phe-
nomenology. In 4D, equal-frequency double rotations can lead
to a new type of vortex configuration consisting of two vortex
planes intersecting at a point, while simple rotations stabilise
a single vortex plane. In these sketches, a vortex plane ap-
pears either as a line persisting for all w (lines of varying
colour), or as a plane for a particular w value (purple disc),
depending on the rotation plane. Note that in the 4D column
we have omitted the arrow indicating superfluid motion.

atom-atom interactions. The 4D GPE equation can be
justified physically as a description of low-temperature
interacting bosons in 4D [48–51]. It is also a minimal
model, which allows us explore the simplest examples of
4D vortices without complications that depend on how
the synthetic dimension is implemented [25–32, 35]. The
inclusion of more realistic experimental details, such as
lattices, anisotropies, and long-range interactions in the
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Quantum vortices in superfluids have been an important research area for many decades. Natu-
rally, research on this topic has focused on two and three-dimensional superfluids, in which vortex
cores form points and lines, respectively. Very recently, however, there has been growing interest
in the quantum simulation of systems with four spatial dimensions; this raises the question of how
vortices would behave in a higher-dimensional superfluid. In this paper, we begin to establish the
phenomenology of vortices in 4D superfluids under rotation, where the vortex core can form a plane.
In 4D, the most generic type of rotation is a “double rotation” with two angles (or frequencies).
We show, by solving the Gross-Pitaesvkii equation, that the simplest case of equal-frequency double
rotation can stabilise a pair of vortex planes intersecting at a point. This opens up a wide number of
future research topics, including unequal-frequency double rotations; the stability and reconnection
dynamics of intersecting vortex surfaces; and the possibility of closed vortex surfaces.

Quantum vortices are fundamental topological excita-
tions of superfluids, which have been widely studied for
many years [1–7]. Unlike a lot of many-body phenom-
ena, vortices can be understood at the mean-field level
through the Gross Pitaevskii equation (GPE) [1]. A su-
perfluid vortex consists of a local density depletion within
the “vortex core”, around which the superfluid circulates.
In 2D and 3D superfluids, this vortex core forms a point
and a line respectively, as sketched in Fig 1. Vortices
have an associated energy cost, but can be stabilised by
rotation of the superfluid [2, 3], or equivalently by artifi-
cial magnetic fields [8–10].

While research has so far naturally focused on vor-
tices in 2D and 3D superfluids, there is growing inter-
est in simulating systems with four spatial dimensions.
This is thanks to experimental and theoretical investi-
gations of 4D physics in topological pumping [11–13],
high-dimensional parameter spaces [14–17] and electric
circuits with high connectivity [18–22], as well as propos-
als for engineering 4D systems using “synthetic dimen-
sions” [23, 24]. The latter, in particular, opens up the
prospect of being able to explore higher-dimensional su-
perfluids with artificial gauge fields. In this approach,
“synthetic dimensions” are built by coupling together
the internal states of cold atoms [25–35], photonic sys-
tems [24, 36–42] and other platforms [43–46]. Such de-
grees of freedom are then reinterpreted as lattice coordi-
nates in a new direction, increasing the e↵ective system
dimensionality, while providing straightforward ways to
realise artificial magnetic fields [47], and hence mimic ro-
tation in a higher-dimensional space.

The potential of synthetic dimensions for reaching 4D
with (for example) ultracold bosonic atoms [23, 33] mo-
tivates the question of how superfluid vortices behave
in higher dimensions. In this Letter, we explore this by
studying the 4D GPE equation under rotation, with local
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FIG. 1. (Colour online) Sketch of minimal vortex structures,
stabilised for di↵erent system dimensionalities (columns) and
types of rotation (rows). Here, “simple” and “double” indi-
cate rotations with one or two planes of rotation respectively,
as discussed in the text. In 2D and 3D, only simple rotations
exist, stabilising vortex cores as a point and line, respectively,
about which the superfluid rotates (black arrow). In 4D space
(shown as 3D cross-sections coloured according to w value),
both types of rotation exist, leading to a richer vortex phe-
nomenology. In 4D, equal-frequency double rotations can lead
to a new type of vortex configuration consisting of two vortex
planes intersecting at a point, while simple rotations stabilise
a single vortex plane. In these sketches, a vortex plane ap-
pears either as a line persisting for all w (lines of varying
colour), or as a plane for a particular w value (purple disc),
depending on the rotation plane. Note that in the 4D column
we have omitted the arrow indicating superfluid motion.

atom-atom interactions. The 4D GPE equation can be
justified physically as a description of low-temperature
interacting bosons in 4D [48–51]. It is also a minimal
model, which allows us explore the simplest examples of
4D vortices without complications that depend on how
the synthetic dimension is implemented [25–32, 35]. The
inclusion of more realistic experimental details, such as
lattices, anisotropies, and long-range interactions in the

Expect that core is entire z-w plane

!xy 6= 0,!zw = 0

4

as sketched in Fig 1. The corresponding order parameter
profile is  = fk(r1)eik✓1 , where (r1, ✓1) are plane polar
coordinates in the plane of rotation, and fk(r) is the so-
lution of Eq (4). As this is independent of the other two
coordinates, the vortex core becomes a plane; this is di-
rectly analogous to the extension of a point vortex in 2D
into a line in 3D. We have verified this result numerically,
as shown in Appendix B.1. This can be understood as the
natural extension of vortices into 4D, as the extra dimen-
sion plays no role, and the vortex plane is homotopically
characterised by a Z topological winding number, as in
2D and 3D. For a more detailed discussion of homotopy
classification of vortex planes in 4D, see Appendix C.

In contrast we expect that double rotation, being an in-
trinsically 4D (or higher) phenomenon, will lead to more
interesting vortex configurations. To address this prob-
lem, we look for the ground states of the 4D GPE in a
doubly rotating frame


� ~2
2m

r2 + g| |2 � ⌦1L1 � ⌦2L2

�
 = µ , (9)

where ⌦j and Lj are the rotation frequency and angu-
lar momentum operator in plane j. In Cartesian co-
ordinates (x, y, z, w), L1 = �i~(x@y � y@x), and L2 =
�i~(z@w � w@z). For simplicity we will adopt double
polar coordinates (r1, ✓1, r2, ✓2), defined by

(x, y, z, w) = (r1 cos ✓1, r1 sin ✓1, r2 cos ✓2, r2 sin ✓2),

such that Lj = �i~@✓j . The simple rotation case dis-
cussed before corresponds to ⌦2 = 0, where the vortex
core spans plane 2. In this paper we focus on equal-
frequency doubly rotating superfluids, that is ⌦ ⌘ ⌦1 =
⌦2.

The fact that L1 and L2 generate a double rotation
means that they commute. We may look for a solution
which is a simultaneous eigenstate of both angular mo-
mentum operators; therefore we propose an ansatz for
the ground state under rotation of the form

 (r) = f(r1, r2)e
ik1✓1+ik2✓2 , (10)

where f(r1, r2) is real and the kj are integer phase wind-
ing numbers in each rotation plane. This phase profile
corresponds to the superfluid circulating in both planes
simultaneously, about both vortex cores. We have sup-
pressed the dependence of f on each kj for brevity, and in
all numerical results both winding numbers are one. This
state exhibits a phase singularity when either rj = 0, so
we require f(0, r2) = f(r1, 0) = 0 from the same rea-
soning as in 2D and 3D. In other words, this describes
a pair of completely orthogonal vortex planes that inter-
sect at a single point as illustrated in Fig 1, and which
are characterised by Z⇥ Z topological winding numbers
(see Appendix C). Intersection of two planes at a point is
only possible in 4D or higher and, in fact, is the generic
case in 4D. This is in contrast with 3D, where the in-
tersection of lines is a special case, and so vortex lines
intersect and reconnect at specific times [55–58].

To examine our ansatz, we now proceed to numerically
solve for the density profile, under this phase constraint.
Substituting the ansatz [Eq (10)] into the GPE [Eq (1)]
in 4D, and de-dimensionalising in the same way as in the
2D case, we obtain the following equation for f(r1, r2)

� 1

2

✓
�r1 �

k
2
1

r21

+�r2 �
k
2
2

r22

◆
f + f

3 � f = 0, (11)

where �rj = @
2
/@r

2
j + (1/rj)@/@rj . Since each vortex

produces only a local density depletion, we expect that
f(r1, r2) ⇠ fk2(r2) as r1 ! 1 and equally for (1 $ 2),
where fk(r) is the point vortex solution of Eq (4). Note
that this limiting “boundary condition” can be satisfied
by a product, fk1(r1)fk2(r2), of 2D density profiles in
each plane. However, this form fails to solve the full
equation due to the non-linear f

3 term. This product
form therefore gives a natural approximation to compare
to, and we expect it it to fail significantly only in the
vicinity of the origin, where both fkj (rj) di↵er apprecia-
bly from unity.
To verify this, and find the full density profile, we have

solved Eq (11) by imaginary time evolution within a dis-
cretised grid in (r1, r2) space with hard-wall boundary
conditions at a radius R = 100⇠ in each plane (rj = R),
and at the origin in each plane (rj = 0). The latter con-
dition is required due to the centrifugal term diverging
at the vortex cores; consequently the precise location of
the vortex cores was an assumption in these calculations.
We used a forward Euler time-discretization and second
order finite di↵erences in space. We chose a large value
of R compared to ⇠ so that we could examine the vortex
cores within a homogeneous region. (Future studies could
include the e↵ect of additional trapping potentials, such
as harmonic traps along some or all directions.) We were
able to achieve a resolution of 0.05⇠, and the calculations
were converged until the relative change in chemical po-
tential and particle number over one timestep converged
below 10�14.
The results for k1 = k2 = 1 are shown in Fig 2(a),

where we observe the expected local density depletion
around the vortex cores when either r1 = 0 or r2 = 0.
We also compare our numerical solution with the product
approximation, f1(r1)f2(r2), in Fig 2(b); we observe that
the product approximation is very accurate except within
a distance of roughly & ⇠ from the intersection point,
as expected. Immediately around the intersection, the
product approximation fails, overestimating the density
by a factor of about 4/3.
Just as in the 2D case we can use our calculation of

the density profile to find the energy of this vortex con-
figuration relative to the state with no vortices. Defining
independent radii Rj in each plane, such that rj  Rj ,
we find numerically (see Appendix B.4) that the energy
is approximately given as

Ek1,k2(R1, R2) = Ek1(R1) + Ek2(R2), (12)

where Ek(R) is the single-vortex energy given in Eq (5).
This can be understood from the superfluid kinetic en-

For
 NB this is a “simple rotation”:
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II. SIMPLE AND DOUBLE ROTATIONS

Given the intrinsic link between rotation and vortices,
we will now discuss the di↵erent types of rotations possi-
ble in 4D, as compared to lower dimensions, in prepara-
tion for our discussion of vortices in 4D superfluids below.

In three dimensions or fewer, every rotation is “sim-
ple”; this means that the rotation is specified by a ro-
tation angle ↵ 2 (�⇡,⇡], and a plane of rotation which
is unique up to translation. Under rotation, the points
on the plane of rotation remain on the plane, but are
displaced through the angle ↵. Generalising to D dimen-
sional space, simple rotations have D � 2 eigenvectors
with eigenvalue one, all of which are orthogonal to ev-
ery vector in the rotation plane. For example, a rotation
about the z axis in 3D has the xy plane (defined by z = 0)
as its rotation plane, and fixes any point along the z axis.
We may write this as a matrix in the standard basis as

0

@
cos↵ � sin↵ 0
sin↵ cos↵ 0
0 0 1

1

A . (6)

We can think of this as a rotation of 2D space (spanned by
x and y) extended into a third (z) direction. Similarly,
simple rotations in 4D can be thought of as rotations
of 3D space extended into a fourth direction. Labelling
the fourth axis as w, our previous example becomes a
rotation about the zw plane (defined by x = y = 0),
given in matrix form by

✓
R(↵) 0
0 I

◆
, where R(↵) =

✓
cos↵ � sin↵
sin↵ cos↵

◆
, (7)

and I is the 2D identity. Note that there are six Cartesian
coordinate planes in 4D, so the rotation group SO(4) has
six generators, and the representation of these generators
(which physically describe angular momentum) as spatial
vectors no longer works in 4D as it does in 3D. The set of
fixed points of a simple rotation in 4D are a plane, not a
line, and this fixed plane is completely orthogonal to the
plane of rotation, by which we mean that every vector in
one plane is orthogonal to every vector in the other.

In contrast to 2D and 3D, in four dimensions, we can
also have “double rotations”, which generically have only
one fixed point, and two completely orthogonal planes of
rotation each with a corresponding rotation angle [51].
To visualise this, consider a double rotation in the xy

and zw planes represented by the matrix [53]

✓
R(↵) 0
0 R(�)

◆
, (8)

for angles ↵,� 2 (�⇡,⇡]. For those familiar with certain
4D quantum Hall models, this is analogous to generat-
ing a second Chern number by applying magnetic fields
in two completely orthogonal planes [12, 13, 23, 24, 54].
Double rotations are in fact the generic case of rotations
in 4D, as if either ↵ or � = 0, the rotation reduces to

(a) (b)

FIG. 2. (Colour online) (a) Numerical solution of Eq (11) for
f(r1, r2), with k1 = k2 = 1, showing the density profile for
an intersecting pair of vortex planes in 4D, as a function of
the two polar radii. (b) The ratio of the solution in (a) to
the product approximation f1(r1)f1(r2), where fj(rj) is the
well-known 2D vortex profile governed by Eq 4. This shows
that the product approximation works well away from the
intersection as expected, but fails in a small region around
r1 = r2 = 0. Numerical parameters and details are given in
the main text.

the special case of simple rotation discussed above [51].
From here on we will refer to the two planes of rotation
as planes 1 and 2 respectively and focus only on so-called
“isoclinic” double rotations for which ↵ = �.
Before continuing, it is worth noting that isoclinic ro-

tations have an additional symmetry. To see this, we
remember that, as introduced above, generic double ro-
tations have one fixed point and two planes of rotation,
with corresponding angles ↵,� 2 (�⇡,⇡]. Vectors in R4

which do not lie in these rotation planes are displaced
through an angle between ↵ and � [51]. However, if
↵ = �, then this means that every vector is displaced by
the same angle. As a consequence, for a given isoclinic ro-
tation there is a continuum of pairs of completely orthog-
onal planes that can each be though of as the two planes
of rotation. In other words, isoclinic rotations therefore
no longer have two unique planes of rotation, although
they still have a single fixed point. However, numerically
we break this degeneracy since the phase winding of our
initial state picks out the xy and zw planes in particular.
We can also anticipate that a more experimental model
would likely break this symmetry too, e.g. through the
inclusion of lattices or through inherent di↵erences be-
tween real and “synthetic” spatial dimensions.

III. VORTEX PLANES IN 4D

Now that we have discussed some of the geometry of
rotations in 4D we are ready to study the associated vor-
tex physics. As above, we consider a superfluid described
by the GPE in the absence of external potentials, but now
with atoms free to move in four spatial dimensions.
The simplest case to consider is that of a 4D superfluid

under a constant simple rotation. As shown in Eq (7), a
simple rotation can be viewed as a 3D rotation extended
into a fourth dimension, hence stabilising a vortex plane,

 ! fk1(r1)e
ik1✓1
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Superfluid Vortices in Four Spatial Dimensions

Ben McCanna⇤ and Hannah M. Price
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Quantum vortices in superfluids have been an important research area for many decades. Natu-
rally, research on this topic has focused on two and three-dimensional superfluids, in which vortex
cores form points and lines, respectively. Very recently, however, there has been growing interest
in the quantum simulation of systems with four spatial dimensions; this raises the question of how
vortices would behave in a higher-dimensional superfluid. In this paper, we begin to establish the
phenomenology of vortices in 4D superfluids under rotation, where the vortex core can form a plane.
In 4D, the most generic type of rotation is a “double rotation” with two angles (or frequencies).
We show, by solving the Gross-Pitaesvkii equation, that the simplest case of equal-frequency double
rotation can stabilise a pair of vortex planes intersecting at a point. This opens up a wide number of
future research topics, including unequal-frequency double rotations; the stability and reconnection
dynamics of intersecting vortex surfaces; and the possibility of closed vortex surfaces.

Quantum vortices are fundamental topological excita-
tions of superfluids, which have been widely studied for
many years [1–7]. Unlike a lot of many-body phenom-
ena, vortices can be understood at the mean-field level
through the Gross Pitaevskii equation (GPE) [1]. A su-
perfluid vortex consists of a local density depletion within
the “vortex core”, around which the superfluid circulates.
In 2D and 3D superfluids, this vortex core forms a point
and a line respectively, as sketched in Fig 1. Vortices
have an associated energy cost, but can be stabilised by
rotation of the superfluid [2, 3], or equivalently by artifi-
cial magnetic fields [8–10].

While research has so far naturally focused on vor-
tices in 2D and 3D superfluids, there is growing inter-
est in simulating systems with four spatial dimensions.
This is thanks to experimental and theoretical investi-
gations of 4D physics in topological pumping [11–13],
high-dimensional parameter spaces [14–17] and electric
circuits with high connectivity [18–22], as well as propos-
als for engineering 4D systems using “synthetic dimen-
sions” [23, 24]. The latter, in particular, opens up the
prospect of being able to explore higher-dimensional su-
perfluids with artificial gauge fields. In this approach,
“synthetic dimensions” are built by coupling together
the internal states of cold atoms [25–35], photonic sys-
tems [24, 36–42] and other platforms [43–46]. Such de-
grees of freedom are then reinterpreted as lattice coordi-
nates in a new direction, increasing the e↵ective system
dimensionality, while providing straightforward ways to
realise artificial magnetic fields [47], and hence mimic ro-
tation in a higher-dimensional space.

The potential of synthetic dimensions for reaching 4D
with (for example) ultracold bosonic atoms [23, 33] mo-
tivates the question of how superfluid vortices behave
in higher dimensions. In this Letter, we explore this by
studying the 4D GPE equation under rotation, with local
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FIG. 1. (Colour online) Sketch of minimal vortex structures,
stabilised for di↵erent system dimensionalities (columns) and
types of rotation (rows). Here, “simple” and “double” indi-
cate rotations with one or two planes of rotation respectively,
as discussed in the text. In 2D and 3D, only simple rotations
exist, stabilising vortex cores as a point and line, respectively,
about which the superfluid rotates (black arrow). In 4D space
(shown as 3D cross-sections coloured according to w value),
both types of rotation exist, leading to a richer vortex phe-
nomenology. In 4D, equal-frequency double rotations can lead
to a new type of vortex configuration consisting of two vortex
planes intersecting at a point, while simple rotations stabilise
a single vortex plane. In these sketches, a vortex plane ap-
pears either as a line persisting for all w (lines of varying
colour), or as a plane for a particular w value (purple disc),
depending on the rotation plane. Note that in the 4D column
we have omitted the arrow indicating superfluid motion.

atom-atom interactions. The 4D GPE equation can be
justified physically as a description of low-temperature
interacting bosons in 4D [48–51]. It is also a minimal
model, which allows us explore the simplest examples of
4D vortices without complications that depend on how
the synthetic dimension is implemented [25–32, 35]. The
inclusion of more realistic experimental details, such as
lattices, anisotropies, and long-range interactions in the

remember 
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 NB this is a “double rotation”:

3

II. SIMPLE AND DOUBLE ROTATIONS

Given the intrinsic link between rotation and vortices,
we will now discuss the di↵erent types of rotations possi-
ble in 4D, as compared to lower dimensions, in prepara-
tion for our discussion of vortices in 4D superfluids below.

In three dimensions or fewer, every rotation is “sim-
ple”; this means that the rotation is specified by a ro-
tation angle ↵ 2 (�⇡,⇡], and a plane of rotation which
is unique up to translation. Under rotation, the points
on the plane of rotation remain on the plane, but are
displaced through the angle ↵. Generalising to D dimen-
sional space, simple rotations have D � 2 eigenvectors
with eigenvalue one, all of which are orthogonal to ev-
ery vector in the rotation plane. For example, a rotation
about the z axis in 3D has the xy plane (defined by z = 0)
as its rotation plane, and fixes any point along the z axis.
We may write this as a matrix in the standard basis as

0

@
cos↵ � sin↵ 0
sin↵ cos↵ 0
0 0 1

1

A . (6)

We can think of this as a rotation of 2D space (spanned by
x and y) extended into a third (z) direction. Similarly,
simple rotations in 4D can be thought of as rotations
of 3D space extended into a fourth direction. Labelling
the fourth axis as w, our previous example becomes a
rotation about the zw plane (defined by x = y = 0),
given in matrix form by

✓
R(↵) 0
0 I

◆
, where R(↵) =

✓
cos↵ � sin↵
sin↵ cos↵

◆
, (7)

and I is the 2D identity. Note that there are six Cartesian
coordinate planes in 4D, so the rotation group SO(4) has
six generators, and the representation of these generators
(which physically describe angular momentum) as spatial
vectors no longer works in 4D as it does in 3D. The set of
fixed points of a simple rotation in 4D are a plane, not a
line, and this fixed plane is completely orthogonal to the
plane of rotation, by which we mean that every vector in
one plane is orthogonal to every vector in the other.

In contrast to 2D and 3D, in four dimensions, we can
also have “double rotations”, which generically have only
one fixed point, and two completely orthogonal planes of
rotation each with a corresponding rotation angle [51].
To visualise this, consider a double rotation in the xy

and zw planes represented by the matrix [53]

✓
R(↵) 0
0 R(�)

◆
, (8)

for angles ↵,� 2 (�⇡,⇡]. For those familiar with certain
4D quantum Hall models, this is analogous to generat-
ing a second Chern number by applying magnetic fields
in two completely orthogonal planes [12, 13, 23, 24, 54].
Double rotations are in fact the generic case of rotations
in 4D, as if either ↵ or � = 0, the rotation reduces to

(a) (b)

FIG. 2. (Colour online) (a) Numerical solution of Eq (11) for
f(r1, r2), with k1 = k2 = 1, showing the density profile for
an intersecting pair of vortex planes in 4D, as a function of
the two polar radii. (b) The ratio of the solution in (a) to
the product approximation f1(r1)f1(r2), where fj(rj) is the
well-known 2D vortex profile governed by Eq 4. This shows
that the product approximation works well away from the
intersection as expected, but fails in a small region around
r1 = r2 = 0. Numerical parameters and details are given in
the main text.

the special case of simple rotation discussed above [51].
From here on we will refer to the two planes of rotation
as planes 1 and 2 respectively and focus only on so-called
“isoclinic” double rotations for which ↵ = �.
Before continuing, it is worth noting that isoclinic ro-

tations have an additional symmetry. To see this, we
remember that, as introduced above, generic double ro-
tations have one fixed point and two planes of rotation,
with corresponding angles ↵,� 2 (�⇡,⇡]. Vectors in R4

which do not lie in these rotation planes are displaced
through an angle between ↵ and � [51]. However, if
↵ = �, then this means that every vector is displaced by
the same angle. As a consequence, for a given isoclinic ro-
tation there is a continuum of pairs of completely orthog-
onal planes that can each be though of as the two planes
of rotation. In other words, isoclinic rotations therefore
no longer have two unique planes of rotation, although
they still have a single fixed point. However, numerically
we break this degeneracy since the phase winding of our
initial state picks out the xy and zw planes in particular.
We can also anticipate that a more experimental model
would likely break this symmetry too, e.g. through the
inclusion of lattices or through inherent di↵erences be-
tween real and “synthetic” spatial dimensions.

III. VORTEX PLANES IN 4D

Now that we have discussed some of the geometry of
rotations in 4D we are ready to study the associated vor-
tex physics. As above, we consider a superfluid described
by the GPE in the absence of external potentials, but now
with atoms free to move in four spatial dimensions.
The simplest case to consider is that of a 4D superfluid

under a constant simple rotation. As shown in Eq (7), a
simple rotation can be viewed as a 3D rotation extended
into a fourth dimension, hence stabilising a vortex plane,

✓
R(↵) 0
0 R(↵)

◆

(i.e. like 4D Landau levels)

Superfluid Vortices in Four Spatial Dimensions
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Quantum vortices in superfluids have been an important research area for many decades. Natu-
rally, research on this topic has focused on two and three-dimensional superfluids, in which vortex
cores form points and lines, respectively. Very recently, however, there has been growing interest
in the quantum simulation of systems with four spatial dimensions; this raises the question of how
vortices would behave in a higher-dimensional superfluid. In this paper, we begin to establish the
phenomenology of vortices in 4D superfluids under rotation, where the vortex core can form a plane.
In 4D, the most generic type of rotation is a “double rotation” with two angles (or frequencies).
We show, by solving the Gross-Pitaesvkii equation, that the simplest case of equal-frequency double
rotation can stabilise a pair of vortex planes intersecting at a point. This opens up a wide number of
future research topics, including unequal-frequency double rotations; the stability and reconnection
dynamics of intersecting vortex surfaces; and the possibility of closed vortex surfaces.

Quantum vortices are fundamental topological excita-
tions of superfluids, which have been widely studied for
many years [1–7]. Unlike a lot of many-body phenom-
ena, vortices can be understood at the mean-field level
through the Gross Pitaevskii equation (GPE) [1]. A su-
perfluid vortex consists of a local density depletion within
the “vortex core”, around which the superfluid circulates.
In 2D and 3D superfluids, this vortex core forms a point
and a line respectively, as sketched in Fig 1. Vortices
have an associated energy cost, but can be stabilised by
rotation of the superfluid [2, 3], or equivalently by artifi-
cial magnetic fields [8–10].

While research has so far naturally focused on vor-
tices in 2D and 3D superfluids, there is growing inter-
est in simulating systems with four spatial dimensions.
This is thanks to experimental and theoretical investi-
gations of 4D physics in topological pumping [11–13],
high-dimensional parameter spaces [14–17] and electric
circuits with high connectivity [18–22], as well as propos-
als for engineering 4D systems using “synthetic dimen-
sions” [23, 24]. The latter, in particular, opens up the
prospect of being able to explore higher-dimensional su-
perfluids with artificial gauge fields. In this approach,
“synthetic dimensions” are built by coupling together
the internal states of cold atoms [25–35], photonic sys-
tems [24, 36–42] and other platforms [43–46]. Such de-
grees of freedom are then reinterpreted as lattice coordi-
nates in a new direction, increasing the e↵ective system
dimensionality, while providing straightforward ways to
realise artificial magnetic fields [47], and hence mimic ro-
tation in a higher-dimensional space.

The potential of synthetic dimensions for reaching 4D
with (for example) ultracold bosonic atoms [23, 33] mo-
tivates the question of how superfluid vortices behave
in higher dimensions. In this Letter, we explore this by
studying the 4D GPE equation under rotation, with local
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FIG. 1. (Colour online) Sketch of minimal vortex structures,
stabilised for di↵erent system dimensionalities (columns) and
types of rotation (rows). Here, “simple” and “double” indi-
cate rotations with one or two planes of rotation respectively,
as discussed in the text. In 2D and 3D, only simple rotations
exist, stabilising vortex cores as a point and line, respectively,
about which the superfluid rotates (black arrow). In 4D space
(shown as 3D cross-sections coloured according to w value),
both types of rotation exist, leading to a richer vortex phe-
nomenology. In 4D, equal-frequency double rotations can lead
to a new type of vortex configuration consisting of two vortex
planes intersecting at a point, while simple rotations stabilise
a single vortex plane. In these sketches, a vortex plane ap-
pears either as a line persisting for all w (lines of varying
colour), or as a plane for a particular w value (purple disc),
depending on the rotation plane. Note that in the 4D column
we have omitted the arrow indicating superfluid motion.

atom-atom interactions. The 4D GPE equation can be
justified physically as a description of low-temperature
interacting bosons in 4D [48–51]. It is also a minimal
model, which allows us explore the simplest examples of
4D vortices without complications that depend on how
the synthetic dimension is implemented [25–32, 35]. The
inclusion of more realistic experimental details, such as
lattices, anisotropies, and long-range interactions in the

Vortex core could be e.g. entire z-w plane plus 
the entire x-y plane?

planes intersect at a point



So is this simply a product of vortex planes?

Intersecting 4D Vortex Planes

 = f(r1, r2)e
ik1✓1+ik2✓2 ⇡ f(r1)e

ik1✓1f(r2)e
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vortex in plane 1 
(xy plane)
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(zw plane)
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as sketched in Fig 1. The corresponding order parameter
profile is  = fk(r1)eik✓1 , where (r1, ✓1) are plane polar
coordinates in the plane of rotation, and fk(r) is the so-
lution of Eq (4). As this is independent of the other two
coordinates, the vortex core becomes a plane; this is di-
rectly analogous to the extension of a point vortex in 2D
into a line in 3D. We have verified this result numerically,
as shown in Appendix B.1. This can be understood as the
natural extension of vortices into 4D, as the extra dimen-
sion plays no role, and the vortex plane is homotopically
characterised by a Z topological winding number, as in
2D and 3D. For a more detailed discussion of homotopy
classification of vortex planes in 4D, see Appendix C.

In contrast we expect that double rotation, being an in-
trinsically 4D (or higher) phenomenon, will lead to more
interesting vortex configurations. To address this prob-
lem, we look for the ground states of the 4D GPE in a
doubly rotating frame
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r2 + g| |2 � ⌦1L1 � ⌦2L2

�
 = µ , (9)

where ⌦j and Lj are the rotation frequency and angu-
lar momentum operator in plane j. In Cartesian co-
ordinates (x, y, z, w), L1 = �i~(x@y � y@x), and L2 =
�i~(z@w � w@z). For simplicity we will adopt double
polar coordinates (r1, ✓1, r2, ✓2), defined by

(x, y, z, w) = (r1 cos ✓1, r1 sin ✓1, r2 cos ✓2, r2 sin ✓2),

such that Lj = �i~@✓j . The simple rotation case dis-
cussed before corresponds to ⌦2 = 0, where the vortex
core spans plane 2. In this paper we focus on equal-
frequency doubly rotating superfluids, that is ⌦ ⌘ ⌦1 =
⌦2.

The fact that L1 and L2 generate a double rotation
means that they commute. We may look for a solution
which is a simultaneous eigenstate of both angular mo-
mentum operators; therefore we propose an ansatz for
the ground state under rotation of the form

 (r) = f(r1, r2)e
ik1✓1+ik2✓2 , (10)

where f(r1, r2) is real and the kj are integer phase wind-
ing numbers in each rotation plane. This phase profile
corresponds to the superfluid circulating in both planes
simultaneously, about both vortex cores. We have sup-
pressed the dependence of f on each kj for brevity, and in
all numerical results both winding numbers are one. This
state exhibits a phase singularity when either rj = 0, so
we require f(0, r2) = f(r1, 0) = 0 from the same rea-
soning as in 2D and 3D. In other words, this describes
a pair of completely orthogonal vortex planes that inter-
sect at a single point as illustrated in Fig 1, and which
are characterised by Z⇥ Z topological winding numbers
(see Appendix C). Intersection of two planes at a point is
only possible in 4D or higher and, in fact, is the generic
case in 4D. This is in contrast with 3D, where the in-
tersection of lines is a special case, and so vortex lines
intersect and reconnect at specific times [55–58].

To examine our ansatz, we now proceed to numerically
solve for the density profile, under this phase constraint.
Substituting the ansatz [Eq (10)] into the GPE [Eq (1)]
in 4D, and de-dimensionalising in the same way as in the
2D case, we obtain the following equation for f(r1, r2)
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where �rj = @
2
/@r

2
j + (1/rj)@/@rj . Since each vortex

produces only a local density depletion, we expect that
f(r1, r2) ⇠ fk2(r2) as r1 ! 1 and equally for (1 $ 2),
where fk(r) is the point vortex solution of Eq (4). Note
that this limiting “boundary condition” can be satisfied
by a product, fk1(r1)fk2(r2), of 2D density profiles in
each plane. However, this form fails to solve the full
equation due to the non-linear f

3 term. This product
form therefore gives a natural approximation to compare
to, and we expect it it to fail significantly only in the
vicinity of the origin, where both fkj (rj) di↵er apprecia-
bly from unity.
To verify this, and find the full density profile, we have

solved Eq (11) by imaginary time evolution within a dis-
cretised grid in (r1, r2) space with hard-wall boundary
conditions at a radius R = 100⇠ in each plane (rj = R),
and at the origin in each plane (rj = 0). The latter con-
dition is required due to the centrifugal term diverging
at the vortex cores; consequently the precise location of
the vortex cores was an assumption in these calculations.
We used a forward Euler time-discretization and second
order finite di↵erences in space. We chose a large value
of R compared to ⇠ so that we could examine the vortex
cores within a homogeneous region. (Future studies could
include the e↵ect of additional trapping potentials, such
as harmonic traps along some or all directions.) We were
able to achieve a resolution of 0.05⇠, and the calculations
were converged until the relative change in chemical po-
tential and particle number over one timestep converged
below 10�14.
The results for k1 = k2 = 1 are shown in Fig 2(a),

where we observe the expected local density depletion
around the vortex cores when either r1 = 0 or r2 = 0.
We also compare our numerical solution with the product
approximation, f1(r1)f2(r2), in Fig 2(b); we observe that
the product approximation is very accurate except within
a distance of roughly & ⇠ from the intersection point,
as expected. Immediately around the intersection, the
product approximation fails, overestimating the density
by a factor of about 4/3.
Just as in the 2D case we can use our calculation of

the density profile to find the energy of this vortex con-
figuration relative to the state with no vortices. Defining
independent radii Rj in each plane, such that rj  Rj ,
we find numerically (see Appendix B.4) that the energy
is approximately given as

Ek1,k2(R1, R2) = Ek1(R1) + Ek2(R2), (12)

where Ek(R) is the single-vortex energy given in Eq (5).
This can be understood from the superfluid kinetic en-
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II. SIMPLE AND DOUBLE ROTATIONS

Given the intrinsic link between rotation and vortices,
we will now discuss the di↵erent types of rotations possi-
ble in 4D, as compared to lower dimensions, in prepara-
tion for our discussion of vortices in 4D superfluids below.

In three dimensions or fewer, every rotation is “sim-
ple”; this means that the rotation is specified by a ro-
tation angle ↵ 2 (�⇡,⇡], and a plane of rotation which
is unique up to translation. Under rotation, the points
on the plane of rotation remain on the plane, but are
displaced through the angle ↵. Generalising to D dimen-
sional space, simple rotations have D � 2 eigenvectors
with eigenvalue one, all of which are orthogonal to ev-
ery vector in the rotation plane. For example, a rotation
about the z axis in 3D has the xy plane (defined by z = 0)
as its rotation plane, and fixes any point along the z axis.
We may write this as a matrix in the standard basis as

0

@
cos↵ � sin↵ 0
sin↵ cos↵ 0
0 0 1

1

A . (6)

We can think of this as a rotation of 2D space (spanned by
x and y) extended into a third (z) direction. Similarly,
simple rotations in 4D can be thought of as rotations
of 3D space extended into a fourth direction. Labelling
the fourth axis as w, our previous example becomes a
rotation about the zw plane (defined by x = y = 0),
given in matrix form by

✓
R(↵) 0
0 I

◆
, where R(↵) =

✓
cos↵ � sin↵
sin↵ cos↵

◆
, (7)

and I is the 2D identity. Note that there are six Cartesian
coordinate planes in 4D, so the rotation group SO(4) has
six generators, and the representation of these generators
(which physically describe angular momentum) as spatial
vectors no longer works in 4D as it does in 3D. The set of
fixed points of a simple rotation in 4D are a plane, not a
line, and this fixed plane is completely orthogonal to the
plane of rotation, by which we mean that every vector in
one plane is orthogonal to every vector in the other.

In contrast to 2D and 3D, in four dimensions, we can
also have “double rotations”, which generically have only
one fixed point, and two completely orthogonal planes of
rotation each with a corresponding rotation angle [51].
To visualise this, consider a double rotation in the xy

and zw planes represented by the matrix [53]

✓
R(↵) 0
0 R(�)

◆
, (8)

for angles ↵,� 2 (�⇡,⇡]. For those familiar with certain
4D quantum Hall models, this is analogous to generat-
ing a second Chern number by applying magnetic fields
in two completely orthogonal planes [12, 13, 23, 24, 54].
Double rotations are in fact the generic case of rotations
in 4D, as if either ↵ or � = 0, the rotation reduces to

(a) (b)

FIG. 2. (Colour online) (a) Numerical solution of Eq (11) for
f(r1, r2), with k1 = k2 = 1, showing the density profile for
an intersecting pair of vortex planes in 4D, as a function of
the two polar radii. (b) The ratio of the solution in (a) to
the product approximation f1(r1)f1(r2), where fj(rj) is the
well-known 2D vortex profile governed by Eq 4. This shows
that the product approximation works well away from the
intersection as expected, but fails in a small region around
r1 = r2 = 0. Numerical parameters and details are given in
the main text.

the special case of simple rotation discussed above [51].
From here on we will refer to the two planes of rotation
as planes 1 and 2 respectively and focus only on so-called
“isoclinic” double rotations for which ↵ = �.
Before continuing, it is worth noting that isoclinic ro-

tations have an additional symmetry. To see this, we
remember that, as introduced above, generic double ro-
tations have one fixed point and two planes of rotation,
with corresponding angles ↵,� 2 (�⇡,⇡]. Vectors in R4

which do not lie in these rotation planes are displaced
through an angle between ↵ and � [51]. However, if
↵ = �, then this means that every vector is displaced by
the same angle. As a consequence, for a given isoclinic ro-
tation there is a continuum of pairs of completely orthog-
onal planes that can each be though of as the two planes
of rotation. In other words, isoclinic rotations therefore
no longer have two unique planes of rotation, although
they still have a single fixed point. However, numerically
we break this degeneracy since the phase winding of our
initial state picks out the xy and zw planes in particular.
We can also anticipate that a more experimental model
would likely break this symmetry too, e.g. through the
inclusion of lattices or through inherent di↵erences be-
tween real and “synthetic” spatial dimensions.

III. VORTEX PLANES IN 4D

Now that we have discussed some of the geometry of
rotations in 4D we are ready to study the associated vor-
tex physics. As above, we consider a superfluid described
by the GPE in the absence of external potentials, but now
with atoms free to move in four spatial dimensions.
The simplest case to consider is that of a 4D superfluid

under a constant simple rotation. As shown in Eq (7), a
simple rotation can be viewed as a 3D rotation extended
into a fourth dimension, hence stabilising a vortex plane,
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inclusion of lattices or through inherent di↵erences be-
tween real and “synthetic” spatial dimensions.
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⇢v

2d4r, which is the main contribution to the en-
ergy of a vortex. The velocity field is given by v = v1+v2

where vj = kj

rj
✓̂j is the velocity induced by vortex j. As

vj lies in plane j, we see that v1 · v2 = 0 and so the hy-
drodynamic vortex-vortex interaction term,

R
⇢v1 ·v2d4r,

vanishes. The total kinetic energy integral therefore
splits into a sum of the individual kinetic energies. Note
that this argument relies on the assumptions that the
two vortex cores have no curvature and are completely
orthogonal to each other.

In order to confirm the existence and stability of the
intersecting vortex plane state we have performed imagi-
nary time evolution with the 4D GPE under both simple
and double rotation [Eq (9)] directly on a 4D Cartesian
grid within a 4D ball of radius R = 8.25⇠ with a hard-wall
boundary. A hyper-sphere rather than a hyper-cube was
chosen as the majority of the 4D volume of a hyper-cube
is taken up by regions ”in the corners”, that is, outside
of the hyper-sphere that just fits inside. This allowed
us to relax our above constraint on the phase profile, at
the cost of smaller numerical system sizes. Again, we
used the forward Euler method for time-discretization
and second order finite di↵erences in space. We were
able to obtain resolutions of up to 0.2⇠, and by repeat-
ing simulations at di↵erent resolutions, we checked that
our main conclusions were qualitatively insensitive to the
coarse-graining of the numerics. At the system sizes and
resolutions we have been able to reach, the homogeneous
region extends over a few healing lengths. The calcula-
tions were converged to an accuracy threshold of 10�12.

A benefit of performing calculations with all four coor-
dinates is that we were able to test our ansatz by allow-
ing the phase to evolve, and by removing the boundary
condition at rj = 0 mentioned previously. More pre-
cisely, we used an initial state with homogeneous density
away from the edge of the ball, and a phase profile given
by arctan2(y, x) + arctan2(w, z), for the doubly rotating
case, and arctan2(y, x) for the singly rotating case. We
tested the robustness of our results to noise (up to 20% of
the background value) added to the real and imaginary
parts of the initial  . Note that we measure the applied
frequency in units of the critical frequency of a single
vortex in a homogeneous 2D disk of the same radius as
our 4D ball; this is given (in our units) by [59]

⌦2D
crit = µ log(2.07R/⇠)

✓
R

⇠

◆2

. (13)

For the results shown in Fig 3 both the frequencies of
rotation used were roughly 2.5⌦2D

crit. Further work could
investigate the e↵ect of double rotation with unequal fre-
quencies.

For a suitable range of frequencies ⌦ we find good
agreement between the stationary state obtained from
the full 4D numerics and our ansatz for two intersecting
vortex planes, as shown in Fig 3. Panel (a) shows that
the phase profile of the state after relaxation perfectly
agrees with that of the ansatz. Panels (b) and (c) show

(a)

(b)
�/n

0

0.25

0.50

0.75

1.00

1.25

S/2�

0

0.2

0.4

0.6

0.8

1.0

(c)

FIG. 3. (Colour online) Numerical results from imaginary
time evolution of the doubly-rotating 4D GPE in a ball ge-
ometry of radius ⇠ 8⇠, given an initial state with phase profile
✓1 + ✓2 and additional noise. (a) The phase of the final state
at each point within the 4D ball vs the sum of the two polar
angles, showing perfect agreement with the phase profile of
our ansatz [Eq (10)]. The density (b) and phase (c) profiles
of the final state for the 2D slice in which y = w = 0; these
are consistent with our ansatz, as well as the density profile
shown in Fig 2. We can interpret this final state as containing
two vortex planes, one at x = y = 0, and one at z = w = 0.
Further 2D cuts of this state are given in Appendix B.2.

the density and phase profiles, respectively, for the 2D cut
in which y = w = 0. As can be seen the density drops
to zero along the lines x = 0 and z = 0, corresponding
to the intersections of each vortex core with the plane
of the cut, as expected. Further two dimensional cuts of
this state are given in Appendix B.2.

IV. DISCUSSION AND CONCLUSIONS

In this paper, we have shown that the simple rota-
tion of an idealised 4D superfluid can stabilise a vortex
plane, while equal-frequency double rotations can lead
to two vortex planes intersecting at a point which do
not interact hydrodynamically. This significantly extends
the phenomenology of superfluid vortices, demonstrating
that new e↵ects can emerge in higher spatial dimensions
even within mean-field theory.
It is important to note that we have studied an ide-

alised model, which allows us to explore vortex physics
in 4D without experimental details that depend on how
the synthetic dimension is implemented [25–32, 35]. The
main di↵erences between our work and possible experi-
ments are, firstly, that the majority of practical imple-
mentations would lead to (tight-binding) lattice models,
whereas we have considered four continuous dimensions
as a theoretical first step. Adding a lattice should in-
troduce rich additional e↵ects particularly when the lat-
tice spacing is comparable to or greater than other length
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FIG. 1. Core structure of skew vortex planes from dataset 239

FIG. 2. Side-on view of core from dataset 239, with the the-
oretical core positions plotted on as lines. The initial state
phase profile was wound around these predicted cores.
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Conclusions (Part II)

Superfluid Vortices in Four Spatial Dimensions

Ben McCanna⇤ and Hannah M. Price
School of Physics and Astronomy, University of Birmingham,

Edgbaston Park Road, B15 2TT, West Midlands, United Kingdom

Quantum vortices in superfluids have been an important research area for many decades. Natu-
rally, research on this topic has focused on two and three-dimensional superfluids, in which vortex
cores form points and lines, respectively. Very recently, however, there has been growing interest
in the quantum simulation of systems with four spatial dimensions; this raises the question of how
vortices would behave in a higher-dimensional superfluid. In this paper, we begin to establish the
phenomenology of vortices in 4D superfluids under rotation, where the vortex core can form a plane.
In 4D, the most generic type of rotation is a “double rotation” with two angles (or frequencies).
We show, by solving the Gross-Pitaesvkii equation, that the simplest case of equal-frequency double
rotation can stabilise a pair of vortex planes intersecting at a point. This opens up a wide number of
future research topics, including unequal-frequency double rotations; the stability and reconnection
dynamics of intersecting vortex surfaces; and the possibility of closed vortex surfaces.

Quantum vortices are fundamental topological excita-
tions of superfluids, which have been widely studied for
many years [1–7]. Unlike a lot of many-body phenom-
ena, vortices can be understood at the mean-field level
through the Gross Pitaevskii equation (GPE) [1]. A su-
perfluid vortex consists of a local density depletion within
the “vortex core”, around which the superfluid circulates.
In 2D and 3D superfluids, this vortex core forms a point
and a line respectively, as sketched in Fig 1. Vortices
have an associated energy cost, but can be stabilised by
rotation of the superfluid [2, 3], or equivalently by artifi-
cial magnetic fields [8–10].

While research has so far naturally focused on vor-
tices in 2D and 3D superfluids, there is growing inter-
est in simulating systems with four spatial dimensions.
This is thanks to experimental and theoretical investi-
gations of 4D physics in topological pumping [11–13],
high-dimensional parameter spaces [14–17] and electric
circuits with high connectivity [18–22], as well as propos-
als for engineering 4D systems using “synthetic dimen-
sions” [23, 24]. The latter, in particular, opens up the
prospect of being able to explore higher-dimensional su-
perfluids with artificial gauge fields. In this approach,
“synthetic dimensions” are built by coupling together
the internal states of cold atoms [25–35], photonic sys-
tems [24, 36–42] and other platforms [43–46]. Such de-
grees of freedom are then reinterpreted as lattice coordi-
nates in a new direction, increasing the e↵ective system
dimensionality, while providing straightforward ways to
realise artificial magnetic fields [47], and hence mimic ro-
tation in a higher-dimensional space.

The potential of synthetic dimensions for reaching 4D
with (for example) ultracold bosonic atoms [23, 33] mo-
tivates the question of how superfluid vortices behave
in higher dimensions. In this Letter, we explore this by
studying the 4D GPE equation under rotation, with local

⇤ bdm375@student.bham.ac.uk

2D 3D 4D

S
i
m
p
l
e

y

x
x

z
y

x

ww

x

z
y

x x x
ww

x

z
y

x x x

D
o
u
b
l
e

No Double
Rotations

No Double
Rotations

ww

x

z
y

x x x

FIG. 1. (Colour online) Sketch of minimal vortex structures,
stabilised for di↵erent system dimensionalities (columns) and
types of rotation (rows). Here, “simple” and “double” indi-
cate rotations with one or two planes of rotation respectively,
as discussed in the text. In 2D and 3D, only simple rotations
exist, stabilising vortex cores as a point and line, respectively,
about which the superfluid rotates (black arrow). In 4D space
(shown as 3D cross-sections coloured according to w value),
both types of rotation exist, leading to a richer vortex phe-
nomenology. In 4D, equal-frequency double rotations can lead
to a new type of vortex configuration consisting of two vortex
planes intersecting at a point, while simple rotations stabilise
a single vortex plane. In these sketches, a vortex plane ap-
pears either as a line persisting for all w (lines of varying
colour), or as a plane for a particular w value (purple disc),
depending on the rotation plane. Note that in the 4D column
we have omitted the arrow indicating superfluid motion.

atom-atom interactions. The 4D GPE equation can be
justified physically as a description of low-temperature
interacting bosons in 4D [48–51]. It is also a minimal
model, which allows us explore the simplest examples of
4D vortices without complications that depend on how
the synthetic dimension is implemented [25–32, 35]. The
inclusion of more realistic experimental details, such as
lattices, anisotropies, and long-range interactions in the
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FIG. 1. Core structure of skew vortex planes from dataset 239

FIG. 2. Side-on view of core from dataset 239, with the the-
oretical core positions plotted on as lines. The initial state
phase profile was wound around these predicted cores.
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Summary

2

logical pumps have the drawback of being inherently lim-
ited to probing specific quasi-static solutions of the high-
dimensional system, without realising a genuine high-
dimensional lattice. Moreover, in those experiments the
second Chern number in 4D is not truly independent of
the first Chern numbers in 2D (which are nonzero).

Our 4D lattice is implemented using electric circuits
with carefully chosen capacitive and inductive connec-
tions. The lattice model has two topologically distinct
phases: a 4DQH phase and a conventional insulator,
with the choice of phase governed by a parameter m

that maps to certain combinations of capacitances and
inductances. Using impedance measurements that are
equivalent to finding the local density of states (LDOS),
we show that the 4DQH phase hosts surface states on
the 3D surface, while the conventional insulator phase
has only bulk states. Varying the driving frequency, we
show that the topological surface states span a frequency
range corresponding to a bulk bandgap, as predicted by
theory. Our experimental results also agree well with cir-
cuit simulations. This work demonstrates that electric
circuits are a flexible and practical way to realise higher-
dimensional lattices, paving the way for the exploration
of other previously-inaccessible topological phases.

4DQH model and circuit realization.— The 4D lattice
model is shown schematically in Fig. 1(a). The spatial co-
ordinates are denoted x, y, z, and w. The lattice contains
four sublattices labelled A, B, C and D, with sites con-
nected by real nearest neighbour hoppings ±J . The four
bands host two pairs of Dirac points in the Brillouin zone;
each pair is the time-reversed counterpart of the other.
To control the pairs separately, long-range hoppings with
amplitudes ±J

0 and ±J
00 are added within the x-z plane

[these long-range hoppings are omitted from Fig. 1(a) for
clarity, but are shown in Fig. 1(c)]. Upon adding mass
+m to the A and B sites, and �m to the C and D sites,
the Dirac masses for the di↵erent Dirac point pairs close
at m=J

0�2J 00 and m=J
00�2J 0. These gap closings are

topological transitions, such that, for J 00=�J
0, the sec-

ond Chern number of the lower bands is -2 (nontrivial)
if |m|<3|J 0|. Since T is unbroken, the first Chern num-
ber is always zero, so the model exhibits QH behaviour
stemming purely from the second Chern number [37].

For the experiment, we set J = 1 and J
0 = �J

00 = 2, so
that the topological transition of the bulk lattice occurs
at m = ±6. We take a finite 4D lattice with three unit
cells (6 sites) in the x and z directions, and one unit cell
(2 sites) in y and w. Periodic boundary conditions are
applied along y and w to mitigate finite-size e↵ects, and
are implemented using nearest neighbor type connections
between opposite ends of the lattice. The lattice has a
total of 144 sites, of which we consider 16 to be bulk sites
(defined as being more than 2 sites away from a surface)
and 128 to be surface sites. The fact that the surface
sites greatly outnumber the bulk sites is characteristic of
high dimensional systems.

b

FIG. 1: Model of the 4D Quantum Hall lattice and its circuit
implementation. (a) Schematic of the 4D tight-binding model.
Each unit cell consists of four sites labelled A-D. Hollow and
filled circles respectively denote positive (m) and negative
(�m) on-site masses, while yellow solid lines and blue dashes
respectively denote positive (J) and negative (�J) hoppings.
(c) Long-range hoppings of the tight-binding lattice. (b) Pho-
tographs of the circuit. (c) Schematic of the circuit; positive
(negative) masses are realised by capacitors (inductors) con-
necting the sites to ground, and hoppings are realised using
capacitors or inductors connecting di↵erent sites.

Circuit realization.— The finite 4D lattice is imple-
mented with a set of connected printed circuit boards,
shown in Fig. 1(b). Each site i of the tight-binding model
maps to a node on the circuit, and the mass term maps to
a circuit component of conductance �Dii connecting the
node to ground. Each hopping Jij between sites i and
j maps to a circuit element of conductance Dij connect-
ing the nodes. We add extra grounding components with
conductance D0

ii in parallel with �Dii. If an external AC
current Ii flows into each node i at frequency f , and Vi

is the complex AC voltage on that node, Kirchho↵’s law

Superfluid Vortices in Four Spatial Dimensions
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Quantum vortices in superfluids have been an important research area for many decades. Natu-
rally, research on this topic has focused on two and three-dimensional superfluids, in which vortex
cores form points and lines, respectively. Very recently, however, there has been growing interest
in the quantum simulation of systems with four spatial dimensions; this raises the question of how
vortices would behave in a higher-dimensional superfluid. In this paper, we begin to establish the
phenomenology of vortices in 4D superfluids under rotation, where the vortex core can form a plane.
In 4D, the most generic type of rotation is a “double rotation” with two angles (or frequencies).
We show, by solving the Gross-Pitaesvkii equation, that the simplest case of equal-frequency double
rotation can stabilise a pair of vortex planes intersecting at a point. This opens up a wide number of
future research topics, including unequal-frequency double rotations; the stability and reconnection
dynamics of intersecting vortex surfaces; and the possibility of closed vortex surfaces.

Quantum vortices are fundamental topological excita-
tions of superfluids, which have been widely studied for
many years [1–7]. Unlike a lot of many-body phenom-
ena, vortices can be understood at the mean-field level
through the Gross Pitaevskii equation (GPE) [1]. A su-
perfluid vortex consists of a local density depletion within
the “vortex core”, around which the superfluid circulates.
In 2D and 3D superfluids, this vortex core forms a point
and a line respectively, as sketched in Fig 1. Vortices
have an associated energy cost, but can be stabilised by
rotation of the superfluid [2, 3], or equivalently by artifi-
cial magnetic fields [8–10].

While research has so far naturally focused on vor-
tices in 2D and 3D superfluids, there is growing inter-
est in simulating systems with four spatial dimensions.
This is thanks to experimental and theoretical investi-
gations of 4D physics in topological pumping [11–13],
high-dimensional parameter spaces [14–17] and electric
circuits with high connectivity [18–22], as well as propos-
als for engineering 4D systems using “synthetic dimen-
sions” [23, 24]. The latter, in particular, opens up the
prospect of being able to explore higher-dimensional su-
perfluids with artificial gauge fields. In this approach,
“synthetic dimensions” are built by coupling together
the internal states of cold atoms [25–35], photonic sys-
tems [24, 36–42] and other platforms [43–46]. Such de-
grees of freedom are then reinterpreted as lattice coordi-
nates in a new direction, increasing the e↵ective system
dimensionality, while providing straightforward ways to
realise artificial magnetic fields [47], and hence mimic ro-
tation in a higher-dimensional space.

The potential of synthetic dimensions for reaching 4D
with (for example) ultracold bosonic atoms [23, 33] mo-
tivates the question of how superfluid vortices behave
in higher dimensions. In this Letter, we explore this by
studying the 4D GPE equation under rotation, with local
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FIG. 1. (Colour online) Sketch of minimal vortex structures,
stabilised for di↵erent system dimensionalities (columns) and
types of rotation (rows). Here, “simple” and “double” indi-
cate rotations with one or two planes of rotation respectively,
as discussed in the text. In 2D and 3D, only simple rotations
exist, stabilising vortex cores as a point and line, respectively,
about which the superfluid rotates (black arrow). In 4D space
(shown as 3D cross-sections coloured according to w value),
both types of rotation exist, leading to a richer vortex phe-
nomenology. In 4D, equal-frequency double rotations can lead
to a new type of vortex configuration consisting of two vortex
planes intersecting at a point, while simple rotations stabilise
a single vortex plane. In these sketches, a vortex plane ap-
pears either as a line persisting for all w (lines of varying
colour), or as a plane for a particular w value (purple disc),
depending on the rotation plane. Note that in the 4D column
we have omitted the arrow indicating superfluid motion.

atom-atom interactions. The 4D GPE equation can be
justified physically as a description of low-temperature
interacting bosons in 4D [48–51]. It is also a minimal
model, which allows us explore the simplest examples of
4D vortices without complications that depend on how
the synthetic dimension is implemented [25–32, 35]. The
inclusion of more realistic experimental details, such as
lattices, anisotropies, and long-range interactions in the

4

FIG. 1. Core structure of skew vortex planes from dataset 239

FIG. 2. Side-on view of core from dataset 239, with the the-
oretical core positions plotted on as lines. The initial state
phase profile was wound around these predicted cores.
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