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1. Rydberg chains 
   The Z3 chiral clock transition

2. Square lattice 
   Quantum Ising criticality in 2+1 dimensions       

3. Kagome symmetry lattices  
    Probing topological spin liquids

4. Theory of odd and even Z2 spin liquids



QPTs in a Rydberg quantum simulator
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QPTs in a Rydberg quantum simulator
Universal critical dynamics: quantum 
Kibble-Zurek mechanism
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FIG. 1: Quantum Kibble-Zurek mechanism and phase

diagram. a, Illustration of the QKZM. As the control pa-
rameter approaches its critical value, the response time, given
by the inverse energy gap of the system, diverges. When the
temporal distance to the critical point becomes equal to the
response time, ⌧h, as marked by red crosses, the correlations
stop growing. b, Sequence diagram used for measurements.
c, Numerically calculated ground-state phase diagram. Cir-
cles (diamonds) denote numerically obtained points along
the phase boundaries calculated using (infinite-size) Density-
Matrix Renormalization Group techniques (see Supplemen-
tary Information). The shaded regions are a guide to the
eye, and do not correspond to numerical calculations of the
phase boundaries. Dashed lines show the experimental tra-
jectories across the phase transitions. d, Measured (circles)
density-density Rydberg correlations with fits to the expected
ordered pattern (solid lines) consistent with Z4- (orange), Z3-
(purple) and Z2-ordered (green) states. Error bars denote the
standard error of the mean (s.e.m.) and are smaller than the
marker size.

tially ordered phases arise from the competition between
the detuning term, which favors a large Rydberg fraction,
and the Rydberg blockade [24], which prohibits simulta-
neous excitation of atoms separated by a distance smaller
than the blockade radius, RB , defined via V (RB) ⌘ ⌦.
As illustrated in Fig. 1c,d, we probe di↵erent QPTs into
states breaking various symmetries by choosing the inter-
atomic spacing, and sweeping the control parameter, �,
across the phase boundary. These QPTs belong to di↵er-
ent universality classes, including instances that are not
yet fully understood theoretically, and which have eluded
experimental investigations.

We first focus on the QPT from the disordered phase
into the antiferromagnetic phase with broken Z2 sym-
metry, which is known to belong to the Ising universal-
ity class [1]. Using an interatomic spacing, a, such that
RB/a ⇠ 1.69, we create an array of 51 atoms in the elec-
tronic ground state, and slowly turn on ⌦ at � < 0,
adiabatically preparing the system in the ground state

of the disordered phase. The detuning is then increased
over a quenching time ⌧Q at a constant rate, v, up to a
final value �f , at which point ⌦ is slowly turned o↵ (see
Fig. 1b), and the state of every atom is measured. We
examine the dynamical development of correlations be-
tween the atoms, characterized by the Rydberg density-
density correlation function:

G(r) =
X

i

(hnini+ri � hniihni+ri)/Nr, (2)

where the normalization Nr is the number of pairs of
sites separated by distance r. By fitting an exponen-
tial decay to the modulus of the correlation function, we
extract the correlation length (see Supplementary Infor-
mation). The experimental results show growth of the
correlation length as the detuning approaches the crit-
ical point, followed by saturation once the detuning is
swept past the critical point into the ordered phase (Fig.
2b). From the individual images, it is apparent that,
while for fast sweeps the ordered domains are frequently
interrupted by defects (domain walls), for slow ramps,
significantly longer domains are observed (Fig. 2a). A
systematic analysis of the final correlation lengths after
crossing into the ordered phase shows that a power-law
scaling model ⇠(v) = ⇠0(v0/v)µ with µ = 0.50(3) accu-
rately describes our measurements (Fig. 2c) (Supplemen-
tary Information). These results are consistent with nu-
merical simulations (red points) of the coherent evolution
of the system using Matrix Product States (MPS).
The QPT into the Z2-ordered phase is in the Ising uni-

versality class [1], with critical exponents in 1D of z = 1,
⌫ = 1, and consequently, µIsing = 0.5. Our observa-
tions are consistent with these quantitative predictions,
and are quite distinct from those associated with a mean-
field Ising transition, described by z = 1, ⌫ = 1/2, and
yielding µmf = 1/3 [18, 25].
A key concept associated with critical phenomena is

that of universality, which is manifested by the collapse
of correlations to a universal form when rescaled accord-
ing to the corresponding critical exponents. Such a sig-
nature is a strong test of an underlying universal scaling
law, and in connection with the QKZM, should appear
upon rescaling lengths by (v/v0)µ. Fig. 3a shows that
the rescaled correlations for RB/a ⇠ 1.81 indeed col-
lapse onto two smooth branches, which in turn collapse
on top of each other when the correlations are rectified
as (�1)rG(r) (inset in Fig. 3a), according to the Z2 or-
der parameter. While the Kibble-Zurek hypothesis is a
coarse-grained theory predicting the mean density of de-
fects, the shape of the correlation function gives further
access to microscopic details of the system. Detailed in-
spection of the rescaled correlation functions reveals non-
trivial deviations from a simple exponential decay. In
particular, the correlations in Fig. 3a become negative
for a range of distances, which implies complex dynamics
in the formation and spreading of defects. The observed

Quantum Kibble-Zurek mechanism and critical 
dynamics on a programmable Rydberg simulator 

Alexander Keesling,  Ahmed Omran, Harry Levine, Hannes Bernien, 
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Competing density-wave orders in a one-dimensional hard-boson model
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We describe the zero-temperature phase diagram of a model of bosons, occupying sites of a linear chain,
which obey a hard-exclusion constraint: any two nearest-neighbor sites may have at most one boson. A special
case of our model was recently proposed as a description of a ‘‘tilted’’ Mott insulator of atoms trapped in an
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I. INTRODUCTION

In recent years, the study of quantum models with mul-
tiple competing ground states has emerged as an important
theme in the study of strongly correlated many-body quan-
tum systems. For example, in the cuprates it is clear that
states with density-wave order at a variety of wave vectors
play an important role in the physics at low carrier concen-
trations.
In this paper, we introduce a simple one-dimensional

quantum model which displays a multiplicity of ground
states. Despite its simplicity, it exhibits !i" gapped states with
commensurate density-wave order !with periods of two and
three lattice spacings", !ii" gapless regions with ‘‘floating’’
incommensurate, quasi-long-range density-wave correla-
tions, and !iii" gapped states which preserve translational
symmetry. A special case of our model appeared in a recent
study1 of atoms trapped in optical lattices,2 and so an experi-
mental study of the phase diagram presented here may be
feasible. More generally, we offer our model as a simple
laboratory, with many exactly solvable cases, for the inter-
play of density-wave orders with multiple periods in quan-
tum systems.
Our model is expressed in terms of the bose operator d j ,

which annihilates a boson on site j, and the boson number
operator

n j#d j
†d j . !1"

The ‘‘hard’’ boson condition allows no more than one boson
on any pair of nearest-neighbor sites, and hence all states
obey the constraints

n j$1, n jn j!1"0. !2"

In the study of Mott insulators in optical lattices,1 the d j
boson represents a dipole excitation, consisting of a particle-
hole pair bound on nearest neighbor sites of the optical lat-

tice. This microscopic dipole interpretation will not be cru-
cial to our analysis here, and so we will refer to d j simply as
a boson.
The boson Hamiltonian we study is

H"%
j

&#w!d j!d j
†"!Un j!Vn jn j!2' . !3"

Note that the total number of bosons is not conserved, and it
is possible to create and annihilate bosons out of the vacuum.
This is natural in the dipole interpretation of the boson, as a
particle-hole pair can be created or annihilated from the
background Mott insulator. There is also no explicit boson
hopping term; as shown in Ref. 1, boson hopping is gener-
ated by the combination of the constraints in Eq. !2" and
single-site terms already in H, and so it is not necessary to
include an explicit hopping. U is a chemical potential for the
bosons, while V is a ‘‘nearest’’-neighbor interaction, ‘‘near-
est’’ meaning two sites apart, the closest two bosons can
come. One can of course rescale out one of the couplings to
obtain a two-parameter Hamiltonian, but it will be conve-
nient to keep all three. The case V"0 of H was studied in
Ref. 1; we have also streamlined the earlier notation of the
coupling constants to a form suitable for our analysis here.
Without constraints !2", the Hamiltonian would be trivially
solvable. With them, its analysis becomes quite intricate.
The ground state of our Hamiltonian !3" can exhibit sev-

eral kinds of order, depending on the couplings. The Hamil-
tonian will favor having bosons on every other site if we
have an attractive ‘‘nearest’’-neighbor interaction, or a
chemical potential favoring the creation of particles. We will
show that this leads to a regime of Ising-type order, with a
spontaneously broken Z2 symmetry, translation by one site.
If the chemical potential still favors creating particles, but
there is a repulsive ‘‘nearest’’ neighbor potential, then the
ground state will favor having a particle on every third site.
This sort of order breaks a Z3 symmetry, translation by one
or two sites. When the two kinds of ordered states have
nearly the same energies, we will show that there exists an
incommensurate phase. In the incommensurate phase,
bosons appear on every other or every third site.
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background Mott insulator. There is also no explicit boson
hopping term; as shown in Ref. 1, boson hopping is gener-
ated by the combination of the constraints in Eq. !2" and
single-site terms already in H, and so it is not necessary to
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bosons, while V is a ‘‘nearest’’-neighbor interaction, ‘‘near-
est’’ meaning two sites apart, the closest two bosons can
come. One can of course rescale out one of the couplings to
obtain a two-parameter Hamiltonian, but it will be conve-
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there is a repulsive ‘‘nearest’’ neighbor potential, then the
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boson represents a dipole excitation, consisting of a particle-
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cial to our analysis here, and so we will refer to d j simply as
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The boson Hamiltonian we study is
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Note that the total number of bosons is not conserved, and it
is possible to create and annihilate bosons out of the vacuum.
This is natural in the dipole interpretation of the boson, as a
particle-hole pair can be created or annihilated from the
background Mott insulator. There is also no explicit boson
hopping term; as shown in Ref. 1, boson hopping is gener-
ated by the combination of the constraints in Eq. !2" and
single-site terms already in H, and so it is not necessary to
include an explicit hopping. U is a chemical potential for the
bosons, while V is a ‘‘nearest’’-neighbor interaction, ‘‘near-
est’’ meaning two sites apart, the closest two bosons can
come. One can of course rescale out one of the couplings to
obtain a two-parameter Hamiltonian, but it will be conve-
nient to keep all three. The case V"0 of H was studied in
Ref. 1; we have also streamlined the earlier notation of the
coupling constants to a form suitable for our analysis here.
Without constraints !2", the Hamiltonian would be trivially
solvable. With them, its analysis becomes quite intricate.
The ground state of our Hamiltonian !3" can exhibit sev-

eral kinds of order, depending on the couplings. The Hamil-
tonian will favor having bosons on every other site if we
have an attractive ‘‘nearest’’-neighbor interaction, or a
chemical potential favoring the creation of particles. We will
show that this leads to a regime of Ising-type order, with a
spontaneously broken Z2 symmetry, translation by one site.
If the chemical potential still favors creating particles, but
there is a repulsive ‘‘nearest’’ neighbor potential, then the
ground state will favor having a particle on every third site.
This sort of order breaks a Z3 symmetry, translation by one
or two sites. When the two kinds of ordered states have
nearly the same energies, we will show that there exists an
incommensurate phase. In the incommensurate phase,
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Note that the total number of bosons is not conserved, and it
is possible to create and annihilate bosons out of the vacuum.
This is natural in the dipole interpretation of the boson, as a
particle-hole pair can be created or annihilated from the
background Mott insulator. There is also no explicit boson
hopping term; as shown in Ref. 1, boson hopping is gener-
ated by the combination of the constraints in Eq. !2" and
single-site terms already in H, and so it is not necessary to
include an explicit hopping. U is a chemical potential for the
bosons, while V is a ‘‘nearest’’-neighbor interaction, ‘‘near-
est’’ meaning two sites apart, the closest two bosons can
come. One can of course rescale out one of the couplings to
obtain a two-parameter Hamiltonian, but it will be conve-
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coupling constants to a form suitable for our analysis here.
Without constraints !2", the Hamiltonian would be trivially
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tonian will favor having bosons on every other site if we
have an attractive ‘‘nearest’’-neighbor interaction, or a
chemical potential favoring the creation of particles. We will
show that this leads to a regime of Ising-type order, with a
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there is a repulsive ‘‘nearest’’ neighbor potential, then the
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incommensurate, quasi-long-range density-wave correla-
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symmetry. A special case of our model appeared in a recent
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feasible. More generally, we offer our model as a simple
laboratory, with many exactly solvable cases, for the inter-
play of density-wave orders with multiple periods in quan-
tum systems.
Our model is expressed in terms of the bose operator d j ,

which annihilates a boson on site j, and the boson number
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The ‘‘hard’’ boson condition allows no more than one boson
on any pair of nearest-neighbor sites, and hence all states
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In the study of Mott insulators in optical lattices,1 the d j
boson represents a dipole excitation, consisting of a particle-
hole pair bound on nearest neighbor sites of the optical lat-
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cial to our analysis here, and so we will refer to d j simply as
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Note that the total number of bosons is not conserved, and it
is possible to create and annihilate bosons out of the vacuum.
This is natural in the dipole interpretation of the boson, as a
particle-hole pair can be created or annihilated from the
background Mott insulator. There is also no explicit boson
hopping term; as shown in Ref. 1, boson hopping is gener-
ated by the combination of the constraints in Eq. !2" and
single-site terms already in H, and so it is not necessary to
include an explicit hopping. U is a chemical potential for the
bosons, while V is a ‘‘nearest’’-neighbor interaction, ‘‘near-
est’’ meaning two sites apart, the closest two bosons can
come. One can of course rescale out one of the couplings to
obtain a two-parameter Hamiltonian, but it will be conve-
nient to keep all three. The case V"0 of H was studied in
Ref. 1; we have also streamlined the earlier notation of the
coupling constants to a form suitable for our analysis here.
Without constraints !2", the Hamiltonian would be trivially
solvable. With them, its analysis becomes quite intricate.
The ground state of our Hamiltonian !3" can exhibit sev-

eral kinds of order, depending on the couplings. The Hamil-
tonian will favor having bosons on every other site if we
have an attractive ‘‘nearest’’-neighbor interaction, or a
chemical potential favoring the creation of particles. We will
show that this leads to a regime of Ising-type order, with a
spontaneously broken Z2 symmetry, translation by one site.
If the chemical potential still favors creating particles, but
there is a repulsive ‘‘nearest’’ neighbor potential, then the
ground state will favor having a particle on every third site.
This sort of order breaks a Z3 symmetry, translation by one
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on any pair of nearest-neighbor sites, and hence all states
obey the constraints

n j$1, n jn j!1"0. !2"

In the study of Mott insulators in optical lattices,1 the d j
boson represents a dipole excitation, consisting of a particle-
hole pair bound on nearest neighbor sites of the optical lat-

tice. This microscopic dipole interpretation will not be cru-
cial to our analysis here, and so we will refer to d j simply as
a boson.
The boson Hamiltonian we study is

H"%
j

&#w!d j!d j
†"!Un j!Vn jn j!2' . !3"

Note that the total number of bosons is not conserved, and it
is possible to create and annihilate bosons out of the vacuum.
This is natural in the dipole interpretation of the boson, as a
particle-hole pair can be created or annihilated from the
background Mott insulator. There is also no explicit boson
hopping term; as shown in Ref. 1, boson hopping is gener-
ated by the combination of the constraints in Eq. !2" and
single-site terms already in H, and so it is not necessary to
include an explicit hopping. U is a chemical potential for the
bosons, while V is a ‘‘nearest’’-neighbor interaction, ‘‘near-
est’’ meaning two sites apart, the closest two bosons can
come. One can of course rescale out one of the couplings to
obtain a two-parameter Hamiltonian, but it will be conve-
nient to keep all three. The case V"0 of H was studied in
Ref. 1; we have also streamlined the earlier notation of the
coupling constants to a form suitable for our analysis here.
Without constraints !2", the Hamiltonian would be trivially
solvable. With them, its analysis becomes quite intricate.
The ground state of our Hamiltonian !3" can exhibit sev-

eral kinds of order, depending on the couplings. The Hamil-
tonian will favor having bosons on every other site if we
have an attractive ‘‘nearest’’-neighbor interaction, or a
chemical potential favoring the creation of particles. We will
show that this leads to a regime of Ising-type order, with a
spontaneously broken Z2 symmetry, translation by one site.
If the chemical potential still favors creating particles, but
there is a repulsive ‘‘nearest’’ neighbor potential, then the
ground state will favor having a particle on every third site.
This sort of order breaks a Z3 symmetry, translation by one
or two sites. When the two kinds of ordered states have
nearly the same energies, we will show that there exists an
incommensurate phase. In the incommensurate phase,
bosons appear on every other or every third site.
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The V = 0 case is the ‘PXP’ model, originally introduced in
S. Sachdev, K. Sengupta, and S.M. Girvin, PRB 66, 075128 (2002)
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The identification of the universality class of phase
transitions is one of the most important aspects of both
classical and quantum physics. In the presence of a broken
symmetry, simple symmetry arguments often allow one to
guess the universality class of a transition (Ising, three-state
Potts, etc.) depending on the degeneracy of the broken
symmetry state. There are, however, cases where this is not
sufficient. A prominent example is the commensurate-
incommensurate transition in the case of a commensurate
phase with three types of domains. As first proposed by
Huse and Fisher [1], if domain walls between different
phases have different properties, this introduces a chiral
perturbation (the sequence, say, AjBjC is not equivalent to
its mirror image AjCjB, where A, B, C refer to different
domains), and if this perturbation is relevant, the transition
can only be in the three-state Potts universality class at an
isolated point where the perturbation vanishes. Away from
that point, there are three possibilities: (i) there is still a
unique transition, but it belongs to a new universality class
called chiral; (ii) there is a critical incommensurate
intermediate phase called a floating phase; (iii) the tran-
sition is first order. The investigation of this problem has
been a hotly debated issue in the 1980s in the context
of solid-on-solid models of adsorbed layers [1–11], and
the chiral Potts model has been further studied since then
[12–18]. Experimental evidence of the chiral melting of Ge
(113) and Si(113) 3 × 1 phases has been reported in the
early 1990s [19].
The issue has been recently reopened by Fendley et al.

[20] in the context of a 1D quantum model of trapped alkali
atoms [21] also relevant for recent experiments on Rydberg
states [22,23] described by the Hamiltonian:

H ¼
X

j

½−wðd†j þ djÞ þ Unj þ Vnj−1njþ1&; ð1Þ

In this model, d†j and dj are creation and annihilation
operators of hard bosons defined by the constraints
njð1 − njÞ ¼ 0 (no double occupancy, as for hard-core
bosons) and njnjþ1 ¼ 0 (bosons cannot sit on neighboring
sites). As shown by Fendley et al. [20] and confirmed by
our systematic investigation of the whole parameter space
with density-matrix renormalization group (DMRG)
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FIG. 1. Phase diagram of the hard-boson model of Eq. (1), with
three main phases: two ordered ones with period two and three,
and a disordered one with incommensurate short-range correla-
tions (IC) above the disorder (blue) line and commensurate (C)
ones below. The transition out of the period-three phase is
expected to be in the three-state Potts universality along an
integrable line (dotted line), in the chiral Huse-Fisher universality
class close to it, and through an intermediate critical phase with
incommensurate correlations far from it (see main text). The
width of this phase is smaller than that of the red line. Thin black
lines indicate the three cuts used in Figs. 2(a)–2(i). There is a
second integrable line that goes through a tricritical Ising point
(open green circle) below which the transition out of the period-
two phase is first order (black line) and above which it is in the
Ising universality class (green line).

PHYSICAL REVIEW LETTERS 122, 017205 (2019)

0031-9007=19=122(1)=017205(5) 017205-1 © 2019 American Physical Society

N. Chepiga and F. Mila

 

Floating Phase versus Chiral Transition in a 1D Hard-Boson Model

Natalia Chepiga1 and Frédéric Mila2
1Department of Physics and Astronomy, University of California, Irvine, California 92697, USA

2Institute of Physics, Ecole Polytechnique Fédérale de Lausanne (EPFL), CH-1015 Lausanne, Switzerland

(Received 27 August 2018; published 10 January 2019)

We investigate the nature of the phase transition between the period-three charge-density wave and the
disordered phase of a hard-boson model proposed in the context of cold-atom experiments. Building on a
density-matrix renormalization group algorithm that takes full advantage of the hard-boson constraints,
we study systems with up to 9000 sites and calculate the correlation length and the wave vector of the
incommensurate short-range correlations with unprecedented accuracy.We provide strong numerical evidence
that there is an intermediate floating phase far enough from the integrable Potts point, while in its vicinity,
our numerical data are consistent with a unique transition in the Huse-Fisher chiral universality class.

DOI: 10.1103/PhysRevLett.122.017205

The identification of the universality class of phase
transitions is one of the most important aspects of both
classical and quantum physics. In the presence of a broken
symmetry, simple symmetry arguments often allow one to
guess the universality class of a transition (Ising, three-state
Potts, etc.) depending on the degeneracy of the broken
symmetry state. There are, however, cases where this is not
sufficient. A prominent example is the commensurate-
incommensurate transition in the case of a commensurate
phase with three types of domains. As first proposed by
Huse and Fisher [1], if domain walls between different
phases have different properties, this introduces a chiral
perturbation (the sequence, say, AjBjC is not equivalent to
its mirror image AjCjB, where A, B, C refer to different
domains), and if this perturbation is relevant, the transition
can only be in the three-state Potts universality class at an
isolated point where the perturbation vanishes. Away from
that point, there are three possibilities: (i) there is still a
unique transition, but it belongs to a new universality class
called chiral; (ii) there is a critical incommensurate
intermediate phase called a floating phase; (iii) the tran-
sition is first order. The investigation of this problem has
been a hotly debated issue in the 1980s in the context
of solid-on-solid models of adsorbed layers [1–11], and
the chiral Potts model has been further studied since then
[12–18]. Experimental evidence of the chiral melting of Ge
(113) and Si(113) 3 × 1 phases has been reported in the
early 1990s [19].
The issue has been recently reopened by Fendley et al.

[20] in the context of a 1D quantum model of trapped alkali
atoms [21] also relevant for recent experiments on Rydberg
states [22,23] described by the Hamiltonian:

H ¼
X

j

½−wðd†j þ djÞ þ Unj þ Vnj−1njþ1&; ð1Þ

In this model, d†j and dj are creation and annihilation
operators of hard bosons defined by the constraints
njð1 − njÞ ¼ 0 (no double occupancy, as for hard-core
bosons) and njnjþ1 ¼ 0 (bosons cannot sit on neighboring
sites). As shown by Fendley et al. [20] and confirmed by
our systematic investigation of the whole parameter space
with density-matrix renormalization group (DMRG)

Disordered

Period-two

Period-three

disorder line

-15 -10 -5 0 5

-6

-4

-2

0

2

4

6

Ising

First order

Tricritical Ising

Three-state Potts
cut 2

cut 1

cut 3

IC

C

FIG. 1. Phase diagram of the hard-boson model of Eq. (1), with
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expected to be in the three-state Potts universality along an
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incommensurate correlations far from it (see main text). The
width of this phase is smaller than that of the red line. Thin black
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expected to be in the three-state Potts universality along an
integrable line (dotted line), in the chiral Huse-Fisher universality
class close to it, and through an intermediate critical phase with
incommensurate correlations far from it (see main text). The
width of this phase is smaller than that of the red line. Thin black
lines indicate the three cuts used in Figs. 2(a)–2(i). There is a
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The V = 0 case is the ‘PXP’ model, originally introduced in
S. Sachdev, K. Sengupta, and S.M. Girvin, PRB 66, 075128 (2002)
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der [25]. Strong-coupling e↵ects are evidently required
to obtain a direct order–disorder transition, which is the
focus of our study.

The Z3 chiral clock model (CCM) in one dimension is
defined by the Hamiltonian [15, 26]

Hccm = �f
LX

j=1

⌧ †j e
�i�

� J
L�1X

j=1

�†
j �j+1 e

�i ✓ + h.c. (1)

acting on a chain of L spins; the Hilbert space is (C3)
N

L.
The three-state spin operators ⌧i and �i act locally on the
site i, and each satisfy

⌧3 = �3 = 1 , � ⌧ = ! ⌧ � ; ! ⌘ exp (2⇡ i/3) . (2)

For concreteness’ sake, let us also explicitly choose the
following representation of the CCM operators

⌧ =

0

@
1 0 0
0 ! 0
0 0 !2

1

A , � =

0

@
0 1 0
0 0 1
1 0 0

1

A , (3)

reminiscent of the Pauli matrices that measure and shift
the spin at a given site. The scalar parameters f and
J determine the on-site and nearest-neighbor couplings,
while � and ✓ define two chiral interaction phases. For
� and ✓ both nonzero, time-reversal and spatial-parity
(inversion) symmetries are separately broken, but their
product is preserved. This asymmetry in the Hamilto-
nian has important ramifications: the spatial chirality
(✓ 6= 0) induces incommensurate (IC) floating phases
with respect to the periodicity of the underlying lattice
[27]. For applications to spatially ordered phases, we
need � = 0, whereupon time-reversal and spatial-parity
are both symmetries of the Hamiltonian but the chirality
is still present as a purely spatial one. This article is thus
restricted to the � = 0 case, with the chirality quantified
by ✓ [Fig. 1(b)].

The three-state CCM also has an explicit global Z3

symmetry. Using density-matrix renormalization group
techniques, we study the critical behavior at the direct
transition between the Z3-ordered and the gapped sym-
metric phase, with the aim of determining the exponent
z. The achiral � = 0, ✓ = 0 model has a transition in the
universality class of the three-state Potts conformal field
theory with z = 1. We find that away from the special
point ✓ = 0, the dynamical critical exponent z is larger
than 1, indicating that there is no emergent conformal in-
variance. For � = 0, ✓ 6= 0, our results [see Fig. 7] show
that the gapped symmetric phase has spatially incom-
mensurate correlations of the Z3 order parameter. How-
ever, the incommensurability vanishes as the transition
is approached and the long-range Z3 order is eventually
commensurate. These results clarify how a direct transi-
tion is possible between the gapped symmetric phase and
Z3 order, without an intermediate gapless IC phase.

(a)

(c)

(b)

(d) (e)

(f)

FIG. 1. Schematic representation of (a–b) the interactions,
and (c) a generic state of the Z3 chiral clock model. The
arrows connote the eigenvalue of the operator � at each site
with �i = 1, !, !2 delineated by the arrow pointing at 12-, 4-,
and 8-o’clock, respectively. Owing to the chirality of the cou-
plings in Eq. (1), there are two distinct types of domain walls
(DW) with their associated interaction strengths illustrated
in (b). (d) The Rydberg and ground states of the two-level
system defined by Eq. (4). The van der Waals interactions
depend on the spacing between Rydberg excitations (e) and
thus a representative state (f), once again, has two kinds of
domain walls.

Turning to the recent experiments with trapped Ryd-
berg atoms [6, 28], we consider a model which is directly
related to the microscopic physical realization but the
transitions of which are expected to be in the same uni-
versality class as in the corresponding Zn CCM. On a
microscopic level, a one-dimensional array of N atoms is
described by the Hamiltonian

HRyd =
NX

i=1

⌦

2
(|giihr|+ |riihg|)� � |riihr|

+
X

i<j

V|i�j| |riihr|⌦ |rijhr| . (4)

Here, |gii and |rii denote the internal atomic ground
state and a highly excited Rydberg state of the ith atom,
which together represent a spin-1/2 system [Fig. 1(d–f)].
The parameters ⌦ and � characterize a coherent laser
driving field, while Vx = C6/x6 quantifies the van der
Waals interactions of atoms in Rydberg states. In this
study, we focus on a region in parameter space where
this system exhibits a QPT between the Z3-ordered and
the gapped symmetric phase [15] and provide numerical
evidence that the critical behavior parallels that of the
three-state CCM (1). We note that HRyd does not break
time-reversal symmetry, motivating our choice of � = 0
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with respect to the periodicity of the underlying lattice
[27]. For applications to spatially ordered phases, we
need � = 0, whereupon time-reversal and spatial-parity
are both symmetries of the Hamiltonian but the chirality
is still present as a purely spatial one. This article is thus
restricted to the � = 0 case, with the chirality quantified
by ✓ [Fig. 1(b)].

The three-state CCM also has an explicit global Z3

symmetry. Using density-matrix renormalization group
techniques, we study the critical behavior at the direct
transition between the Z3-ordered and the gapped sym-
metric phase, with the aim of determining the exponent
z. The achiral � = 0, ✓ = 0 model has a transition in the
universality class of the three-state Potts conformal field
theory with z = 1. We find that away from the special
point ✓ = 0, the dynamical critical exponent z is larger
than 1, indicating that there is no emergent conformal in-
variance. For � = 0, ✓ 6= 0, our results [see Fig. 7] show
that the gapped symmetric phase has spatially incom-
mensurate correlations of the Z3 order parameter. How-
ever, the incommensurability vanishes as the transition
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driving field, while Vx = C6/x6 quantifies the van der
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We describe the quantum phase transition in the N -state chiral clock model in spatial dimension d = 1. With
couplings chosen to preserve time-reversal and spatial inversion symmetries, such a model is in the universality
class of recent experimental studies of the ordering of pumped Rydberg states in a one-dimensional chain of
trapped ultracold alkali atoms. For such couplings and N = 3, the clock model is expected to have a direct phase
transition from a gapped phase with a broken global ZN symmetry, to a gapped phase with the ZN symmetry
restored. The transition has dynamical critical exponent z != 1, and so cannot be described by a relativistic
quantum field theory. We use a lattice duality transformation to map the transition onto that of a Bose gas in
d = 1, involving the onset of a single-boson condensate in the background of a higher-dimensional N -boson
condensate. We present a renormalization group analysis of the strongly coupled field theory for the Bose gas
transition in an expansion in 2 − d , with 4 − N chosen to be of order 2 − d . At two-loop order, we find a regime
of parameters with a renormalization group fixed point which can describe a direct phase transition. We also
present numerical density-matrix renormalization group studies of lattice chiral clock and Bose gas models for
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I. INTRODUCTION

Recent experiments on one-dimensional chains of Rb
atoms excited to Rydberg states by Bernien et al. [1] have
displayed quantum transitions to ordered states with a period
of N sites, with N ! 2. This phase transition is described by
a model of hard-core bosons proposed by Fendley et al. [2].
Such phase transitions are in the universality class of the ZN

clock model with couplings which preserve both time-reversal
and spatial inversion symmetries. For N ! 3, the required
clock models must be chiral [3,4]: domain walls have distinct
energies depending upon whether the clock rotates clockwise
or counterclockwise upon crossing the wall while moving to
the right.

There has been much theoretical and numerical work on
ZN chiral clock models, both as quantum models in one
spatial dimension (d) and as classical models in two spatial
dimensions [3–18]. These models exhibit a complex phase
diagram with 3 types of phases:

(i) A gapped phase with long-range ZN order (this phase
was referred to as “topological” in a parafermionic formula-
tion [11,12]).

(ii) A gapped phase with no broken symmetry and expo-
nentially decaying ZN correlations.

(iii) A gapless phase with incommensurate ZN correla-
tions decaying as a power law.

It is important to note, however, that many of the previous
studies are under conditions in which the Hamiltonian does
not preserve time-reversal and/or spatial inversion symme-
tries. Imposing time-reversal and spatial inversion symmetries
will be crucial for our theoretical analysis, and indeed, such

symmetries are present in the Rydberg atom realization [1].
With these symmetries imposed, we will examine the direct
transition between the two gapped phases noted above, with-
out an intermediate incommensurate phase. The possibility
of such a direct transition was already noted in early work
[5], but was questioned subsequently [7] (see Appendix E).
However, numerical evidence for a direct transition for N = 3
has emerged in recent work [12,14]. This paper will provide
a field-theoretic renormalization group analysis of the direct
transition, along with additional numerical density-matrix
renormalization group (DMRG) results. Our main theoretical
tool will be a duality mapping of the chiral clock model
transition in d = 1 onto that of a Bose gas, involving the
onset of a single boson condensate in the background of a
higher-dimensional N -boson condensate [19].

Let us begin by writing down a possible field theory for
period-N ordering [2]. Let ! be the density wave order pa-
rameter, so that ! → e2π in/N! under translation by n lattice
spacings, where n is a positive or negative integer. Using
translational and time-reversal symmetries (described in more
detail below), we obtain an action defined on continuous
d = 1 space (x) and imaginary time (τ ):

S! =
∫

dx dτ [|∂τ!|2 + |∂x!|2 + iαx!
∗∂x!

+ s!|!|2 + u|!|4 + λ(!N + (!∗)N )]. (1)

We show the phase diagram of S! in d > 1 in Fig. 1, and in
d = 1 in Fig. 2. The field theory S! also applies to the chiral
clock model with order parameter !, in which case ! →
e2π in/N! is an internal symmetry of the clock model, without

2469-9950/2018/98(20)/205118(28) 205118-1 ©2018 American Physical Society

PHYSICAL REVIEW B 98, 205118 (2018)

Quantum field theory for the chiral clock transition in one spatial dimension

Seth Whitsitt,1,2 Rhine Samajdar,1 and Subir Sachdev1,3

1Department of Physics, Harvard University, Cambridge, Massachusetts 02138, USA
2Joint Quantum Institute, National Institute of Standards and Technology and the University of Maryland, College Park, Maryland 20742, USA

3Perimeter Institute for Theoretical Physics, Waterloo, Ontario, Canada N2L 2Y5

(Received 30 August 2018; published 9 November 2018)

We describe the quantum phase transition in the N -state chiral clock model in spatial dimension d = 1. With
couplings chosen to preserve time-reversal and spatial inversion symmetries, such a model is in the universality
class of recent experimental studies of the ordering of pumped Rydberg states in a one-dimensional chain of
trapped ultracold alkali atoms. For such couplings and N = 3, the clock model is expected to have a direct phase
transition from a gapped phase with a broken global ZN symmetry, to a gapped phase with the ZN symmetry
restored. The transition has dynamical critical exponent z != 1, and so cannot be described by a relativistic
quantum field theory. We use a lattice duality transformation to map the transition onto that of a Bose gas in
d = 1, involving the onset of a single-boson condensate in the background of a higher-dimensional N -boson
condensate. We present a renormalization group analysis of the strongly coupled field theory for the Bose gas
transition in an expansion in 2 − d , with 4 − N chosen to be of order 2 − d . At two-loop order, we find a regime
of parameters with a renormalization group fixed point which can describe a direct phase transition. We also
present numerical density-matrix renormalization group studies of lattice chiral clock and Bose gas models for
N = 3, finding good evidence for a direct phase transition, and obtain estimates for z and the correlation length
exponent ν.

DOI: 10.1103/PhysRevB.98.205118

I. INTRODUCTION

Recent experiments on one-dimensional chains of Rb
atoms excited to Rydberg states by Bernien et al. [1] have
displayed quantum transitions to ordered states with a period
of N sites, with N ! 2. This phase transition is described by
a model of hard-core bosons proposed by Fendley et al. [2].
Such phase transitions are in the universality class of the ZN

clock model with couplings which preserve both time-reversal
and spatial inversion symmetries. For N ! 3, the required
clock models must be chiral [3,4]: domain walls have distinct
energies depending upon whether the clock rotates clockwise
or counterclockwise upon crossing the wall while moving to
the right.

There has been much theoretical and numerical work on
ZN chiral clock models, both as quantum models in one
spatial dimension (d) and as classical models in two spatial
dimensions [3–18]. These models exhibit a complex phase
diagram with 3 types of phases:

(i) A gapped phase with long-range ZN order (this phase
was referred to as “topological” in a parafermionic formula-
tion [11,12]).

(ii) A gapped phase with no broken symmetry and expo-
nentially decaying ZN correlations.

(iii) A gapless phase with incommensurate ZN correla-
tions decaying as a power law.

It is important to note, however, that many of the previous
studies are under conditions in which the Hamiltonian does
not preserve time-reversal and/or spatial inversion symme-
tries. Imposing time-reversal and spatial inversion symmetries
will be crucial for our theoretical analysis, and indeed, such

symmetries are present in the Rydberg atom realization [1].
With these symmetries imposed, we will examine the direct
transition between the two gapped phases noted above, with-
out an intermediate incommensurate phase. The possibility
of such a direct transition was already noted in early work
[5], but was questioned subsequently [7] (see Appendix E).
However, numerical evidence for a direct transition for N = 3
has emerged in recent work [12,14]. This paper will provide
a field-theoretic renormalization group analysis of the direct
transition, along with additional numerical density-matrix
renormalization group (DMRG) results. Our main theoretical
tool will be a duality mapping of the chiral clock model
transition in d = 1 onto that of a Bose gas, involving the
onset of a single boson condensate in the background of a
higher-dimensional N -boson condensate [19].

Let us begin by writing down a possible field theory for
period-N ordering [2]. Let ! be the density wave order pa-
rameter, so that ! → e2π in/N! under translation by n lattice
spacings, where n is a positive or negative integer. Using
translational and time-reversal symmetries (described in more
detail below), we obtain an action defined on continuous
d = 1 space (x) and imaginary time (τ ):

S! =
∫

dx dτ [|∂τ!|2 + |∂x!|2 + iαx!
∗∂x!

+ s!|!|2 + u|!|4 + λ(!N + (!∗)N )]. (1)

We show the phase diagram of S! in d > 1 in Fig. 1, and in
d = 1 in Fig. 2. The field theory S! also applies to the chiral
clock model with order parameter !, in which case ! →
e2π in/N! is an internal symmetry of the clock model, without

2469-9950/2018/98(20)/205118(28) 205118-1 ©2018 American Physical Society

S. Whitsitt, R. Samajdar, and S. Sachdev



QFT for chiral clock model
What is the critical field theory? First try: write the most general theory for order 
parameter with appropriate symmetries.

<latexit sha1_base64="RQWgUMX5MPI6uy163rDw/B+tFf8=">AAACDnicbVDLSgMxFM3UV62vUZdugqXgQupMEXRZdONKKtgHdMaSSTNtaCYZkoxShn6BG3/FjQtF3Lp259+YaWehrQcCh3PO5eaeIGZUacf5tgpLyyura8X10sbm1vaOvbvXUiKRmDSxYEJ2AqQIo5w0NdWMdGJJUBQw0g5Gl5nfvidSUcFv9TgmfoQGnIYUI22knl3xGkMKPUkHQ42kFA+Q3KU16MUU0pPriXcMs0DPLjtVZwq4SNyclEGORs/+8voCJxHhGjOkVNd1Yu2nSGqKGZmUvESRGOERGpCuoRxFRPnp9JwJrBilD0MhzeMaTtXfEymKlBpHgUlGSA/VvJeJ/3ndRIfnfkp5nGjC8WxRmDCoBcy6gX0qCdZsbAjCkpq/QjxEEmFtGiyZEtz5kxdJq1Z1Db85Ldcv8jqK4AAcgiPggjNQB1egAZoAg0fwDF7Bm/VkvVjv1scsWrDymX3wB9bnDzpUmuw=</latexit>

<latexit sha1_base64="cOkuOhyiNFf2FpLQNNqDISr6skM="></latexit>

<latexit sha1_base64="0FRUvxh+y2hl3ZhojM/N70GDNuk=">AAACFnicbVDLSgNBEJz1GeMr6tHLYBAimLArgh6DXjxGMA/IxtA7mSRDZh/M9KphyVd48Ve8eFDEq3jzb5wke9DEgoGiqpqeLi+SQqNtf1sLi0vLK6uZtez6xubWdm5nt6bDWDFeZaEMVcMDzaUIeBUFSt6IFAffk7zuDS7Hfv2OKy3C4AaHEW/50AtEVzBAI7VzRbfSF4WHYxchPqKuEr0+glLhPR0bt4kLGkeFYhpo5/J2yZ6AzhMnJXmSotLOfbmdkMU+D5BJ0Lrp2BG2ElAomOSjrBtrHgEbQI83DQ3A57qVTM4a0UOjdGg3VOYFSCfq74kEfK2HvmeSPmBfz3pj8T+vGWP3vJWIIIqRB2y6qBtLiiEdd0Q7QnGGcmgIMCXMXynrgwKGpsmsKcGZPXme1E5KjuHXp/nyRVpHhuyTA1IgDjkjZXJFKqRKGHkkz+SVvFlP1ov1bn1MowtWOrNH/sD6/AELDZ6p</latexit>

In perturbation theory, the field condenses at nonzero momentum. 

<latexit sha1_base64="NsEM2p6ndF6qZQBfMtBNdD+CmVQ="></latexit>

PHYSICAL REVIEW B 98, 205118 (2018)

Quantum field theory for the chiral clock transition in one spatial dimension

Seth Whitsitt,1,2 Rhine Samajdar,1 and Subir Sachdev1,3

1Department of Physics, Harvard University, Cambridge, Massachusetts 02138, USA
2Joint Quantum Institute, National Institute of Standards and Technology and the University of Maryland, College Park, Maryland 20742, USA

3Perimeter Institute for Theoretical Physics, Waterloo, Ontario, Canada N2L 2Y5

(Received 30 August 2018; published 9 November 2018)

We describe the quantum phase transition in the N -state chiral clock model in spatial dimension d = 1. With
couplings chosen to preserve time-reversal and spatial inversion symmetries, such a model is in the universality
class of recent experimental studies of the ordering of pumped Rydberg states in a one-dimensional chain of
trapped ultracold alkali atoms. For such couplings and N = 3, the clock model is expected to have a direct phase
transition from a gapped phase with a broken global ZN symmetry, to a gapped phase with the ZN symmetry
restored. The transition has dynamical critical exponent z != 1, and so cannot be described by a relativistic
quantum field theory. We use a lattice duality transformation to map the transition onto that of a Bose gas in
d = 1, involving the onset of a single-boson condensate in the background of a higher-dimensional N -boson
condensate. We present a renormalization group analysis of the strongly coupled field theory for the Bose gas
transition in an expansion in 2 − d , with 4 − N chosen to be of order 2 − d . At two-loop order, we find a regime
of parameters with a renormalization group fixed point which can describe a direct phase transition. We also
present numerical density-matrix renormalization group studies of lattice chiral clock and Bose gas models for
N = 3, finding good evidence for a direct phase transition, and obtain estimates for z and the correlation length
exponent ν.

DOI: 10.1103/PhysRevB.98.205118

I. INTRODUCTION

Recent experiments on one-dimensional chains of Rb
atoms excited to Rydberg states by Bernien et al. [1] have
displayed quantum transitions to ordered states with a period
of N sites, with N ! 2. This phase transition is described by
a model of hard-core bosons proposed by Fendley et al. [2].
Such phase transitions are in the universality class of the ZN

clock model with couplings which preserve both time-reversal
and spatial inversion symmetries. For N ! 3, the required
clock models must be chiral [3,4]: domain walls have distinct
energies depending upon whether the clock rotates clockwise
or counterclockwise upon crossing the wall while moving to
the right.

There has been much theoretical and numerical work on
ZN chiral clock models, both as quantum models in one
spatial dimension (d) and as classical models in two spatial
dimensions [3–18]. These models exhibit a complex phase
diagram with 3 types of phases:

(i) A gapped phase with long-range ZN order (this phase
was referred to as “topological” in a parafermionic formula-
tion [11,12]).

(ii) A gapped phase with no broken symmetry and expo-
nentially decaying ZN correlations.

(iii) A gapless phase with incommensurate ZN correla-
tions decaying as a power law.

It is important to note, however, that many of the previous
studies are under conditions in which the Hamiltonian does
not preserve time-reversal and/or spatial inversion symme-
tries. Imposing time-reversal and spatial inversion symmetries
will be crucial for our theoretical analysis, and indeed, such

symmetries are present in the Rydberg atom realization [1].
With these symmetries imposed, we will examine the direct
transition between the two gapped phases noted above, with-
out an intermediate incommensurate phase. The possibility
of such a direct transition was already noted in early work
[5], but was questioned subsequently [7] (see Appendix E).
However, numerical evidence for a direct transition for N = 3
has emerged in recent work [12,14]. This paper will provide
a field-theoretic renormalization group analysis of the direct
transition, along with additional numerical density-matrix
renormalization group (DMRG) results. Our main theoretical
tool will be a duality mapping of the chiral clock model
transition in d = 1 onto that of a Bose gas, involving the
onset of a single boson condensate in the background of a
higher-dimensional N -boson condensate [19].

Let us begin by writing down a possible field theory for
period-N ordering [2]. Let ! be the density wave order pa-
rameter, so that ! → e2π in/N! under translation by n lattice
spacings, where n is a positive or negative integer. Using
translational and time-reversal symmetries (described in more
detail below), we obtain an action defined on continuous
d = 1 space (x) and imaginary time (τ ):

S! =
∫

dx dτ [|∂τ!|2 + |∂x!|2 + iαx!
∗∂x!

+ s!|!|2 + u|!|4 + λ(!N + (!∗)N )]. (1)

We show the phase diagram of S! in d > 1 in Fig. 1, and in
d = 1 in Fig. 2. The field theory S! also applies to the chiral
clock model with order parameter !, in which case ! →
e2π in/N! is an internal symmetry of the clock model, without
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trapped ultracold alkali atoms. For such couplings and N = 3, the clock model is expected to have a direct phase
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restored. The transition has dynamical critical exponent z != 1, and so cannot be described by a relativistic
quantum field theory. We use a lattice duality transformation to map the transition onto that of a Bose gas in
d = 1, involving the onset of a single-boson condensate in the background of a higher-dimensional N -boson
condensate. We present a renormalization group analysis of the strongly coupled field theory for the Bose gas
transition in an expansion in 2 − d , with 4 − N chosen to be of order 2 − d . At two-loop order, we find a regime
of parameters with a renormalization group fixed point which can describe a direct phase transition. We also
present numerical density-matrix renormalization group studies of lattice chiral clock and Bose gas models for
N = 3, finding good evidence for a direct phase transition, and obtain estimates for z and the correlation length
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I. INTRODUCTION

Recent experiments on one-dimensional chains of Rb
atoms excited to Rydberg states by Bernien et al. [1] have
displayed quantum transitions to ordered states with a period
of N sites, with N ! 2. This phase transition is described by
a model of hard-core bosons proposed by Fendley et al. [2].
Such phase transitions are in the universality class of the ZN

clock model with couplings which preserve both time-reversal
and spatial inversion symmetries. For N ! 3, the required
clock models must be chiral [3,4]: domain walls have distinct
energies depending upon whether the clock rotates clockwise
or counterclockwise upon crossing the wall while moving to
the right.

There has been much theoretical and numerical work on
ZN chiral clock models, both as quantum models in one
spatial dimension (d) and as classical models in two spatial
dimensions [3–18]. These models exhibit a complex phase
diagram with 3 types of phases:

(i) A gapped phase with long-range ZN order (this phase
was referred to as “topological” in a parafermionic formula-
tion [11,12]).

(ii) A gapped phase with no broken symmetry and expo-
nentially decaying ZN correlations.

(iii) A gapless phase with incommensurate ZN correla-
tions decaying as a power law.

It is important to note, however, that many of the previous
studies are under conditions in which the Hamiltonian does
not preserve time-reversal and/or spatial inversion symme-
tries. Imposing time-reversal and spatial inversion symmetries
will be crucial for our theoretical analysis, and indeed, such

symmetries are present in the Rydberg atom realization [1].
With these symmetries imposed, we will examine the direct
transition between the two gapped phases noted above, with-
out an intermediate incommensurate phase. The possibility
of such a direct transition was already noted in early work
[5], but was questioned subsequently [7] (see Appendix E).
However, numerical evidence for a direct transition for N = 3
has emerged in recent work [12,14]. This paper will provide
a field-theoretic renormalization group analysis of the direct
transition, along with additional numerical density-matrix
renormalization group (DMRG) results. Our main theoretical
tool will be a duality mapping of the chiral clock model
transition in d = 1 onto that of a Bose gas, involving the
onset of a single boson condensate in the background of a
higher-dimensional N -boson condensate [19].

Let us begin by writing down a possible field theory for
period-N ordering [2]. Let ! be the density wave order pa-
rameter, so that ! → e2π in/N! under translation by n lattice
spacings, where n is a positive or negative integer. Using
translational and time-reversal symmetries (described in more
detail below), we obtain an action defined on continuous
d = 1 space (x) and imaginary time (τ ):

S! =
∫

dx dτ [|∂τ!|2 + |∂x!|2 + iαx!
∗∂x!

+ s!|!|2 + u|!|4 + λ(!N + (!∗)N )]. (1)

We show the phase diagram of S! in d > 1 in Fig. 1, and in
d = 1 in Fig. 2. The field theory S! also applies to the chiral
clock model with order parameter !, in which case ! →
e2π in/N! is an internal symmetry of the clock model, without
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I. INTRODUCTION

Recent experiments on one-dimensional chains of Rb
atoms excited to Rydberg states by Bernien et al. [1] have
displayed quantum transitions to ordered states with a period
of N sites, with N ! 2. This phase transition is described by
a model of hard-core bosons proposed by Fendley et al. [2].
Such phase transitions are in the universality class of the ZN

clock model with couplings which preserve both time-reversal
and spatial inversion symmetries. For N ! 3, the required
clock models must be chiral [3,4]: domain walls have distinct
energies depending upon whether the clock rotates clockwise
or counterclockwise upon crossing the wall while moving to
the right.

There has been much theoretical and numerical work on
ZN chiral clock models, both as quantum models in one
spatial dimension (d) and as classical models in two spatial
dimensions [3–18]. These models exhibit a complex phase
diagram with 3 types of phases:

(i) A gapped phase with long-range ZN order (this phase
was referred to as “topological” in a parafermionic formula-
tion [11,12]).

(ii) A gapped phase with no broken symmetry and expo-
nentially decaying ZN correlations.

(iii) A gapless phase with incommensurate ZN correla-
tions decaying as a power law.

It is important to note, however, that many of the previous
studies are under conditions in which the Hamiltonian does
not preserve time-reversal and/or spatial inversion symme-
tries. Imposing time-reversal and spatial inversion symmetries
will be crucial for our theoretical analysis, and indeed, such

symmetries are present in the Rydberg atom realization [1].
With these symmetries imposed, we will examine the direct
transition between the two gapped phases noted above, with-
out an intermediate incommensurate phase. The possibility
of such a direct transition was already noted in early work
[5], but was questioned subsequently [7] (see Appendix E).
However, numerical evidence for a direct transition for N = 3
has emerged in recent work [12,14]. This paper will provide
a field-theoretic renormalization group analysis of the direct
transition, along with additional numerical density-matrix
renormalization group (DMRG) results. Our main theoretical
tool will be a duality mapping of the chiral clock model
transition in d = 1 onto that of a Bose gas, involving the
onset of a single boson condensate in the background of a
higher-dimensional N -boson condensate [19].

Let us begin by writing down a possible field theory for
period-N ordering [2]. Let ! be the density wave order pa-
rameter, so that ! → e2π in/N! under translation by n lattice
spacings, where n is a positive or negative integer. Using
translational and time-reversal symmetries (described in more
detail below), we obtain an action defined on continuous
d = 1 space (x) and imaginary time (τ ):

S! =
∫

dx dτ [|∂τ!|2 + |∂x!|2 + iαx!
∗∂x!

+ s!|!|2 + u|!|4 + λ(!N + (!∗)N )]. (1)

We show the phase diagram of S! in d > 1 in Fig. 1, and in
d = 1 in Fig. 2. The field theory S! also applies to the chiral
clock model with order parameter !, in which case ! →
e2π in/N! is an internal symmetry of the clock model, without
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I. INTRODUCTION

Recent experiments on one-dimensional chains of Rb
atoms excited to Rydberg states by Bernien et al. [1] have
displayed quantum transitions to ordered states with a period
of N sites, with N ! 2. This phase transition is described by
a model of hard-core bosons proposed by Fendley et al. [2].
Such phase transitions are in the universality class of the ZN

clock model with couplings which preserve both time-reversal
and spatial inversion symmetries. For N ! 3, the required
clock models must be chiral [3,4]: domain walls have distinct
energies depending upon whether the clock rotates clockwise
or counterclockwise upon crossing the wall while moving to
the right.

There has been much theoretical and numerical work on
ZN chiral clock models, both as quantum models in one
spatial dimension (d) and as classical models in two spatial
dimensions [3–18]. These models exhibit a complex phase
diagram with 3 types of phases:

(i) A gapped phase with long-range ZN order (this phase
was referred to as “topological” in a parafermionic formula-
tion [11,12]).

(ii) A gapped phase with no broken symmetry and expo-
nentially decaying ZN correlations.

(iii) A gapless phase with incommensurate ZN correla-
tions decaying as a power law.

It is important to note, however, that many of the previous
studies are under conditions in which the Hamiltonian does
not preserve time-reversal and/or spatial inversion symme-
tries. Imposing time-reversal and spatial inversion symmetries
will be crucial for our theoretical analysis, and indeed, such

symmetries are present in the Rydberg atom realization [1].
With these symmetries imposed, we will examine the direct
transition between the two gapped phases noted above, with-
out an intermediate incommensurate phase. The possibility
of such a direct transition was already noted in early work
[5], but was questioned subsequently [7] (see Appendix E).
However, numerical evidence for a direct transition for N = 3
has emerged in recent work [12,14]. This paper will provide
a field-theoretic renormalization group analysis of the direct
transition, along with additional numerical density-matrix
renormalization group (DMRG) results. Our main theoretical
tool will be a duality mapping of the chiral clock model
transition in d = 1 onto that of a Bose gas, involving the
onset of a single boson condensate in the background of a
higher-dimensional N -boson condensate [19].

Let us begin by writing down a possible field theory for
period-N ordering [2]. Let ! be the density wave order pa-
rameter, so that ! → e2π in/N! under translation by n lattice
spacings, where n is a positive or negative integer. Using
translational and time-reversal symmetries (described in more
detail below), we obtain an action defined on continuous
d = 1 space (x) and imaginary time (τ ):

S! =
∫

dx dτ [|∂τ!|2 + |∂x!|2 + iαx!
∗∂x!

+ s!|!|2 + u|!|4 + λ(!N + (!∗)N )]. (1)

We show the phase diagram of S! in d > 1 in Fig. 1, and in
d = 1 in Fig. 2. The field theory S! also applies to the chiral
clock model with order parameter !, in which case ! →
e2π in/N! is an internal symmetry of the clock model, without
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I. INTRODUCTION

Recent experiments on one-dimensional chains of Rb
atoms excited to Rydberg states by Bernien et al. [1] have
displayed quantum transitions to ordered states with a period
of N sites, with N ! 2. This phase transition is described by
a model of hard-core bosons proposed by Fendley et al. [2].
Such phase transitions are in the universality class of the ZN

clock model with couplings which preserve both time-reversal
and spatial inversion symmetries. For N ! 3, the required
clock models must be chiral [3,4]: domain walls have distinct
energies depending upon whether the clock rotates clockwise
or counterclockwise upon crossing the wall while moving to
the right.

There has been much theoretical and numerical work on
ZN chiral clock models, both as quantum models in one
spatial dimension (d) and as classical models in two spatial
dimensions [3–18]. These models exhibit a complex phase
diagram with 3 types of phases:

(i) A gapped phase with long-range ZN order (this phase
was referred to as “topological” in a parafermionic formula-
tion [11,12]).

(ii) A gapped phase with no broken symmetry and expo-
nentially decaying ZN correlations.

(iii) A gapless phase with incommensurate ZN correla-
tions decaying as a power law.

It is important to note, however, that many of the previous
studies are under conditions in which the Hamiltonian does
not preserve time-reversal and/or spatial inversion symme-
tries. Imposing time-reversal and spatial inversion symmetries
will be crucial for our theoretical analysis, and indeed, such

symmetries are present in the Rydberg atom realization [1].
With these symmetries imposed, we will examine the direct
transition between the two gapped phases noted above, with-
out an intermediate incommensurate phase. The possibility
of such a direct transition was already noted in early work
[5], but was questioned subsequently [7] (see Appendix E).
However, numerical evidence for a direct transition for N = 3
has emerged in recent work [12,14]. This paper will provide
a field-theoretic renormalization group analysis of the direct
transition, along with additional numerical density-matrix
renormalization group (DMRG) results. Our main theoretical
tool will be a duality mapping of the chiral clock model
transition in d = 1 onto that of a Bose gas, involving the
onset of a single boson condensate in the background of a
higher-dimensional N -boson condensate [19].

Let us begin by writing down a possible field theory for
period-N ordering [2]. Let ! be the density wave order pa-
rameter, so that ! → e2π in/N! under translation by n lattice
spacings, where n is a positive or negative integer. Using
translational and time-reversal symmetries (described in more
detail below), we obtain an action defined on continuous
d = 1 space (x) and imaginary time (τ ):

S! =
∫

dx dτ [|∂τ!|2 + |∂x!|2 + iαx!
∗∂x!

+ s!|!|2 + u|!|4 + λ(!N + (!∗)N )]. (1)

We show the phase diagram of S! in d > 1 in Fig. 1, and in
d = 1 in Fig. 2. The field theory S! also applies to the chiral
clock model with order parameter !, in which case ! →
e2π in/N! is an internal symmetry of the clock model, without
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transition between the two gapped phases noted above, with-
out an intermediate incommensurate phase. The possibility
of such a direct transition was already noted in early work
[5], but was questioned subsequently [7] (see Appendix E).
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has emerged in recent work [12,14]. This paper will provide
a field-theoretic renormalization group analysis of the direct
transition, along with additional numerical density-matrix
renormalization group (DMRG) results. Our main theoretical
tool will be a duality mapping of the chiral clock model
transition in d = 1 onto that of a Bose gas, involving the
onset of a single boson condensate in the background of a
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Let us begin by writing down a possible field theory for
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spacings, where n is a positive or negative integer. Using
translational and time-reversal symmetries (described in more
detail below), we obtain an action defined on continuous
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I. INTRODUCTION

Recent experiments on one-dimensional chains of Rb
atoms excited to Rydberg states by Bernien et al. [1] have
displayed quantum transitions to ordered states with a period
of N sites, with N ! 2. This phase transition is described by
a model of hard-core bosons proposed by Fendley et al. [2].
Such phase transitions are in the universality class of the ZN

clock model with couplings which preserve both time-reversal
and spatial inversion symmetries. For N ! 3, the required
clock models must be chiral [3,4]: domain walls have distinct
energies depending upon whether the clock rotates clockwise
or counterclockwise upon crossing the wall while moving to
the right.

There has been much theoretical and numerical work on
ZN chiral clock models, both as quantum models in one
spatial dimension (d) and as classical models in two spatial
dimensions [3–18]. These models exhibit a complex phase
diagram with 3 types of phases:

(i) A gapped phase with long-range ZN order (this phase
was referred to as “topological” in a parafermionic formula-
tion [11,12]).

(ii) A gapped phase with no broken symmetry and expo-
nentially decaying ZN correlations.

(iii) A gapless phase with incommensurate ZN correla-
tions decaying as a power law.

It is important to note, however, that many of the previous
studies are under conditions in which the Hamiltonian does
not preserve time-reversal and/or spatial inversion symme-
tries. Imposing time-reversal and spatial inversion symmetries
will be crucial for our theoretical analysis, and indeed, such

symmetries are present in the Rydberg atom realization [1].
With these symmetries imposed, we will examine the direct
transition between the two gapped phases noted above, with-
out an intermediate incommensurate phase. The possibility
of such a direct transition was already noted in early work
[5], but was questioned subsequently [7] (see Appendix E).
However, numerical evidence for a direct transition for N = 3
has emerged in recent work [12,14]. This paper will provide
a field-theoretic renormalization group analysis of the direct
transition, along with additional numerical density-matrix
renormalization group (DMRG) results. Our main theoretical
tool will be a duality mapping of the chiral clock model
transition in d = 1 onto that of a Bose gas, involving the
onset of a single boson condensate in the background of a
higher-dimensional N -boson condensate [19].

Let us begin by writing down a possible field theory for
period-N ordering [2]. Let ! be the density wave order pa-
rameter, so that ! → e2π in/N! under translation by n lattice
spacings, where n is a positive or negative integer. Using
translational and time-reversal symmetries (described in more
detail below), we obtain an action defined on continuous
d = 1 space (x) and imaginary time (τ ):

S! =
∫

dx dτ [|∂τ!|2 + |∂x!|2 + iαx!
∗∂x!

+ s!|!|2 + u|!|4 + λ(!N + (!∗)N )]. (1)

We show the phase diagram of S! in d > 1 in Fig. 1, and in
d = 1 in Fig. 2. The field theory S! also applies to the chiral
clock model with order parameter !, in which case ! →
e2π in/N! is an internal symmetry of the clock model, without
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FIG. 1. Zero-temperature phase diagrams of S! [Eq. (1)] and
S" [Eq. (2)] in spatial dimensions d > 1. This paper studies the
transition in S" in an expansion in (2 − d ). In d > 1, S! and S"

describe distinct physical phenomena, and are expected to have
different phase diagrams and transitions.

combining with spatial translations. So in the clock model, a
state with 〈!〉 $= 0 has a spatially uniform condensate, while
this state has period N ordering in the boson model of Ref. [2].
The term proportional to the real number αx is crucial, and
is responsible for the chirality in both models. A nonzero αx

yields an inverse propagator for ! which has a minimum
at a nonzero wave vector kI = αx/2, and hence induces
incommensurate order parameter correlations. When treated
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FIG. 2. The common zero-temperature phase diagrams of S!

[Eq. (1)] and S" [Eq. (2)] in spatial dimension d = 1. There is
a Kramers-Wannier duality between S! and S" in d = 1, and so
the two actions have the same phases and transitions. For larger N

(possibly all N ! 4) there is an intermediate gapless phase, while
for N = 2, 3 there can be a direct transition between gapped phases.
This paper describes the direct transition between gapped phases for
N = 3. The transitions out of the gapless Luttinger liquid are in the
Kosterlitz-Thouless [20] (KT) and Pokrovsky-Talapov [21,22] (PT)
classes.

perturbatively in u and λ, S! will lead to condensation of !
at kI , and hence a to state with long-range incommensurate
order. Taking ! ∼ eikI x , we see that the phase-locking term
proportional to λ spatially averages to zero. Consequently,
although S! has only a discrete ZN symmetry, the low-energy
theory of the incommensurate state has an emergent U(1)
symmetry which leads to a gapless “phason” mode [23] (note
that this argument applies also in spatial dimensions d > 1,
as illustrated in Fig. 1). This is the reason for the difficulty
in obtaining a theory for the direct transition in the chiral
model from a gapped disordered phase, to a commensurate
ZN -ordered phase: the perturbative analysis of the field theory
in Eq. (1) implies that such a direct transition does not exist,
and there is an intermediate gapless incommensurate phase.
On the other hand, there is ample evidence from numeri-
cal studies for the existence of a direct transition [12,14]
in d = 1.

One of our main results will be an exact duality between
models described by S! in d = 1, and a theory of the con-
densation of a nonrelativistic Bose gas in d = 1. Specifically,
we consider a Bose gas, with Bose field ", which under-
goes a condensation transition in the presence of a higher-
dimensional background condensate of a “molecule” of N
bosons. This implies that we always have 〈"N 〉 $= 0. The
continuum theory for the onset of a single-boson condensate
in the presence of an N -boson condensate is [19]

S" =
∫

dx dτ [|∂τ"|2 + |∂x"|2 + ατ"
∗∂τ"

+ s" |"|2 + u|"|4 + λ("N + ("∗)N )], (2)

where ατ (and all other couplings) are real; note that there
is no direct relationship between the values of s",!, u, λ
between S! and S" . At first glance, it might appear that the
relationship between S! and S" is trivial, and they are related
simply by a Wick rotation which exchanges space (x) and
imaginary time (τ ). However, that is not the case. There is
a crucial difference in a factor of i between the first-order
derivative terms in Eqs. (1) and (2), and this difference is
required by the unitarity of both theories. A Wick rotation
relationship would imply that the dynamical critical exponent
z of S! is the inverse of the z of S" , and that the scaling
dimensions of ! and " are equal. The actual relationship be-
tween the theories is a Kramers-Wannier type duality between
the ! and " fields, and one is the “disorder” field of the other.
Furthermore, unlike the N = 2 Ising case, the duality is not a
self-duality for N > 2; consequently the scaling dimensions
of ! and " are not equal to each other for N $= 2. Finally,
because the duality does not actually involve a Wick rotation,
the values of z of the theories S! and S" are equal to each
other, as are the values of their correlation length exponents ν.

The advantage of working with S" is that it allows a
perturbative study (near two spatial dimensions) of a direct
transition between a phase with 〈"〉 = 0, to a phase with a
uniform condensate 〈"〉 $= 0 (see Fig. 1). Under the duality
mapping in d = 1, these phases correspond to clock model
states with 〈!〉 $= 0 (and spatially uniform) and 〈!〉 = 0,
respectively (see Fig. 2). Note that with a spatially uniform "
condensate, the λ term in Eq. (2) does not average to zero, and
so there is no emergent U(1) symmetry and the "-condensed
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clock model with couplings which preserve both time-reversal
and spatial inversion symmetries. For N ! 3, the required
clock models must be chiral [3,4]: domain walls have distinct
energies depending upon whether the clock rotates clockwise
or counterclockwise upon crossing the wall while moving to
the right.

There has been much theoretical and numerical work on
ZN chiral clock models, both as quantum models in one
spatial dimension (d) and as classical models in two spatial
dimensions [3–18]. These models exhibit a complex phase
diagram with 3 types of phases:

(i) A gapped phase with long-range ZN order (this phase
was referred to as “topological” in a parafermionic formula-
tion [11,12]).

(ii) A gapped phase with no broken symmetry and expo-
nentially decaying ZN correlations.

(iii) A gapless phase with incommensurate ZN correla-
tions decaying as a power law.

It is important to note, however, that many of the previous
studies are under conditions in which the Hamiltonian does
not preserve time-reversal and/or spatial inversion symme-
tries. Imposing time-reversal and spatial inversion symmetries
will be crucial for our theoretical analysis, and indeed, such

symmetries are present in the Rydberg atom realization [1].
With these symmetries imposed, we will examine the direct
transition between the two gapped phases noted above, with-
out an intermediate incommensurate phase. The possibility
of such a direct transition was already noted in early work
[5], but was questioned subsequently [7] (see Appendix E).
However, numerical evidence for a direct transition for N = 3
has emerged in recent work [12,14]. This paper will provide
a field-theoretic renormalization group analysis of the direct
transition, along with additional numerical density-matrix
renormalization group (DMRG) results. Our main theoretical
tool will be a duality mapping of the chiral clock model
transition in d = 1 onto that of a Bose gas, involving the
onset of a single boson condensate in the background of a
higher-dimensional N -boson condensate [19].

Let us begin by writing down a possible field theory for
period-N ordering [2]. Let ! be the density wave order pa-
rameter, so that ! → e2π in/N! under translation by n lattice
spacings, where n is a positive or negative integer. Using
translational and time-reversal symmetries (described in more
detail below), we obtain an action defined on continuous
d = 1 space (x) and imaginary time (τ ):

S! =
∫

dx dτ [|∂τ!|2 + |∂x!|2 + iαx!
∗∂x!

+ s!|!|2 + u|!|4 + λ(!N + (!∗)N )]. (1)

We show the phase diagram of S! in d > 1 in Fig. 1, and in
d = 1 in Fig. 2. The field theory S! also applies to the chiral
clock model with order parameter !, in which case ! →
e2π in/N! is an internal symmetry of the clock model, without
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energies depending upon whether the clock rotates clockwise
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diagram with 3 types of phases:
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was referred to as “topological” in a parafermionic formula-
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(ii) A gapped phase with no broken symmetry and expo-
nentially decaying ZN correlations.

(iii) A gapless phase with incommensurate ZN correla-
tions decaying as a power law.

It is important to note, however, that many of the previous
studies are under conditions in which the Hamiltonian does
not preserve time-reversal and/or spatial inversion symme-
tries. Imposing time-reversal and spatial inversion symmetries
will be crucial for our theoretical analysis, and indeed, such

symmetries are present in the Rydberg atom realization [1].
With these symmetries imposed, we will examine the direct
transition between the two gapped phases noted above, with-
out an intermediate incommensurate phase. The possibility
of such a direct transition was already noted in early work
[5], but was questioned subsequently [7] (see Appendix E).
However, numerical evidence for a direct transition for N = 3
has emerged in recent work [12,14]. This paper will provide
a field-theoretic renormalization group analysis of the direct
transition, along with additional numerical density-matrix
renormalization group (DMRG) results. Our main theoretical
tool will be a duality mapping of the chiral clock model
transition in d = 1 onto that of a Bose gas, involving the
onset of a single boson condensate in the background of a
higher-dimensional N -boson condensate [19].

Let us begin by writing down a possible field theory for
period-N ordering [2]. Let ! be the density wave order pa-
rameter, so that ! → e2π in/N! under translation by n lattice
spacings, where n is a positive or negative integer. Using
translational and time-reversal symmetries (described in more
detail below), we obtain an action defined on continuous
d = 1 space (x) and imaginary time (τ ):

S! =
∫

dx dτ [|∂τ!|2 + |∂x!|2 + iαx!
∗∂x!

+ s!|!|2 + u|!|4 + λ(!N + (!∗)N )]. (1)

We show the phase diagram of S! in d > 1 in Fig. 1, and in
d = 1 in Fig. 2. The field theory S! also applies to the chiral
clock model with order parameter !, in which case ! →
e2π in/N! is an internal symmetry of the clock model, without
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I. INTRODUCTION

Recent experiments on one-dimensional chains of Rb
atoms excited to Rydberg states by Bernien et al. [1] have
displayed quantum transitions to ordered states with a period
of N sites, with N ! 2. This phase transition is described by
a model of hard-core bosons proposed by Fendley et al. [2].
Such phase transitions are in the universality class of the ZN

clock model with couplings which preserve both time-reversal
and spatial inversion symmetries. For N ! 3, the required
clock models must be chiral [3,4]: domain walls have distinct
energies depending upon whether the clock rotates clockwise
or counterclockwise upon crossing the wall while moving to
the right.

There has been much theoretical and numerical work on
ZN chiral clock models, both as quantum models in one
spatial dimension (d) and as classical models in two spatial
dimensions [3–18]. These models exhibit a complex phase
diagram with 3 types of phases:

(i) A gapped phase with long-range ZN order (this phase
was referred to as “topological” in a parafermionic formula-
tion [11,12]).

(ii) A gapped phase with no broken symmetry and expo-
nentially decaying ZN correlations.

(iii) A gapless phase with incommensurate ZN correla-
tions decaying as a power law.

It is important to note, however, that many of the previous
studies are under conditions in which the Hamiltonian does
not preserve time-reversal and/or spatial inversion symme-
tries. Imposing time-reversal and spatial inversion symmetries
will be crucial for our theoretical analysis, and indeed, such

symmetries are present in the Rydberg atom realization [1].
With these symmetries imposed, we will examine the direct
transition between the two gapped phases noted above, with-
out an intermediate incommensurate phase. The possibility
of such a direct transition was already noted in early work
[5], but was questioned subsequently [7] (see Appendix E).
However, numerical evidence for a direct transition for N = 3
has emerged in recent work [12,14]. This paper will provide
a field-theoretic renormalization group analysis of the direct
transition, along with additional numerical density-matrix
renormalization group (DMRG) results. Our main theoretical
tool will be a duality mapping of the chiral clock model
transition in d = 1 onto that of a Bose gas, involving the
onset of a single boson condensate in the background of a
higher-dimensional N -boson condensate [19].

Let us begin by writing down a possible field theory for
period-N ordering [2]. Let ! be the density wave order pa-
rameter, so that ! → e2π in/N! under translation by n lattice
spacings, where n is a positive or negative integer. Using
translational and time-reversal symmetries (described in more
detail below), we obtain an action defined on continuous
d = 1 space (x) and imaginary time (τ ):

S! =
∫

dx dτ [|∂τ!|2 + |∂x!|2 + iαx!
∗∂x!

+ s!|!|2 + u|!|4 + λ(!N + (!∗)N )]. (1)

We show the phase diagram of S! in d > 1 in Fig. 1, and in
d = 1 in Fig. 2. The field theory S! also applies to the chiral
clock model with order parameter !, in which case ! →
e2π in/N! is an internal symmetry of the clock model, without
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atoms excited to Rydberg states by Bernien et al. [1] have
displayed quantum transitions to ordered states with a period
of N sites, with N ! 2. This phase transition is described by
a model of hard-core bosons proposed by Fendley et al. [2].
Such phase transitions are in the universality class of the ZN

clock model with couplings which preserve both time-reversal
and spatial inversion symmetries. For N ! 3, the required
clock models must be chiral [3,4]: domain walls have distinct
energies depending upon whether the clock rotates clockwise
or counterclockwise upon crossing the wall while moving to
the right.

There has been much theoretical and numerical work on
ZN chiral clock models, both as quantum models in one
spatial dimension (d) and as classical models in two spatial
dimensions [3–18]. These models exhibit a complex phase
diagram with 3 types of phases:

(i) A gapped phase with long-range ZN order (this phase
was referred to as “topological” in a parafermionic formula-
tion [11,12]).

(ii) A gapped phase with no broken symmetry and expo-
nentially decaying ZN correlations.

(iii) A gapless phase with incommensurate ZN correla-
tions decaying as a power law.

It is important to note, however, that many of the previous
studies are under conditions in which the Hamiltonian does
not preserve time-reversal and/or spatial inversion symme-
tries. Imposing time-reversal and spatial inversion symmetries
will be crucial for our theoretical analysis, and indeed, such

symmetries are present in the Rydberg atom realization [1].
With these symmetries imposed, we will examine the direct
transition between the two gapped phases noted above, with-
out an intermediate incommensurate phase. The possibility
of such a direct transition was already noted in early work
[5], but was questioned subsequently [7] (see Appendix E).
However, numerical evidence for a direct transition for N = 3
has emerged in recent work [12,14]. This paper will provide
a field-theoretic renormalization group analysis of the direct
transition, along with additional numerical density-matrix
renormalization group (DMRG) results. Our main theoretical
tool will be a duality mapping of the chiral clock model
transition in d = 1 onto that of a Bose gas, involving the
onset of a single boson condensate in the background of a
higher-dimensional N -boson condensate [19].

Let us begin by writing down a possible field theory for
period-N ordering [2]. Let ! be the density wave order pa-
rameter, so that ! → e2π in/N! under translation by n lattice
spacings, where n is a positive or negative integer. Using
translational and time-reversal symmetries (described in more
detail below), we obtain an action defined on continuous
d = 1 space (x) and imaginary time (τ ):

S! =
∫

dx dτ [|∂τ!|2 + |∂x!|2 + iαx!
∗∂x!

+ s!|!|2 + u|!|4 + λ(!N + (!∗)N )]. (1)

We show the phase diagram of S! in d > 1 in Fig. 1, and in
d = 1 in Fig. 2. The field theory S! also applies to the chiral
clock model with order parameter !, in which case ! →
e2π in/N! is an internal symmetry of the clock model, without
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and spatial inversion symmetries. For N ! 3, the required
clock models must be chiral [3,4]: domain walls have distinct
energies depending upon whether the clock rotates clockwise
or counterclockwise upon crossing the wall while moving to
the right.

There has been much theoretical and numerical work on
ZN chiral clock models, both as quantum models in one
spatial dimension (d) and as classical models in two spatial
dimensions [3–18]. These models exhibit a complex phase
diagram with 3 types of phases:

(i) A gapped phase with long-range ZN order (this phase
was referred to as “topological” in a parafermionic formula-
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(ii) A gapped phase with no broken symmetry and expo-
nentially decaying ZN correlations.

(iii) A gapless phase with incommensurate ZN correla-
tions decaying as a power law.

It is important to note, however, that many of the previous
studies are under conditions in which the Hamiltonian does
not preserve time-reversal and/or spatial inversion symme-
tries. Imposing time-reversal and spatial inversion symmetries
will be crucial for our theoretical analysis, and indeed, such

symmetries are present in the Rydberg atom realization [1].
With these symmetries imposed, we will examine the direct
transition between the two gapped phases noted above, with-
out an intermediate incommensurate phase. The possibility
of such a direct transition was already noted in early work
[5], but was questioned subsequently [7] (see Appendix E).
However, numerical evidence for a direct transition for N = 3
has emerged in recent work [12,14]. This paper will provide
a field-theoretic renormalization group analysis of the direct
transition, along with additional numerical density-matrix
renormalization group (DMRG) results. Our main theoretical
tool will be a duality mapping of the chiral clock model
transition in d = 1 onto that of a Bose gas, involving the
onset of a single boson condensate in the background of a
higher-dimensional N -boson condensate [19].

Let us begin by writing down a possible field theory for
period-N ordering [2]. Let ! be the density wave order pa-
rameter, so that ! → e2π in/N! under translation by n lattice
spacings, where n is a positive or negative integer. Using
translational and time-reversal symmetries (described in more
detail below), we obtain an action defined on continuous
d = 1 space (x) and imaginary time (τ ):

S! =
∫

dx dτ [|∂τ!|2 + |∂x!|2 + iαx!
∗∂x!

+ s!|!|2 + u|!|4 + λ(!N + (!∗)N )]. (1)

We show the phase diagram of S! in d > 1 in Fig. 1, and in
d = 1 in Fig. 2. The field theory S! also applies to the chiral
clock model with order parameter !, in which case ! →
e2π in/N! is an internal symmetry of the clock model, without
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FIG. 1. Zero-temperature phase diagrams of S! [Eq. (1)] and
S" [Eq. (2)] in spatial dimensions d > 1. This paper studies the
transition in S" in an expansion in (2 − d ). In d > 1, S! and S"

describe distinct physical phenomena, and are expected to have
different phase diagrams and transitions.

combining with spatial translations. So in the clock model, a
state with 〈!〉 $= 0 has a spatially uniform condensate, while
this state has period N ordering in the boson model of Ref. [2].
The term proportional to the real number αx is crucial, and
is responsible for the chirality in both models. A nonzero αx

yields an inverse propagator for ! which has a minimum
at a nonzero wave vector kI = αx/2, and hence induces
incommensurate order parameter correlations. When treated
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FIG. 2. The common zero-temperature phase diagrams of S!

[Eq. (1)] and S" [Eq. (2)] in spatial dimension d = 1. There is
a Kramers-Wannier duality between S! and S" in d = 1, and so
the two actions have the same phases and transitions. For larger N

(possibly all N ! 4) there is an intermediate gapless phase, while
for N = 2, 3 there can be a direct transition between gapped phases.
This paper describes the direct transition between gapped phases for
N = 3. The transitions out of the gapless Luttinger liquid are in the
Kosterlitz-Thouless [20] (KT) and Pokrovsky-Talapov [21,22] (PT)
classes.

perturbatively in u and λ, S! will lead to condensation of !
at kI , and hence a to state with long-range incommensurate
order. Taking ! ∼ eikI x , we see that the phase-locking term
proportional to λ spatially averages to zero. Consequently,
although S! has only a discrete ZN symmetry, the low-energy
theory of the incommensurate state has an emergent U(1)
symmetry which leads to a gapless “phason” mode [23] (note
that this argument applies also in spatial dimensions d > 1,
as illustrated in Fig. 1). This is the reason for the difficulty
in obtaining a theory for the direct transition in the chiral
model from a gapped disordered phase, to a commensurate
ZN -ordered phase: the perturbative analysis of the field theory
in Eq. (1) implies that such a direct transition does not exist,
and there is an intermediate gapless incommensurate phase.
On the other hand, there is ample evidence from numeri-
cal studies for the existence of a direct transition [12,14]
in d = 1.

One of our main results will be an exact duality between
models described by S! in d = 1, and a theory of the con-
densation of a nonrelativistic Bose gas in d = 1. Specifically,
we consider a Bose gas, with Bose field ", which under-
goes a condensation transition in the presence of a higher-
dimensional background condensate of a “molecule” of N
bosons. This implies that we always have 〈"N 〉 $= 0. The
continuum theory for the onset of a single-boson condensate
in the presence of an N -boson condensate is [19]

S" =
∫

dx dτ [|∂τ"|2 + |∂x"|2 + ατ"
∗∂τ"

+ s" |"|2 + u|"|4 + λ("N + ("∗)N )], (2)

where ατ (and all other couplings) are real; note that there
is no direct relationship between the values of s",!, u, λ
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relationship between S! and S" is trivial, and they are related
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We describe the quantum phase transition in the N -state chiral clock model in spatial dimension d = 1. With
couplings chosen to preserve time-reversal and spatial inversion symmetries, such a model is in the universality
class of recent experimental studies of the ordering of pumped Rydberg states in a one-dimensional chain of
trapped ultracold alkali atoms. For such couplings and N = 3, the clock model is expected to have a direct phase
transition from a gapped phase with a broken global ZN symmetry, to a gapped phase with the ZN symmetry
restored. The transition has dynamical critical exponent z != 1, and so cannot be described by a relativistic
quantum field theory. We use a lattice duality transformation to map the transition onto that of a Bose gas in
d = 1, involving the onset of a single-boson condensate in the background of a higher-dimensional N -boson
condensate. We present a renormalization group analysis of the strongly coupled field theory for the Bose gas
transition in an expansion in 2 − d , with 4 − N chosen to be of order 2 − d . At two-loop order, we find a regime
of parameters with a renormalization group fixed point which can describe a direct phase transition. We also
present numerical density-matrix renormalization group studies of lattice chiral clock and Bose gas models for
N = 3, finding good evidence for a direct phase transition, and obtain estimates for z and the correlation length
exponent ν.
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I. INTRODUCTION

Recent experiments on one-dimensional chains of Rb
atoms excited to Rydberg states by Bernien et al. [1] have
displayed quantum transitions to ordered states with a period
of N sites, with N ! 2. This phase transition is described by
a model of hard-core bosons proposed by Fendley et al. [2].
Such phase transitions are in the universality class of the ZN

clock model with couplings which preserve both time-reversal
and spatial inversion symmetries. For N ! 3, the required
clock models must be chiral [3,4]: domain walls have distinct
energies depending upon whether the clock rotates clockwise
or counterclockwise upon crossing the wall while moving to
the right.

There has been much theoretical and numerical work on
ZN chiral clock models, both as quantum models in one
spatial dimension (d) and as classical models in two spatial
dimensions [3–18]. These models exhibit a complex phase
diagram with 3 types of phases:

(i) A gapped phase with long-range ZN order (this phase
was referred to as “topological” in a parafermionic formula-
tion [11,12]).

(ii) A gapped phase with no broken symmetry and expo-
nentially decaying ZN correlations.

(iii) A gapless phase with incommensurate ZN correla-
tions decaying as a power law.

It is important to note, however, that many of the previous
studies are under conditions in which the Hamiltonian does
not preserve time-reversal and/or spatial inversion symme-
tries. Imposing time-reversal and spatial inversion symmetries
will be crucial for our theoretical analysis, and indeed, such

symmetries are present in the Rydberg atom realization [1].
With these symmetries imposed, we will examine the direct
transition between the two gapped phases noted above, with-
out an intermediate incommensurate phase. The possibility
of such a direct transition was already noted in early work
[5], but was questioned subsequently [7] (see Appendix E).
However, numerical evidence for a direct transition for N = 3
has emerged in recent work [12,14]. This paper will provide
a field-theoretic renormalization group analysis of the direct
transition, along with additional numerical density-matrix
renormalization group (DMRG) results. Our main theoretical
tool will be a duality mapping of the chiral clock model
transition in d = 1 onto that of a Bose gas, involving the
onset of a single boson condensate in the background of a
higher-dimensional N -boson condensate [19].

Let us begin by writing down a possible field theory for
period-N ordering [2]. Let ! be the density wave order pa-
rameter, so that ! → e2π in/N! under translation by n lattice
spacings, where n is a positive or negative integer. Using
translational and time-reversal symmetries (described in more
detail below), we obtain an action defined on continuous
d = 1 space (x) and imaginary time (τ ):

S! =
∫

dx dτ [|∂τ!|2 + |∂x!|2 + iαx!
∗∂x!

+ s!|!|2 + u|!|4 + λ(!N + (!∗)N )]. (1)

We show the phase diagram of S! in d > 1 in Fig. 1, and in
d = 1 in Fig. 2. The field theory S! also applies to the chiral
clock model with order parameter !, in which case ! →
e2π in/N! is an internal symmetry of the clock model, without
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transition between the two gapped phases noted above, with-
out an intermediate incommensurate phase. The possibility
of such a direct transition was already noted in early work
[5], but was questioned subsequently [7] (see Appendix E).
However, numerical evidence for a direct transition for N = 3
has emerged in recent work [12,14]. This paper will provide
a field-theoretic renormalization group analysis of the direct
transition, along with additional numerical density-matrix
renormalization group (DMRG) results. Our main theoretical
tool will be a duality mapping of the chiral clock model
transition in d = 1 onto that of a Bose gas, involving the
onset of a single boson condensate in the background of a
higher-dimensional N -boson condensate [19].

Let us begin by writing down a possible field theory for
period-N ordering [2]. Let ! be the density wave order pa-
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symmetries are present in the Rydberg atom realization [1].
With these symmetries imposed, we will examine the direct
transition between the two gapped phases noted above, with-
out an intermediate incommensurate phase. The possibility
of such a direct transition was already noted in early work
[5], but was questioned subsequently [7] (see Appendix E).
However, numerical evidence for a direct transition for N = 3
has emerged in recent work [12,14]. This paper will provide
a field-theoretic renormalization group analysis of the direct
transition, along with additional numerical density-matrix
renormalization group (DMRG) results. Our main theoretical
tool will be a duality mapping of the chiral clock model
transition in d = 1 onto that of a Bose gas, involving the
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FIG. 1. Zero-temperature phase diagrams of S! [Eq. (1)] and
S" [Eq. (2)] in spatial dimensions d > 1. This paper studies the
transition in S" in an expansion in (2 − d ). In d > 1, S! and S"

describe distinct physical phenomena, and are expected to have
different phase diagrams and transitions.

combining with spatial translations. So in the clock model, a
state with 〈!〉 $= 0 has a spatially uniform condensate, while
this state has period N ordering in the boson model of Ref. [2].
The term proportional to the real number αx is crucial, and
is responsible for the chirality in both models. A nonzero αx

yields an inverse propagator for ! which has a minimum
at a nonzero wave vector kI = αx/2, and hence induces
incommensurate order parameter correlations. When treated
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FIG. 2. The common zero-temperature phase diagrams of S!

[Eq. (1)] and S" [Eq. (2)] in spatial dimension d = 1. There is
a Kramers-Wannier duality between S! and S" in d = 1, and so
the two actions have the same phases and transitions. For larger N

(possibly all N ! 4) there is an intermediate gapless phase, while
for N = 2, 3 there can be a direct transition between gapped phases.
This paper describes the direct transition between gapped phases for
N = 3. The transitions out of the gapless Luttinger liquid are in the
Kosterlitz-Thouless [20] (KT) and Pokrovsky-Talapov [21,22] (PT)
classes.

perturbatively in u and λ, S! will lead to condensation of !
at kI , and hence a to state with long-range incommensurate
order. Taking ! ∼ eikI x , we see that the phase-locking term
proportional to λ spatially averages to zero. Consequently,
although S! has only a discrete ZN symmetry, the low-energy
theory of the incommensurate state has an emergent U(1)
symmetry which leads to a gapless “phason” mode [23] (note
that this argument applies also in spatial dimensions d > 1,
as illustrated in Fig. 1). This is the reason for the difficulty
in obtaining a theory for the direct transition in the chiral
model from a gapped disordered phase, to a commensurate
ZN -ordered phase: the perturbative analysis of the field theory
in Eq. (1) implies that such a direct transition does not exist,
and there is an intermediate gapless incommensurate phase.
On the other hand, there is ample evidence from numeri-
cal studies for the existence of a direct transition [12,14]
in d = 1.

One of our main results will be an exact duality between
models described by S! in d = 1, and a theory of the con-
densation of a nonrelativistic Bose gas in d = 1. Specifically,
we consider a Bose gas, with Bose field ", which under-
goes a condensation transition in the presence of a higher-
dimensional background condensate of a “molecule” of N
bosons. This implies that we always have 〈"N 〉 $= 0. The
continuum theory for the onset of a single-boson condensate
in the presence of an N -boson condensate is [19]

S" =
∫

dx dτ [|∂τ"|2 + |∂x"|2 + ατ"
∗∂τ"

+ s" |"|2 + u|"|4 + λ("N + ("∗)N )], (2)

where ατ (and all other couplings) are real; note that there
is no direct relationship between the values of s",!, u, λ
between S! and S" . At first glance, it might appear that the
relationship between S! and S" is trivial, and they are related
simply by a Wick rotation which exchanges space (x) and
imaginary time (τ ). However, that is not the case. There is
a crucial difference in a factor of i between the first-order
derivative terms in Eqs. (1) and (2), and this difference is
required by the unitarity of both theories. A Wick rotation
relationship would imply that the dynamical critical exponent
z of S! is the inverse of the z of S" , and that the scaling
dimensions of ! and " are equal. The actual relationship be-
tween the theories is a Kramers-Wannier type duality between
the ! and " fields, and one is the “disorder” field of the other.
Furthermore, unlike the N = 2 Ising case, the duality is not a
self-duality for N > 2; consequently the scaling dimensions
of ! and " are not equal to each other for N $= 2. Finally,
because the duality does not actually involve a Wick rotation,
the values of z of the theories S! and S" are equal to each
other, as are the values of their correlation length exponents ν.

The advantage of working with S" is that it allows a
perturbative study (near two spatial dimensions) of a direct
transition between a phase with 〈"〉 = 0, to a phase with a
uniform condensate 〈"〉 $= 0 (see Fig. 1). Under the duality
mapping in d = 1, these phases correspond to clock model
states with 〈!〉 $= 0 (and spatially uniform) and 〈!〉 = 0,
respectively (see Fig. 2). Note that with a spatially uniform "
condensate, the λ term in Eq. (2) does not average to zero, and
so there is no emergent U(1) symmetry and the "-condensed
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energies depending upon whether the clock rotates clockwise
or counterclockwise upon crossing the wall while moving to
the right.

There has been much theoretical and numerical work on
ZN chiral clock models, both as quantum models in one
spatial dimension (d) and as classical models in two spatial
dimensions [3–18]. These models exhibit a complex phase
diagram with 3 types of phases:

(i) A gapped phase with long-range ZN order (this phase
was referred to as “topological” in a parafermionic formula-
tion [11,12]).

(ii) A gapped phase with no broken symmetry and expo-
nentially decaying ZN correlations.

(iii) A gapless phase with incommensurate ZN correla-
tions decaying as a power law.

It is important to note, however, that many of the previous
studies are under conditions in which the Hamiltonian does
not preserve time-reversal and/or spatial inversion symme-
tries. Imposing time-reversal and spatial inversion symmetries
will be crucial for our theoretical analysis, and indeed, such

symmetries are present in the Rydberg atom realization [1].
With these symmetries imposed, we will examine the direct
transition between the two gapped phases noted above, with-
out an intermediate incommensurate phase. The possibility
of such a direct transition was already noted in early work
[5], but was questioned subsequently [7] (see Appendix E).
However, numerical evidence for a direct transition for N = 3
has emerged in recent work [12,14]. This paper will provide
a field-theoretic renormalization group analysis of the direct
transition, along with additional numerical density-matrix
renormalization group (DMRG) results. Our main theoretical
tool will be a duality mapping of the chiral clock model
transition in d = 1 onto that of a Bose gas, involving the
onset of a single boson condensate in the background of a
higher-dimensional N -boson condensate [19].

Let us begin by writing down a possible field theory for
period-N ordering [2]. Let ! be the density wave order pa-
rameter, so that ! → e2π in/N! under translation by n lattice
spacings, where n is a positive or negative integer. Using
translational and time-reversal symmetries (described in more
detail below), we obtain an action defined on continuous
d = 1 space (x) and imaginary time (τ ):

S! =
∫

dx dτ [|∂τ!|2 + |∂x!|2 + iαx!
∗∂x!

+ s!|!|2 + u|!|4 + λ(!N + (!∗)N )]. (1)

We show the phase diagram of S! in d > 1 in Fig. 1, and in
d = 1 in Fig. 2. The field theory S! also applies to the chiral
clock model with order parameter !, in which case ! →
e2π in/N! is an internal symmetry of the clock model, without
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present numerical density-matrix renormalization group studies of lattice chiral clock and Bose gas models for
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will be crucial for our theoretical analysis, and indeed, such

symmetries are present in the Rydberg atom realization [1].
With these symmetries imposed, we will examine the direct
transition between the two gapped phases noted above, with-
out an intermediate incommensurate phase. The possibility
of such a direct transition was already noted in early work
[5], but was questioned subsequently [7] (see Appendix E).
However, numerical evidence for a direct transition for N = 3
has emerged in recent work [12,14]. This paper will provide
a field-theoretic renormalization group analysis of the direct
transition, along with additional numerical density-matrix
renormalization group (DMRG) results. Our main theoretical
tool will be a duality mapping of the chiral clock model
transition in d = 1 onto that of a Bose gas, involving the
onset of a single boson condensate in the background of a
higher-dimensional N -boson condensate [19].

Let us begin by writing down a possible field theory for
period-N ordering [2]. Let ! be the density wave order pa-
rameter, so that ! → e2π in/N! under translation by n lattice
spacings, where n is a positive or negative integer. Using
translational and time-reversal symmetries (described in more
detail below), we obtain an action defined on continuous
d = 1 space (x) and imaginary time (τ ):

S! =
∫

dx dτ [|∂τ!|2 + |∂x!|2 + iαx!
∗∂x!

+ s!|!|2 + u|!|4 + λ(!N + (!∗)N )]. (1)

We show the phase diagram of S! in d > 1 in Fig. 1, and in
d = 1 in Fig. 2. The field theory S! also applies to the chiral
clock model with order parameter !, in which case ! →
e2π in/N! is an internal symmetry of the clock model, without
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FIG. 1. Zero-temperature phase diagrams of S! [Eq. (1)] and
S" [Eq. (2)] in spatial dimensions d > 1. This paper studies the
transition in S" in an expansion in (2 − d ). In d > 1, S! and S"

describe distinct physical phenomena, and are expected to have
different phase diagrams and transitions.

combining with spatial translations. So in the clock model, a
state with 〈!〉 $= 0 has a spatially uniform condensate, while
this state has period N ordering in the boson model of Ref. [2].
The term proportional to the real number αx is crucial, and
is responsible for the chirality in both models. A nonzero αx

yields an inverse propagator for ! which has a minimum
at a nonzero wave vector kI = αx/2, and hence induces
incommensurate order parameter correlations. When treated
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[Eq. (1)] and S" [Eq. (2)] in spatial dimension d = 1. There is
a Kramers-Wannier duality between S! and S" in d = 1, and so
the two actions have the same phases and transitions. For larger N

(possibly all N ! 4) there is an intermediate gapless phase, while
for N = 2, 3 there can be a direct transition between gapped phases.
This paper describes the direct transition between gapped phases for
N = 3. The transitions out of the gapless Luttinger liquid are in the
Kosterlitz-Thouless [20] (KT) and Pokrovsky-Talapov [21,22] (PT)
classes.

perturbatively in u and λ, S! will lead to condensation of !
at kI , and hence a to state with long-range incommensurate
order. Taking ! ∼ eikI x , we see that the phase-locking term
proportional to λ spatially averages to zero. Consequently,
although S! has only a discrete ZN symmetry, the low-energy
theory of the incommensurate state has an emergent U(1)
symmetry which leads to a gapless “phason” mode [23] (note
that this argument applies also in spatial dimensions d > 1,
as illustrated in Fig. 1). This is the reason for the difficulty
in obtaining a theory for the direct transition in the chiral
model from a gapped disordered phase, to a commensurate
ZN -ordered phase: the perturbative analysis of the field theory
in Eq. (1) implies that such a direct transition does not exist,
and there is an intermediate gapless incommensurate phase.
On the other hand, there is ample evidence from numeri-
cal studies for the existence of a direct transition [12,14]
in d = 1.

One of our main results will be an exact duality between
models described by S! in d = 1, and a theory of the con-
densation of a nonrelativistic Bose gas in d = 1. Specifically,
we consider a Bose gas, with Bose field ", which under-
goes a condensation transition in the presence of a higher-
dimensional background condensate of a “molecule” of N
bosons. This implies that we always have 〈"N 〉 $= 0. The
continuum theory for the onset of a single-boson condensate
in the presence of an N -boson condensate is [19]

S" =
∫

dx dτ [|∂τ"|2 + |∂x"|2 + ατ"
∗∂τ"

+ s" |"|2 + u|"|4 + λ("N + ("∗)N )], (2)

where ατ (and all other couplings) are real; note that there
is no direct relationship between the values of s",!, u, λ
between S! and S" . At first glance, it might appear that the
relationship between S! and S" is trivial, and they are related
simply by a Wick rotation which exchanges space (x) and
imaginary time (τ ). However, that is not the case. There is
a crucial difference in a factor of i between the first-order
derivative terms in Eqs. (1) and (2), and this difference is
required by the unitarity of both theories. A Wick rotation
relationship would imply that the dynamical critical exponent
z of S! is the inverse of the z of S" , and that the scaling
dimensions of ! and " are equal. The actual relationship be-
tween the theories is a Kramers-Wannier type duality between
the ! and " fields, and one is the “disorder” field of the other.
Furthermore, unlike the N = 2 Ising case, the duality is not a
self-duality for N > 2; consequently the scaling dimensions
of ! and " are not equal to each other for N $= 2. Finally,
because the duality does not actually involve a Wick rotation,
the values of z of the theories S! and S" are equal to each
other, as are the values of their correlation length exponents ν.

The advantage of working with S" is that it allows a
perturbative study (near two spatial dimensions) of a direct
transition between a phase with 〈"〉 = 0, to a phase with a
uniform condensate 〈"〉 $= 0 (see Fig. 1). Under the duality
mapping in d = 1, these phases correspond to clock model
states with 〈!〉 $= 0 (and spatially uniform) and 〈!〉 = 0,
respectively (see Fig. 2). Note that with a spatially uniform "
condensate, the λ term in Eq. (2) does not average to zero, and
so there is no emergent U(1) symmetry and the "-condensed
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I. INTRODUCTION

Recent experiments on one-dimensional chains of Rb
atoms excited to Rydberg states by Bernien et al. [1] have
displayed quantum transitions to ordered states with a period
of N sites, with N ! 2. This phase transition is described by
a model of hard-core bosons proposed by Fendley et al. [2].
Such phase transitions are in the universality class of the ZN

clock model with couplings which preserve both time-reversal
and spatial inversion symmetries. For N ! 3, the required
clock models must be chiral [3,4]: domain walls have distinct
energies depending upon whether the clock rotates clockwise
or counterclockwise upon crossing the wall while moving to
the right.

There has been much theoretical and numerical work on
ZN chiral clock models, both as quantum models in one
spatial dimension (d) and as classical models in two spatial
dimensions [3–18]. These models exhibit a complex phase
diagram with 3 types of phases:

(i) A gapped phase with long-range ZN order (this phase
was referred to as “topological” in a parafermionic formula-
tion [11,12]).

(ii) A gapped phase with no broken symmetry and expo-
nentially decaying ZN correlations.

(iii) A gapless phase with incommensurate ZN correla-
tions decaying as a power law.

It is important to note, however, that many of the previous
studies are under conditions in which the Hamiltonian does
not preserve time-reversal and/or spatial inversion symme-
tries. Imposing time-reversal and spatial inversion symmetries
will be crucial for our theoretical analysis, and indeed, such

symmetries are present in the Rydberg atom realization [1].
With these symmetries imposed, we will examine the direct
transition between the two gapped phases noted above, with-
out an intermediate incommensurate phase. The possibility
of such a direct transition was already noted in early work
[5], but was questioned subsequently [7] (see Appendix E).
However, numerical evidence for a direct transition for N = 3
has emerged in recent work [12,14]. This paper will provide
a field-theoretic renormalization group analysis of the direct
transition, along with additional numerical density-matrix
renormalization group (DMRG) results. Our main theoretical
tool will be a duality mapping of the chiral clock model
transition in d = 1 onto that of a Bose gas, involving the
onset of a single boson condensate in the background of a
higher-dimensional N -boson condensate [19].

Let us begin by writing down a possible field theory for
period-N ordering [2]. Let ! be the density wave order pa-
rameter, so that ! → e2π in/N! under translation by n lattice
spacings, where n is a positive or negative integer. Using
translational and time-reversal symmetries (described in more
detail below), we obtain an action defined on continuous
d = 1 space (x) and imaginary time (τ ):

S! =
∫

dx dτ [|∂τ!|2 + |∂x!|2 + iαx!
∗∂x!

+ s!|!|2 + u|!|4 + λ(!N + (!∗)N )]. (1)

We show the phase diagram of S! in d > 1 in Fig. 1, and in
d = 1 in Fig. 2. The field theory S! also applies to the chiral
clock model with order parameter !, in which case ! →
e2π in/N! is an internal symmetry of the clock model, without
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Recent experiments on one-dimensional chains of Rb
atoms excited to Rydberg states by Bernien et al. [1] have
displayed quantum transitions to ordered states with a period
of N sites, with N ! 2. This phase transition is described by
a model of hard-core bosons proposed by Fendley et al. [2].
Such phase transitions are in the universality class of the ZN

clock model with couplings which preserve both time-reversal
and spatial inversion symmetries. For N ! 3, the required
clock models must be chiral [3,4]: domain walls have distinct
energies depending upon whether the clock rotates clockwise
or counterclockwise upon crossing the wall while moving to
the right.

There has been much theoretical and numerical work on
ZN chiral clock models, both as quantum models in one
spatial dimension (d) and as classical models in two spatial
dimensions [3–18]. These models exhibit a complex phase
diagram with 3 types of phases:

(i) A gapped phase with long-range ZN order (this phase
was referred to as “topological” in a parafermionic formula-
tion [11,12]).

(ii) A gapped phase with no broken symmetry and expo-
nentially decaying ZN correlations.

(iii) A gapless phase with incommensurate ZN correla-
tions decaying as a power law.

It is important to note, however, that many of the previous
studies are under conditions in which the Hamiltonian does
not preserve time-reversal and/or spatial inversion symme-
tries. Imposing time-reversal and spatial inversion symmetries
will be crucial for our theoretical analysis, and indeed, such

symmetries are present in the Rydberg atom realization [1].
With these symmetries imposed, we will examine the direct
transition between the two gapped phases noted above, with-
out an intermediate incommensurate phase. The possibility
of such a direct transition was already noted in early work
[5], but was questioned subsequently [7] (see Appendix E).
However, numerical evidence for a direct transition for N = 3
has emerged in recent work [12,14]. This paper will provide
a field-theoretic renormalization group analysis of the direct
transition, along with additional numerical density-matrix
renormalization group (DMRG) results. Our main theoretical
tool will be a duality mapping of the chiral clock model
transition in d = 1 onto that of a Bose gas, involving the
onset of a single boson condensate in the background of a
higher-dimensional N -boson condensate [19].

Let us begin by writing down a possible field theory for
period-N ordering [2]. Let ! be the density wave order pa-
rameter, so that ! → e2π in/N! under translation by n lattice
spacings, where n is a positive or negative integer. Using
translational and time-reversal symmetries (described in more
detail below), we obtain an action defined on continuous
d = 1 space (x) and imaginary time (τ ):

S! =
∫

dx dτ [|∂τ!|2 + |∂x!|2 + iαx!
∗∂x!

+ s!|!|2 + u|!|4 + λ(!N + (!∗)N )]. (1)

We show the phase diagram of S! in d > 1 in Fig. 1, and in
d = 1 in Fig. 2. The field theory S! also applies to the chiral
clock model with order parameter !, in which case ! →
e2π in/N! is an internal symmetry of the clock model, without
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FIG. 1. Zero-temperature phase diagrams of S! [Eq. (1)] and
S" [Eq. (2)] in spatial dimensions d > 1. This paper studies the
transition in S" in an expansion in (2 − d ). In d > 1, S! and S"

describe distinct physical phenomena, and are expected to have
different phase diagrams and transitions.

combining with spatial translations. So in the clock model, a
state with 〈!〉 $= 0 has a spatially uniform condensate, while
this state has period N ordering in the boson model of Ref. [2].
The term proportional to the real number αx is crucial, and
is responsible for the chirality in both models. A nonzero αx

yields an inverse propagator for ! which has a minimum
at a nonzero wave vector kI = αx/2, and hence induces
incommensurate order parameter correlations. When treated
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[Eq. (1)] and S" [Eq. (2)] in spatial dimension d = 1. There is
a Kramers-Wannier duality between S! and S" in d = 1, and so
the two actions have the same phases and transitions. For larger N

(possibly all N ! 4) there is an intermediate gapless phase, while
for N = 2, 3 there can be a direct transition between gapped phases.
This paper describes the direct transition between gapped phases for
N = 3. The transitions out of the gapless Luttinger liquid are in the
Kosterlitz-Thouless [20] (KT) and Pokrovsky-Talapov [21,22] (PT)
classes.

perturbatively in u and λ, S! will lead to condensation of !
at kI , and hence a to state with long-range incommensurate
order. Taking ! ∼ eikI x , we see that the phase-locking term
proportional to λ spatially averages to zero. Consequently,
although S! has only a discrete ZN symmetry, the low-energy
theory of the incommensurate state has an emergent U(1)
symmetry which leads to a gapless “phason” mode [23] (note
that this argument applies also in spatial dimensions d > 1,
as illustrated in Fig. 1). This is the reason for the difficulty
in obtaining a theory for the direct transition in the chiral
model from a gapped disordered phase, to a commensurate
ZN -ordered phase: the perturbative analysis of the field theory
in Eq. (1) implies that such a direct transition does not exist,
and there is an intermediate gapless incommensurate phase.
On the other hand, there is ample evidence from numeri-
cal studies for the existence of a direct transition [12,14]
in d = 1.

One of our main results will be an exact duality between
models described by S! in d = 1, and a theory of the con-
densation of a nonrelativistic Bose gas in d = 1. Specifically,
we consider a Bose gas, with Bose field ", which under-
goes a condensation transition in the presence of a higher-
dimensional background condensate of a “molecule” of N
bosons. This implies that we always have 〈"N 〉 $= 0. The
continuum theory for the onset of a single-boson condensate
in the presence of an N -boson condensate is [19]

S" =
∫

dx dτ [|∂τ"|2 + |∂x"|2 + ατ"
∗∂τ"

+ s" |"|2 + u|"|4 + λ("N + ("∗)N )], (2)

where ατ (and all other couplings) are real; note that there
is no direct relationship between the values of s",!, u, λ
between S! and S" . At first glance, it might appear that the
relationship between S! and S" is trivial, and they are related
simply by a Wick rotation which exchanges space (x) and
imaginary time (τ ). However, that is not the case. There is
a crucial difference in a factor of i between the first-order
derivative terms in Eqs. (1) and (2), and this difference is
required by the unitarity of both theories. A Wick rotation
relationship would imply that the dynamical critical exponent
z of S! is the inverse of the z of S" , and that the scaling
dimensions of ! and " are equal. The actual relationship be-
tween the theories is a Kramers-Wannier type duality between
the ! and " fields, and one is the “disorder” field of the other.
Furthermore, unlike the N = 2 Ising case, the duality is not a
self-duality for N > 2; consequently the scaling dimensions
of ! and " are not equal to each other for N $= 2. Finally,
because the duality does not actually involve a Wick rotation,
the values of z of the theories S! and S" are equal to each
other, as are the values of their correlation length exponents ν.

The advantage of working with S" is that it allows a
perturbative study (near two spatial dimensions) of a direct
transition between a phase with 〈"〉 = 0, to a phase with a
uniform condensate 〈"〉 $= 0 (see Fig. 1). Under the duality
mapping in d = 1, these phases correspond to clock model
states with 〈!〉 $= 0 (and spatially uniform) and 〈!〉 = 0,
respectively (see Fig. 2). Note that with a spatially uniform "
condensate, the λ term in Eq. (2) does not average to zero, and
so there is no emergent U(1) symmetry and the "-condensed
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this state has period N ordering in the boson model of Ref. [2].
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perturbatively in u and λ, S! will lead to condensation of !
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order. Taking ! ∼ eikI x , we see that the phase-locking term
proportional to λ spatially averages to zero. Consequently,
although S! has only a discrete ZN symmetry, the low-energy
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densation of a nonrelativistic Bose gas in d = 1. Specifically,
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continuum theory for the onset of a single-boson condensate
in the presence of an N -boson condensate is [19]

S" =
∫

dx dτ [|∂τ"|2 + |∂x"|2 + ατ"
∗∂τ"

+ s" |"|2 + u|"|4 + λ("N + ("∗)N )], (2)

where ατ (and all other couplings) are real; note that there
is no direct relationship between the values of s",!, u, λ
between S! and S" . At first glance, it might appear that the
relationship between S! and S" is trivial, and they are related
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imaginary time (τ ). However, that is not the case. There is
a crucial difference in a factor of i between the first-order
derivative terms in Eqs. (1) and (2), and this difference is
required by the unitarity of both theories. A Wick rotation
relationship would imply that the dynamical critical exponent
z of S! is the inverse of the z of S" , and that the scaling
dimensions of ! and " are equal. The actual relationship be-
tween the theories is a Kramers-Wannier type duality between
the ! and " fields, and one is the “disorder” field of the other.
Furthermore, unlike the N = 2 Ising case, the duality is not a
self-duality for N > 2; consequently the scaling dimensions
of ! and " are not equal to each other for N $= 2. Finally,
because the duality does not actually involve a Wick rotation,
the values of z of the theories S! and S" are equal to each
other, as are the values of their correlation length exponents ν.

The advantage of working with S" is that it allows a
perturbative study (near two spatial dimensions) of a direct
transition between a phase with 〈"〉 = 0, to a phase with a
uniform condensate 〈"〉 $= 0 (see Fig. 1). Under the duality
mapping in d = 1, these phases correspond to clock model
states with 〈!〉 $= 0 (and spatially uniform) and 〈!〉 = 0,
respectively (see Fig. 2). Note that with a spatially uniform "
condensate, the λ term in Eq. (2) does not average to zero, and
so there is no emergent U(1) symmetry and the "-condensed
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We performed a renormalization group analysis for the Bose gas transition in a
expansion in 2� d, with 4�N chosen to be order 2� d. This led a

strongly-coupled critical point with z 6= 1.
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is related to the mean Rydberg excitation density hni by
� = @hni/@� according to the Hellman-Feynman theo-
rem. We measure hni vs. � along a slow linear sweep to
remain as adiabatic as possible. We take the numerical
derivative of the fitted data to obtain �, finding its peak
to be at �c/⌦ = 1.12(4) (see Methods).

Having identified the position of the critical point, we
now extract the value of ⌫ that optimizes data collapse
(inset of Fig. 3d and Methods). The resulting ⌫ = 0.62(4)
rescales the experimental data to clearly fall on a single
universal curve (Fig. 3d). This measurement is in good
agreement with the predicted ⌫ = 0.629 for the quan-
tum Ising universality class in (2+1) dimensions[14], and
distinct from both the mean-field value[13] of ⌫ = 1/2
and the previously verified value in (1+1) dimensions
[24] of ⌫ = 1. Despite imperfections associated with
non-adiabatic state preparation and decoherence in our
system, this demonstration of universal scaling highlights
opportunities for quantitative studies of quantum critical
phenomena on our platform.

PHASE DIAGRAM OF THE SQUARE LATTICE

A rich variety of new phases have been recently
predicted for the square lattice when Rydberg block-
ade is extended beyond nearest neighbors [14]. To
map this phase diagram experimentally, we use the
Fourier transform of single-shot measurement outcomes

F(k) =
���
P

i
exp(ik · xi/a)ni/

p
N

���, which characterizes

long-range order in our system. For instance, the checker-
board phase shows a prominent peak at k = (⇡,⇡),
corresponding to the canonical antiferromagnetic or-
der parameter: the staggered magnetization (Fig. 4a).
We construct order parameters for all observed phases
using the symmetrized Fourier transform F̃(k1, k2) =
hF(k1, k2) + F(k2, k1)i/2, averaged over experimental
repetitions, which takes into account the reflection sym-
metry in our system (see Methods).

When interaction strengths are increased such that
next-nearest (diagonal) neighbor excitations are sup-
pressed by Rydberg interactions (Rb/a &

p
2), trans-

lational symmetry along the diagonal directions is also
broken, leading to the appearance of a new striated phase
(Fig. 4b). In this phase, Rydberg excitations are mostly
located two sites apart and hence appear both on alter-
nating rows and alternating columns. This ordering is
immediately apparent through the observation of promi-
nent peaks at k = (0,⇡), (⇡, 0), and (⇡,⇡) in the Fourier
domain. As discussed and demonstrated below, quantum
fluctuations, appearing as defects on single shot images
(Fig. 4b), play a key role in stabilizing this phase.

At even larger values of Rb/a & 1.7, the star phase
emerges, with Rydberg excitations placed every four sites
along one direction and every two sites in the perpendic-

0.0 0.5 1.0 1.5 2.0
Time (µs)

-20
-10

0
10
20

¢
/2
¼

 (M
H

z)

G
(2
)

¢/=-1 ¢/=0 ¢/=1 ¢/=2 ¢/=3

0 1 2 3
¢/

0

1

2

3

4

5

»

-2 -1 0 1 2 3 4
~¢

0

1

2

3

~ »

0.5 1.0º

D

º = 0.62(4)

0

2

4


/
2¼

 (M
H

z)

120 15

Sweep Rate s (MHz/µs)

a

b

c

d

FIG. 3. Observation of the (2+1)D Ising quantum
phase transition on a 16⇥16 array. a. The transition
into the checkerboard phase is explored using a linear detun-
ing sweep �(t) at constant ⌦. The resulting checkerboard
ordering is measured at various endpoints. b. Example of
growing correlations G(2) with increasing �/⌦ along a linear
sweep with sweep rate s = 15 MHz/µs. c. Growth of cor-
relation length ⇠ for s spanning an order of magnitude from
15 MHz/µs to 120 MHz/µs. ⇠ used here measures correlations
between the coarse-grained local staggered magnetization (see
Methods). d. For an optimized value of the critical expo-
nent ⌫, all curves collapse onto a single universal curve when
rescaled relative to the quantum critical point �c. Inset: dis-
tance D between all pairs of rescaled curves as a function of
⌫ (see Methods). The minimum at ⌫ = 0.62(4) (red dashed
line) yields the experimental value for the critical exponent
(red and gray shaded regions indicate uncertainties).

ular direction. There are two possible orientations for the
ordering of this phase, so Fourier peaks are observed at k
= (⇡, 0) and (⇡/2,⇡), as well as at their symmetric part-
ners (0,⇡) and (⇡,⇡/2) (Fig. 4c). In the thermodynamic
limit, the star ordering corresponds to the lowest-energy
classical configuration of Rydberg excitations on a square
array with a density of 1/4.

We now systematically explore the phase diagram on
13⇥13 (169 atoms) arrays, with dimensions chosen to be
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simultaneously commensurate with checkerboard, stri-
ated, and star orderings (see Methods). For each value
of the blockade range Rb/a, we linearly sweep � (sim-
ilar to Fig. 3a but with a ramp-down time of 200 ns),
stopping at evenly spaced endpoints to raster the full
phase diagram. For every endpoint, we extract the or-
der parameter corresponding to each many-body phase,
and plot them separately to show their prominence in
di↵erent regions of the phase diagram (Fig. 4d).

We compare our observations with numerical simu-
lations of the phase diagram using the density-matrix
renormalization group (DMRG) on a smaller 9⇥9 array
with open boundary conditions (Fig. 4e and red mark-
ers in Fig. 4d). We find excellent agreement in the ex-
tent of the checkerboard phase. For the striated and star
phases, we also find good similarity between experiment
and theory, although due to their larger unit cells and
the existence of many degenerate configurations, these
two phases are more sensitive to both edge e↵ects and

experimental imperfections. We emphasize that the nu-
merical simulations evaluate the order parameter for the
exact ground state of the system at each point, while
the experiment quasi-adiabatically prepares these states
via a dynamical process. These results establish the po-
tential of programmable quantum simulators with tun-
able, long-range interactions for studying large quantum
many-body systems that are challenging to access with
state-of-the-art computational tools [39].

QUANTUM FLUCTUATIONS IN THE
STRIATED PHASE

We now explore the nature of the striated phase. In
contrast to the checkerboard and star phases, which can
be understood from a dense-packing argument [14], this
phase has no counterpart in the classical limit (⌦ ! 0)
(see Methods). Striated ordering allows the atoms to
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simultaneously commensurate with checkerboard, stri-
ated, and star orderings (see Methods). For each value
of the blockade range Rb/a, we linearly sweep � (sim-
ilar to Fig. 3a but with a ramp-down time of 200 ns),
stopping at evenly spaced endpoints to raster the full
phase diagram. For every endpoint, we extract the or-
der parameter corresponding to each many-body phase,
and plot them separately to show their prominence in
di↵erent regions of the phase diagram (Fig. 4d).

We compare our observations with numerical simu-
lations of the phase diagram using the density-matrix
renormalization group (DMRG) on a smaller 9⇥9 array
with open boundary conditions (Fig. 4e and red mark-
ers in Fig. 4d). We find excellent agreement in the ex-
tent of the checkerboard phase. For the striated and star
phases, we also find good similarity between experiment
and theory, although due to their larger unit cells and
the existence of many degenerate configurations, these
two phases are more sensitive to both edge e↵ects and

experimental imperfections. We emphasize that the nu-
merical simulations evaluate the order parameter for the
exact ground state of the system at each point, while
the experiment quasi-adiabatically prepares these states
via a dynamical process. These results establish the po-
tential of programmable quantum simulators with tun-
able, long-range interactions for studying large quantum
many-body systems that are challenging to access with
state-of-the-art computational tools [39].

QUANTUM FLUCTUATIONS IN THE
STRIATED PHASE

We now explore the nature of the striated phase. In
contrast to the checkerboard and star phases, which can
be understood from a dense-packing argument [14], this
phase has no counterpart in the classical limit (⌦ ! 0)
(see Methods). Striated ordering allows the atoms to

Quantum Phases of Matter on a 256-Atom Programmable Quantum Simulator, Sepehr Ebadi, Tout T. Wang, Harry Levine, Alexander 
Keesling, Giulia Semeghini, Ahmed Omran, Dolev Bluvstein, Rhine Samajdar, Hannes Pichler, Wen Wei Ho,  Soonwon Choi, Subir 
Sachdev, Markus Greiner, Vladan Vuletic, and Mikhail D. Lukin, Nature to appear, arXiv:2012.12281; Pascal Scholl et al. arXiv:2012.12268

3

0.0 0.5 1.0 1.5 2.0 2.5 3.0
Time (¹s)

-20
-10

0
10
20

¢
=2
¼

 (M
Hz

)

-10 -5 0 5 10
k

-10

-5

0

5

10

l 0 5 10
0.00

0.25

jG
(2
) (
k
;0
)j »H = 11.1(1)

0 5 10
Distance

0.00

0.25

jG
(2
) (
0;
l)
j

»V = 11.3(1)

0 20 40
Number of Occurences

100

101

102

103

104

N
um

be
r o

f S
ta

te
s

81 121 169 225
Array Size

100

10¡1

10¡2

10¡3

G
ro

un
d 

St
at

e 
Pr

ob
ab

ilit
y

0:97N

0

2

4

�
=
2¼

 (M
H

z)

-0.25 0.25G (2)(k; l)

a

b c

d e

|AF1i |AF2i

FIG. 2. Benchmarking of quantum simulator using
checkerboard ordering. a. A quasi-adiabatic detuning
sweep �(t) at constant Rabi frequency ⌦ is used to prepare
the checkerboard ground state with high fidelity. b. Two-
site correlation function G(2)(k, l), averaged over all pairs of
atoms on a 12⇥12 array, showing near-perfect alternating cor-
relations throughout the entire system. c. Exponential fits of
rectified horizontal and vertical correlations are used to ex-
tract correlation lengths in the corresponding directions ⇠H
and ⇠V . d. Histogram of many-body state occurrence fre-
quency after 6767 repetitions of the experiment on a 12⇥12
array. The two most frequently occurring microstates cor-
respond to the two perfect checkerboard orderings, and the
next four most common ones are those with a single defect in
one of the corners of the array. e. Probability of finding a
perfect checkerboard ground state as a function of array size.
The slightly higher probabilities in odd⇥odd systems is due to
commensurate edges on opposing sides of the array. All data
in this figure are conditioned on defect-free rearrangement of
the array.

systems [20, 21] by nearly an order of magnitude.

Single-site readout also allows us to study individual
many-body states of our system (Fig. 2d). Out of 6767
repetitions on a 12x12 array, the two perfectly ordered
states |AF1i and |AF2i are by far the most frequently
observed microstates, with near-equal probabilities be-
tween the two. We benchmark our state preparation by
measuring the probability of observing perfect checker-

board ordering as a function of system size (Fig. 2e). We
find empirically that the probability scales with the num-
ber of atoms according to an exponential 0.97N , o↵er-
ing a benchmark that includes all experimental imperfec-
tions such as finite detection fidelity, non-adiabatic state
preparation, spontaneous emission, and residual quan-
tum fluctuations in the ordered state (see Methods). Re-
markably, even for a system size as large as 15⇥15 (225
atoms), we still observe the perfect antiferromagnetic
ground state with probability 0.10+5

�4% within the expo-
nentially large Hilbert space of dimension 2225 ⇡ 1068.

(2+1)D ISING QUANTUM PHASE TRANSITION

We now describe quantitative studies of the quantum
phase transition into the checkerboard phase. Quantum
phase transitions fall into universality classes character-
ized by critical exponents that determine universal be-
havior near the quantum critical point, independent of
the microscopic details of the Hamiltonian [13]. The tran-
sition into the checkerboard phase is expected to be in the
paradigmatic—but never previously observed—quantum
Ising universality class in (2+1) dimensions [14] (with ex-
pected dynamical critical exponent z = 1 and correlation
length critical exponent ⌫ = 0.629).
To explore universal scaling across this phase transi-

tion for a large system, we study the dynamical build-
up of correlations associated with the quantum Kibble-
Zurek mechanism [24, 38] on a 16⇥16 (256 atoms) array,
at fixed Rb/a = 1.15. We start at a large negative de-
tuning with all atoms in |gi and linearly increase �/⌦,
stopping at various points to measure the growth of cor-
relations across the phase transition (Fig. 3a, b). Slower
sweep rates s = d�/dt result in longer correlation lengths
⇠, as expected (Fig. 3c).
The quantum Kibble-Zurek mechanism predicts a uni-

versal scaling relationship between the control parameter
� and the correlation length ⇠. Specifically, when both
� and ⇠ are rescaled with the sweep rate s (relative to a
reference rate s0)

⇠̃ = ⇠(s/s0)
µ (2)

�̃ = (���c)(s/s0)
 (3)

with exponents µ ⌘ ⌫/(1+z⌫) and  ⌘ �1/(1+z⌫), then
universality implies that the rescaled ⇠̃ vs. �̃ collapses
onto a single curve [24] for any sweep rate s. Taking
z = 1 to be fixed (as expected for a Lorentz-invariant
theory), we extract ⌫ for our system by finding the value
that optimizes this universal collapse.

In order to obtain ⌫, we first independently determine
the position of the critical point �c, which corresponds
to the peak of the susceptibility � = �@

2
hHi/@�2 and

is associated with a vanishing gap [13]. For adiabiatic
evolution under the Hamiltonian (1), the susceptibility �
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non-collinear Néel state

Mott insulator: Triangular lattice antiferromagnet

Z2 spin liquid
with neutral S = 1/2 spinons
and vison excitations

N. Read and S. Sachdev, Phys. Rev. Lett. 66, 1773 (1991) 
X.-G. Wen, Phys. Rev. B  44, 2664 (1991)



Excitations of the Z2 Spin liquid

=Spinon: Sz = 1/2
e (boson) or ✏ (fermion) particle

<latexit sha1_base64="78wssQVo5TUghvuaDRteBH/VidU="></latexit>



Excitations of the Z2 Spin liquid

=Spinon: Sz = 1/2
e (boson) or ✏ (fermion) particle

<latexit sha1_base64="78wssQVo5TUghvuaDRteBH/VidU=">AAACFXicdZDNSgMxFIUz/lv/qi7dBFtBQYZ02lrdiW5cKlgV2lIy6Z02NJMMSUYoxZdw46u4caGIW8Gdb2OmVlDRuzp8597k3hMmghtLyLs3MTk1PTM7N59bWFxaXsmvrl0YlWoGdaaE0lchNSC4hLrlVsBVooHGoYDLsH+c+ZfXoA1X8twOEmjFtCt5xBm1DrXzu0Uo4u1QGSV3sNK42ITEcKGkoxHomGc8odpyJqCdLxC/SirVoIaJT4LqXoVkorxfPiC45JNRFdC4Ttv5t2ZHsTQGaZmgxjRKJLGt4fi5m1wzNZBQ1qddaDgpaQymNRxddYO3HOngyC0VKWnxiH6fGNLYmEEcus6Y2p757WXwL6+R2mi/NeQySS1I9vlRlApsFc4iwh2ugVkxcIIyzd2umPWopsy6IHMuhK9L8f/iIvBLZT84CwqHR+M45tAG2kTbqIRq6BCdoFNURwzdonv0iJ68O+/Be/ZePlsnvPHMOvpR3usH4+Wddw==</latexit>



Excitations of the Z2 Spin liquid

=Spinon: Sz = 1/2
e (boson) or ✏ (fermion) particle

<latexit sha1_base64="78wssQVo5TUghvuaDRteBH/VidU="></latexit>



Excitations of the Z2 Spin liquid

=Spinon: Sz = 1/2
e (boson) or ✏ (fermion) particle

<latexit sha1_base64="78wssQVo5TUghvuaDRteBH/VidU="></latexit>



Excitations of the Z2 Spin liquid

=

<latexit sha1_base64="024pjgOzjWtVduckUe7Iqk7mfHw=">AAAB8HicdVDLSgMxFM3UV62vqks3wSK4KhnbarsrdeOygn1IO5ZMJjMNzWSGJCOUoV/hxoUibv0cd/6NaTuCih64cDjnXu69x405UxqhDyu3srq2vpHfLGxt7+zuFfcPuipKJKEdEvFI9l2sKGeCdjTTnPZjSXHoctpzJ5dzv3dPpWKRuNHTmDohDgTzGcHaSLetu6GHg4DKUbGEyqiGzisIGrKAIY1KtY4a0M6UEsjQHhXfh15EkpAKTThWamCjWDsplpoRTmeFYaJojMkEB3RgqMAhVU66OHgGT4ziQT+SpoSGC/X7RIpDpaahazpDrMfqtzcX//IGifbrTspEnGgqyHKRn3CoIzj/HnpMUqL51BBMJDO3QjLGEhNtMiqYEL4+hf+T7lnZrpXRdbXUbGVx5MEROAanwAYXoAmuQBt0AAEheABP4NmS1qP1Yr0uW3NWNnMIfsB6+wTP/JBt</latexit>

B†

Spinon: Sz = 1/2
e (boson) or ✏ (fermion) particle

<latexit sha1_base64="78wssQVo5TUghvuaDRteBH/VidU="></latexit>



Excitations of the Z2 Spin liquid

=

<latexit sha1_base64="4D1KutVLeecZqFbSX40ZUArvfeU="></latexit>

• Spinons can only be created
in pairs by a local operator
(e.g. B†)

• A single spinon carries
boson number B†B = 1/2:
fractionalization!

Spinon: Sz = 1/2
e (boson) or ✏ (fermion) particle

<latexit sha1_base64="78wssQVo5TUghvuaDRteBH/VidU="></latexit>



Excitations of the Z2 Spin liquid

=

<latexit sha1_base64="4D1KutVLeecZqFbSX40ZUArvfeU="></latexit>

• Spinons can only be created
in pairs by a local operator
(e.g. B†)

• A single spinon carries
boson number B†B = 1/2:
fractionalization!

Spinon: Sz = 1/2
e (boson) or ✏ (fermion) particle

<latexit sha1_base64="78wssQVo5TUghvuaDRteBH/VidU="></latexit>



Excitations of the Z2 Spin liquid

=

<latexit sha1_base64="4D1KutVLeecZqFbSX40ZUArvfeU="></latexit>

• Spinons can only be created
in pairs by a local operator
(e.g. B†)

• A single spinon carries
boson number B†B = 1/2:
fractionalization!

Spinon: Sz = 1/2
e (boson) or ✏ (fermion) particle

<latexit sha1_base64="78wssQVo5TUghvuaDRteBH/VidU="></latexit>



Excitations of the Z2 Spin liquid

=

<latexit sha1_base64="4D1KutVLeecZqFbSX40ZUArvfeU="></latexit>

• Spinons can only be created
in pairs by a local operator
(e.g. B†)

• A single spinon carries
boson number B†B = 1/2:
fractionalization!

Spinon: Sz = 1/2
e (boson) or ✏ (fermion) particle

<latexit sha1_base64="78wssQVo5TUghvuaDRteBH/VidU="></latexit>



=

-1

Excitations of the Z2 Spin liquid
A vison 

m (boson) particle
<latexit sha1_base64="np8d3jUlWyXIGBYwnWiTpcQvpZQ=">AAAB/XicdVDLTgIxFO34RHzhY+emEUxwM+kMILgjunGJiTwSIKRTCjR02knbMUFC/BU3LjTGrf/hzr+xPEzU6ElucnLOve29J4g40wahD2dpeWV1bT2xkdzc2t7ZTe3t17SMFaFVIrlUjQBrypmgVcMMp41IURwGnNaD4eXUr99SpZkUN2YU0XaI+4L1GMHGSp3UYSbMwGwgtRSnMMLKMMJpJ5VGbgHlC34RIhf5hbM8mpJcKXeOoOeiGdJggUon9d7qShKHVBjCsdZND0WmPV48N0m2Yk0jTIa4T5uWChxS3R7Ptp/AE6t0YU8qW8LAmfp9YoxDrUdhYDtDbAb6tzcV//KasemV2mMmothQQeYf9WIOjYTTKGCXKUoMH1mCiWJ2V0gGWGFibGBJG8LXpfB/UvNdL+f61366fLGIIwGOwDHIAg8UQRlcgQqoAgLuwAN4As/OvfPovDiv89YlZzFzAH7AefsEL7aUbw==</latexit>

<latexit sha1_base64="XGS/AzqxMgn6q1jGJxogQBbJSv4="></latexit>

|vi =
X

D
cD(�1)nD |Di

D ! dimer covering

of lattice

nD ! number of dimers

crossing red line



=

-1

Excitations of the Z2 Spin liquid
A vison 

m (boson) particle
<latexit sha1_base64="np8d3jUlWyXIGBYwnWiTpcQvpZQ=">AAAB/XicdVDLTgIxFO34RHzhY+emEUxwM+kMILgjunGJiTwSIKRTCjR02knbMUFC/BU3LjTGrf/hzr+xPEzU6ElucnLOve29J4g40wahD2dpeWV1bT2xkdzc2t7ZTe3t17SMFaFVIrlUjQBrypmgVcMMp41IURwGnNaD4eXUr99SpZkUN2YU0XaI+4L1GMHGSp3UYSbMwGwgtRSnMMLKMMJpJ5VGbgHlC34RIhf5hbM8mpJcKXeOoOeiGdJggUon9d7qShKHVBjCsdZND0WmPV48N0m2Yk0jTIa4T5uWChxS3R7Ptp/AE6t0YU8qW8LAmfp9YoxDrUdhYDtDbAb6tzcV//KasemV2mMmothQQeYf9WIOjYTTKGCXKUoMH1mCiWJ2V0gGWGFibGBJG8LXpfB/UvNdL+f61366fLGIIwGOwDHIAg8UQRlcgQqoAgLuwAN4As/OvfPovDiv89YlZzFzAH7AefsEL7aUbw==</latexit>

<latexit sha1_base64="XGS/AzqxMgn6q1jGJxogQBbJSv4="></latexit>

|vi =
X

D
cD(�1)nD |Di

D ! dimer covering

of lattice

nD ! number of dimers

crossing red line



=

-1

Excitations of the Z2 Spin liquid
A vison 

m (boson) particle
<latexit sha1_base64="np8d3jUlWyXIGBYwnWiTpcQvpZQ=">AAAB/XicdVDLTgIxFO34RHzhY+emEUxwM+kMILgjunGJiTwSIKRTCjR02knbMUFC/BU3LjTGrf/hzr+xPEzU6ElucnLOve29J4g40wahD2dpeWV1bT2xkdzc2t7ZTe3t17SMFaFVIrlUjQBrypmgVcMMp41IURwGnNaD4eXUr99SpZkUN2YU0XaI+4L1GMHGSp3UYSbMwGwgtRSnMMLKMMJpJ5VGbgHlC34RIhf5hbM8mpJcKXeOoOeiGdJggUon9d7qShKHVBjCsdZND0WmPV48N0m2Yk0jTIa4T5uWChxS3R7Ptp/AE6t0YU8qW8LAmfp9YoxDrUdhYDtDbAb6tzcV//KasemV2mMmothQQeYf9WIOjYTTKGCXKUoMH1mCiWJ2V0gGWGFibGBJG8LXpfB/UvNdL+f61366fLGIIwGOwDHIAg8UQRlcgQqoAgLuwAN4As/OvfPovDiv89YlZzFzAH7AefsEL7aUbw==</latexit>

<latexit sha1_base64="XGS/AzqxMgn6q1jGJxogQBbJSv4="></latexit>

|vi =
X

D
cD(�1)nD |Di

D ! dimer covering

of lattice

nD ! number of dimers

crossing red line



=

-1

Excitations of the Z2 Spin liquid
A vison 

m (boson) particle
<latexit sha1_base64="np8d3jUlWyXIGBYwnWiTpcQvpZQ=">AAAB/XicdVDLTgIxFO34RHzhY+emEUxwM+kMILgjunGJiTwSIKRTCjR02knbMUFC/BU3LjTGrf/hzr+xPEzU6ElucnLOve29J4g40wahD2dpeWV1bT2xkdzc2t7ZTe3t17SMFaFVIrlUjQBrypmgVcMMp41IURwGnNaD4eXUr99SpZkUN2YU0XaI+4L1GMHGSp3UYSbMwGwgtRSnMMLKMMJpJ5VGbgHlC34RIhf5hbM8mpJcKXeOoOeiGdJggUon9d7qShKHVBjCsdZND0WmPV48N0m2Yk0jTIa4T5uWChxS3R7Ptp/AE6t0YU8qW8LAmfp9YoxDrUdhYDtDbAb6tzcV//KasemV2mMmothQQeYf9WIOjYTTKGCXKUoMH1mCiWJ2V0gGWGFibGBJG8LXpfB/UvNdL+f61366fLGIIwGOwDHIAg8UQRlcgQqoAgLuwAN4As/OvfPovDiv89YlZzFzAH7AefsEL7aUbw==</latexit>

<latexit sha1_base64="XGS/AzqxMgn6q1jGJxogQBbJSv4=">AAADHHicdVJNb9QwEHXCV1m+tnDkMmJFVQ6skraU9oBUAQeORWLbSutl5XidrFXHjmynsDLhf3Dhr3DhAEJcOCDxb3CSrdSGMlKsyZt5b8ZPTgrBjY2iP0F46fKVq9dWrvdu3Lx1+05/9e6BUaWmbESVUPooIYYJLtnIcivYUaEZyRPBDpPjF3X98IRpw5V8YxcFm+QkkzzllFgPTVeDjTUsWGo/wAlgzbO5xZrITDB4BtiU+dThnNg5JcK9rCqgnf/1x/Gjt06eRytYSp4BO+IY99b+rRKt1TvPStR7N+M500CVX57LrKoJ8PE02haVgiDWcsracmeNC0RlmSde1RMbedPyurpUK2P8UHC4MdhpNqvAH1C7XFXT/iAaRk+i7c0IfNKET3Y3t3aiXYiXyAAtY3/a/4VnipY5k5YKYsw4jgo7cUT73QWrerg0rCD0mGRs7FNJcmYmrpldwUOPzCBV2n/SQoOeZTiSG7PIE99ZX950azV4UW1c2nRn4rgsSsskbQelpQCroH4p3iLNqBULnxCqud8V6JxoQq13rudNOL0p/D852BjG28Po9dZg7/nSjhV0Hz1A6yhGT9EeeoX20QjR4FPwJfgWfA8/h1/DH+HPtjUMlpx76FyEv/8C4wAEeg==</latexit>

|vi =
X

D
cD(�1)nD |Di

D ! dimer covering

of lattice

nD ! number of dimers

crossing red line



=

-1

-1

Excitations of the Z2 Spin liquid
A vison 

m (boson) particle
<latexit sha1_base64="np8d3jUlWyXIGBYwnWiTpcQvpZQ=">AAAB/XicdVDLTgIxFO34RHzhY+emEUxwM+kMILgjunGJiTwSIKRTCjR02knbMUFC/BU3LjTGrf/hzr+xPEzU6ElucnLOve29J4g40wahD2dpeWV1bT2xkdzc2t7ZTe3t17SMFaFVIrlUjQBrypmgVcMMp41IURwGnNaD4eXUr99SpZkUN2YU0XaI+4L1GMHGSp3UYSbMwGwgtRSnMMLKMMJpJ5VGbgHlC34RIhf5hbM8mpJcKXeOoOeiGdJggUon9d7qShKHVBjCsdZND0WmPV48N0m2Yk0jTIa4T5uWChxS3R7Ptp/AE6t0YU8qW8LAmfp9YoxDrUdhYDtDbAb6tzcV//KasemV2mMmothQQeYf9WIOjYTTKGCXKUoMH1mCiWJ2V0gGWGFibGBJG8LXpfB/UvNdL+f61366fLGIIwGOwDHIAg8UQRlcgQqoAgLuwAN4As/OvfPovDiv89YlZzFzAH7AefsEL7aUbw==</latexit>

<latexit sha1_base64="XGS/AzqxMgn6q1jGJxogQBbJSv4=">AAADHHicdVJNb9QwEHXCV1m+tnDkMmJFVQ6skraU9oBUAQeORWLbSutl5XidrFXHjmynsDLhf3Dhr3DhAEJcOCDxb3CSrdSGMlKsyZt5b8ZPTgrBjY2iP0F46fKVq9dWrvdu3Lx1+05/9e6BUaWmbESVUPooIYYJLtnIcivYUaEZyRPBDpPjF3X98IRpw5V8YxcFm+QkkzzllFgPTVeDjTUsWGo/wAlgzbO5xZrITDB4BtiU+dThnNg5JcK9rCqgnf/1x/Gjt06eRytYSp4BO+IY99b+rRKt1TvPStR7N+M500CVX57LrKoJ8PE02haVgiDWcsracmeNC0RlmSde1RMbedPyurpUK2P8UHC4MdhpNqvAH1C7XFXT/iAaRk+i7c0IfNKET3Y3t3aiXYiXyAAtY3/a/4VnipY5k5YKYsw4jgo7cUT73QWrerg0rCD0mGRs7FNJcmYmrpldwUOPzCBV2n/SQoOeZTiSG7PIE99ZX950azV4UW1c2nRn4rgsSsskbQelpQCroH4p3iLNqBULnxCqud8V6JxoQq13rudNOL0p/D852BjG28Po9dZg7/nSjhV0Hz1A6yhGT9EeeoX20QjR4FPwJfgWfA8/h1/DH+HPtjUMlpx76FyEv/8C4wAEeg==</latexit>

|vi =
X

D
cD(�1)nD |Di

D ! dimer covering

of lattice

nD ! number of dimers

crossing red line



=

-1

-1

Excitations of the Z2 Spin liquid
A vison 

m (boson) particle
<latexit sha1_base64="np8d3jUlWyXIGBYwnWiTpcQvpZQ=">AAAB/XicdVDLTgIxFO34RHzhY+emEUxwM+kMILgjunGJiTwSIKRTCjR02knbMUFC/BU3LjTGrf/hzr+xPEzU6ElucnLOve29J4g40wahD2dpeWV1bT2xkdzc2t7ZTe3t17SMFaFVIrlUjQBrypmgVcMMp41IURwGnNaD4eXUr99SpZkUN2YU0XaI+4L1GMHGSp3UYSbMwGwgtRSnMMLKMMJpJ5VGbgHlC34RIhf5hbM8mpJcKXeOoOeiGdJggUon9d7qShKHVBjCsdZND0WmPV48N0m2Yk0jTIa4T5uWChxS3R7Ptp/AE6t0YU8qW8LAmfp9YoxDrUdhYDtDbAb6tzcV//KasemV2mMmothQQeYf9WIOjYTTKGCXKUoMH1mCiWJ2V0gGWGFibGBJG8LXpfB/UvNdL+f61366fLGIIwGOwDHIAg8UQRlcgQqoAgLuwAN4As/OvfPovDiv89YlZzFzAH7AefsEL7aUbw==</latexit>

<latexit sha1_base64="XGS/AzqxMgn6q1jGJxogQBbJSv4="></latexit>

|vi =
X

D
cD(�1)nD |Di

D ! dimer covering

of lattice

nD ! number of dimers

crossing red line



Excitations of the Z2 Spin liquid

<latexit sha1_base64="R81MY0lDP+AA85kw6o4AumxmX/Q=">AAAEa3icjZNLT9tAEICNSVuaPoBya3sYlSDBoZHDowWkSrS99EglXhKO0Ho9jlfYu9bumEet/MT+gP4ITr22UschpAEBYi+enec3452oyJSjIPg14U82Hj1+MvW0+ez5i5fTM7Ov9pwprcRdaTJjDyLhMFMad0lRhgeFRZFHGe5Hx19r+/4JWqeM3qHzAru56GmVKCmIVUezfhJG2FO6UoS5+oH9ZlhLzc/gCqWNBhErEbGzFFl2DmSFdoWxhDEIa0rNHzhRjh0LJY8dlAUripSJIBGSjAWTQOt9p7U5TOhAcNAghEWLUIWDLiqLcR/ykkqRgWMWtvfbI5poUMuRIKwzihHewwngNEUNeCZToXvMf6oo5XhDKdqH5N9s3joq2EkRWiEWTmVGt64CFxO0dRNLoLjPm/mpjsH/zpFxtet4N4vXBjMqAJ8AISSVo4O81V9qj1Hs3J71ToB7oO8hQUYY0VwnQR2PTWf8djQzH7SDteDDSgAsDA4LGyur68EGdIaaeW94to9mLsLYyDJHTTITzh12goK6lbD8FLM6e+mwEPJY9PCQRS0Yo1sNOPuwwJoYEv73idEEA+14RCVy587ziD1zQam7aauVt9kOS0rWu5XSRUmo5WWhpMyADNTbBbGyKIkXhbdGWsWswM/N8jvkHWyGDnlBdY/SKiQ8o1MVc51qVel6PldDgLuFveV2Z60dfF+e3/oynNSU98Z75y16He+jt+V987a9XU/6P/3f/h//7+RFY67xuvH20tWfGMbMeddOY+Efxj5yQw==</latexit>

• A spinon adiabatically transported around a vison picks up a
phase factor of �1: spinons and visons are mutual semions.

• A bound state of a spinon and a vison picks up a phase factor
of �1 when exchanged with another bound state of a spinon
and a vison:

– The ✏ spinon (fermion) is a bound state of the e spinon
(boson) and a vison (✏ = e⇥m).

– The The e spinon (boson) is a bound state of the ✏ spinon
(fermion) and a vison (e = ✏⇥m).
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• Anyons: , e, m, ✏. The e, m, ✏ anyons cannot be created from the ground state ( )
by any local operator.

• The e and ✏ are spinons, the m is the ‘vison’. The spinons carry boson number 1/2.

• Self statistics: e and m are bosons, while ✏ is a fermion.

• Mutual statistics: Any pair of e, m, ✏ are mutual semions i.e. one anyon picks up a
(�1) upon encircling any other type of anyon.

• Fusion rules: e⇥m = ✏, e⇥ ✏ = m, m⇥ ✏ = e, e⇥ e = ✏⇥ ✏ = m⇥m = .

• 4-fold ground state degeneracy on a torus.

• Emergent, deconfined Z2 gauge field.

• No protected edge states in general, but could appear with special symmetries.

• Topological entanglement entropy = ln 2.

Simplest example with time-reversal symmetry:  
“Z2 spin liquid” or “toric code”

The Z2 spin liquid was obtained in N. Read and S. Sachdev, Phys. Rev. Lett. 66, 1773 (1991) and
X.-G. Wen, Phys. Rev. B 44, 2664 (1991). A. Kitaev, arXiv:quant-ph/9707021 described the toric code.
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To return to the initial state, we need a gauge transformation factor of �1 for each dimer
ending on the red circle: this yields a factor ei⇡S , because there are 2S dimers on each site.
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R. A. Jalabert and S. Sachdev, PRB 44, 686 (1991); S. Sachdev and M Vojta, J. Phys. Soc. Jpn. Suppl. B
69, (2000); T. Senthil and M.P.A. Fisher, PRB 62, 7850 (2000).

Berry phase 
of vison 
motion
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• The spinons carry spin Sz = 1/2 boson number B†B = 1/2.

• Z2 spin liquids of bosons (more generally, in systems with a global U(1) symmetry) must obey
contraints associated with a ‘’tHooft anomaly’ which is determined by the boson filling n.

– On a square lattice, the single vison state exhibit ‘translational symmetry fractionaliza-
tion’ with

TxTy = TyTxe
2⇡in,

with n integer or half-integer.

– For antiferromagnets of spin S, the translational symmetry fractionalization is

TxTy = TyTxe
2⇡iS .

• More generally, any Z2 spin liquid, even without a conserved U(1), can exhibit symmetry
fractionalization , with TxTy = TyTx for an even Z2 spin liquid, and TxTy = �TyTx for an odd
Z2 spin liquid on the square lattice (generalizes to other lattices)
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• The spinons carry spin Sz = 1/2 boson number B†B = 1/2.
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– On a square lattice, the single vison state exhibit ‘translational symmetry fractionaliza-
tion’ with

TxTy = TyTxe
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Solid phase of the even 
quantum dimer model  
on the triangular lattice 

R. Samajdar, Wen Wei Ho, H. Pichler, M. D. Lukin, and  
S. Sachdev, PNAS 118, e2015785118 (2021)

ROYCHOWDHURY, BHATTACHARJEE, AND POLLMANN PHYSICAL REVIEW B 92, 075141 (2015)

FIG. 3. (Color online) The phase diagram of the dimer models
at different fractional fillings f . The important details about each of
them are given in the text. The filling fraction 1/6 corresponds to a
triangular lattice QDM [19,46] while the half-filled case maps to an
easy-axis kagome antiferromagnet or a 3-dimer model [16,17]. The
focus of the present paper is at f = 1/3.

III. NUMERICAL CALCULATIONS AT 1/3 FILLING

We use a combination of tensor product states (TPS)
formalism and exact diagonalization (ED) methods to obtain
the phase diagram (Fig. 3, middle line) of the FPL model
on the triangular lattice. Necessary details about implementing
the numerical methods for different clusters are furnished in
the following subsections facilitating a systematic analysis of
our model. We take the value of g to be 1 which is a convenient
choice for further numerical calculations.

A. Entanglement entropy at the RK point: the Z2 liquid

One of the most interesting features of the Hamiltonian
in Eq. (7) is the existence of the exactly solvable RK point
(g = VRK). We start by showing that at this point the ground
state of our model (FPL) indeed has a topological order.

In order to characterize the topological order, an instructive
quantity to look at is the entanglement entropy (S) for
a bipartition of the system into two parts A and B. The
entanglement entropy of the reduced density matrix ρA of
subsystem A is defined as S = −Tr[ρA log ρA] where ρA

is obtained from the full density matrix by tracing out all
the degrees of freedom in the rest (B). For a gapped and
topologically ordered gapped ground state, S satisfies the “area
law” which goes as

S(L) = αL − γ + O(L−1) + · · · , (8)

where α in the leading term is a nonuniversal coefficient and
L is the perimeter of the subsystem A. The subleading term γ ,
also known as the topological entanglement entropy [47–50],

FIG. 4. (Color online) The plot shows the finite-size dependence
of the topological entanglement entropy γ as a function of L, the
perimeter of the subsystem A. The green dashed line corresponds to
the saturated value of ln 2 in the thermodynamic limit. The lattice
is constructed on an infinite cylinder assuming periodic boundary
condition in one direction. The black dashed line indicates the
bipartition of the cylinder separating the subsystem A from the rest
B. The inset shows the linear growth of the entanglement entropy S

with L.

is however universal bearing the anyonic content of the state
that reflects the topological order. This is directly related to
the total quantum dimension (D) of the underlying topological
field theory as γ = log D. Since D = 2 for a gapped Z2 liquid
(described by the Z2 gauge theory), the quantity γ in Eq. (8)
saturates to log 2 in the thermodynamic limit, i.e., L → ∞.

The ground state at the RK point can be exactly repre-
sented by tensor networks using the framework of projected
entangled-pair states (PEPS) [51,52]. We use this construction
on a cylindrical triangular lattice (Fig. 4) to calculate S as
a function of L and obtain γ (Fig. 4) using Eq. (8). The
subsystem A is constructed by bipartitioning the semiperiodic
triangular lattice with the dashed line as shown in Fig. 4. The
circumference L of the cylinder enters Eq. (8) as the perimeter
of the subsystem and should be much larger than the maximum
correlation length associated with the state [53,54]. The inset
of Fig. 4 shows the expected linear growth of S with L that
is predicted by the leading term in Eq. (8). The topological
entanglement entropy (γ ) is extracted from the intersection
of the function S on the y axis when extrapolated backward
and plotted against different values of L. The tendency of γ
to saturate at the value of log 2 for large L indicates the fact
that the RK point for the FPL model on the triangular lattice
represents the ground state of a topologically orderedZ2 liquid
akin to the other dimer models at 1/6 and 1/2 fillings [55,56].
This is one of the main results of this work.

However, away from the RK point in the accessible
parameter space, the ground state is no longer exactly known.
We adopt ED techniques to infer that the topological liquid
is stable even away from the RK point over a finite window
(see Fig. 3) up till when the system undergoes a quantum
phase transition into the LN phase beyond a critical value of
VRK. In the following subsections, we present the ED results
containing the information about the low-lying spectrum of
the model and measurements of various correlation functions
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FIG. 3. (Color online) The phase diagram of the dimer models
at different fractional fillings f . The important details about each of
them are given in the text. The filling fraction 1/6 corresponds to a
triangular lattice QDM [19,46] while the half-filled case maps to an
easy-axis kagome antiferromagnet or a 3-dimer model [16,17]. The
focus of the present paper is at f = 1/3.

III. NUMERICAL CALCULATIONS AT 1/3 FILLING

We use a combination of tensor product states (TPS)
formalism and exact diagonalization (ED) methods to obtain
the phase diagram (Fig. 3, middle line) of the FPL model
on the triangular lattice. Necessary details about implementing
the numerical methods for different clusters are furnished in
the following subsections facilitating a systematic analysis of
our model. We take the value of g to be 1 which is a convenient
choice for further numerical calculations.

A. Entanglement entropy at the RK point: the Z2 liquid

One of the most interesting features of the Hamiltonian
in Eq. (7) is the existence of the exactly solvable RK point
(g = VRK). We start by showing that at this point the ground
state of our model (FPL) indeed has a topological order.

In order to characterize the topological order, an instructive
quantity to look at is the entanglement entropy (S) for
a bipartition of the system into two parts A and B. The
entanglement entropy of the reduced density matrix ρA of
subsystem A is defined as S = −Tr[ρA log ρA] where ρA

is obtained from the full density matrix by tracing out all
the degrees of freedom in the rest (B). For a gapped and
topologically ordered gapped ground state, S satisfies the “area
law” which goes as

S(L) = αL − γ + O(L−1) + · · · , (8)

where α in the leading term is a nonuniversal coefficient and
L is the perimeter of the subsystem A. The subleading term γ ,
also known as the topological entanglement entropy [47–50],

FIG. 4. (Color online) The plot shows the finite-size dependence
of the topological entanglement entropy γ as a function of L, the
perimeter of the subsystem A. The green dashed line corresponds to
the saturated value of ln 2 in the thermodynamic limit. The lattice
is constructed on an infinite cylinder assuming periodic boundary
condition in one direction. The black dashed line indicates the
bipartition of the cylinder separating the subsystem A from the rest
B. The inset shows the linear growth of the entanglement entropy S

with L.

is however universal bearing the anyonic content of the state
that reflects the topological order. This is directly related to
the total quantum dimension (D) of the underlying topological
field theory as γ = log D. Since D = 2 for a gapped Z2 liquid
(described by the Z2 gauge theory), the quantity γ in Eq. (8)
saturates to log 2 in the thermodynamic limit, i.e., L → ∞.

The ground state at the RK point can be exactly repre-
sented by tensor networks using the framework of projected
entangled-pair states (PEPS) [51,52]. We use this construction
on a cylindrical triangular lattice (Fig. 4) to calculate S as
a function of L and obtain γ (Fig. 4) using Eq. (8). The
subsystem A is constructed by bipartitioning the semiperiodic
triangular lattice with the dashed line as shown in Fig. 4. The
circumference L of the cylinder enters Eq. (8) as the perimeter
of the subsystem and should be much larger than the maximum
correlation length associated with the state [53,54]. The inset
of Fig. 4 shows the expected linear growth of S with L that
is predicted by the leading term in Eq. (8). The topological
entanglement entropy (γ ) is extracted from the intersection
of the function S on the y axis when extrapolated backward
and plotted against different values of L. The tendency of γ
to saturate at the value of log 2 for large L indicates the fact
that the RK point for the FPL model on the triangular lattice
represents the ground state of a topologically orderedZ2 liquid
akin to the other dimer models at 1/6 and 1/2 fillings [55,56].
This is one of the main results of this work.

However, away from the RK point in the accessible
parameter space, the ground state is no longer exactly known.
We adopt ED techniques to infer that the topological liquid
is stable even away from the RK point over a finite window
(see Fig. 3) up till when the system undergoes a quantum
phase transition into the LN phase beyond a critical value of
VRK. In the following subsections, we present the ED results
containing the information about the low-lying spectrum of
the model and measurements of various correlation functions
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FIG. 3. (Color online) The phase diagram of the dimer models
at different fractional fillings f . The important details about each of
them are given in the text. The filling fraction 1/6 corresponds to a
triangular lattice QDM [19,46] while the half-filled case maps to an
easy-axis kagome antiferromagnet or a 3-dimer model [16,17]. The
focus of the present paper is at f = 1/3.

III. NUMERICAL CALCULATIONS AT 1/3 FILLING

We use a combination of tensor product states (TPS)
formalism and exact diagonalization (ED) methods to obtain
the phase diagram (Fig. 3, middle line) of the FPL model
on the triangular lattice. Necessary details about implementing
the numerical methods for different clusters are furnished in
the following subsections facilitating a systematic analysis of
our model. We take the value of g to be 1 which is a convenient
choice for further numerical calculations.

A. Entanglement entropy at the RK point: the Z2 liquid

One of the most interesting features of the Hamiltonian
in Eq. (7) is the existence of the exactly solvable RK point
(g = VRK). We start by showing that at this point the ground
state of our model (FPL) indeed has a topological order.

In order to characterize the topological order, an instructive
quantity to look at is the entanglement entropy (S) for
a bipartition of the system into two parts A and B. The
entanglement entropy of the reduced density matrix ρA of
subsystem A is defined as S = −Tr[ρA log ρA] where ρA

is obtained from the full density matrix by tracing out all
the degrees of freedom in the rest (B). For a gapped and
topologically ordered gapped ground state, S satisfies the “area
law” which goes as

S(L) = αL − γ + O(L−1) + · · · , (8)

where α in the leading term is a nonuniversal coefficient and
L is the perimeter of the subsystem A. The subleading term γ ,
also known as the topological entanglement entropy [47–50],

FIG. 4. (Color online) The plot shows the finite-size dependence
of the topological entanglement entropy γ as a function of L, the
perimeter of the subsystem A. The green dashed line corresponds to
the saturated value of ln 2 in the thermodynamic limit. The lattice
is constructed on an infinite cylinder assuming periodic boundary
condition in one direction. The black dashed line indicates the
bipartition of the cylinder separating the subsystem A from the rest
B. The inset shows the linear growth of the entanglement entropy S

with L.

is however universal bearing the anyonic content of the state
that reflects the topological order. This is directly related to
the total quantum dimension (D) of the underlying topological
field theory as γ = log D. Since D = 2 for a gapped Z2 liquid
(described by the Z2 gauge theory), the quantity γ in Eq. (8)
saturates to log 2 in the thermodynamic limit, i.e., L → ∞.

The ground state at the RK point can be exactly repre-
sented by tensor networks using the framework of projected
entangled-pair states (PEPS) [51,52]. We use this construction
on a cylindrical triangular lattice (Fig. 4) to calculate S as
a function of L and obtain γ (Fig. 4) using Eq. (8). The
subsystem A is constructed by bipartitioning the semiperiodic
triangular lattice with the dashed line as shown in Fig. 4. The
circumference L of the cylinder enters Eq. (8) as the perimeter
of the subsystem and should be much larger than the maximum
correlation length associated with the state [53,54]. The inset
of Fig. 4 shows the expected linear growth of S with L that
is predicted by the leading term in Eq. (8). The topological
entanglement entropy (γ ) is extracted from the intersection
of the function S on the y axis when extrapolated backward
and plotted against different values of L. The tendency of γ
to saturate at the value of log 2 for large L indicates the fact
that the RK point for the FPL model on the triangular lattice
represents the ground state of a topologically orderedZ2 liquid
akin to the other dimer models at 1/6 and 1/2 fillings [55,56].
This is one of the main results of this work.

However, away from the RK point in the accessible
parameter space, the ground state is no longer exactly known.
We adopt ED techniques to infer that the topological liquid
is stable even away from the RK point over a finite window
(see Fig. 3) up till when the system undergoes a quantum
phase transition into the LN phase beyond a critical value of
VRK. In the following subsections, we present the ED results
containing the information about the low-lying spectrum of
the model and measurements of various correlation functions
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Quantum spin liquids, exotic phases of matter with topological order, have been a major focus
of explorations in physical science for the past several decades. Such phases feature long-range
quantum entanglement that can potentially be exploited to realize robust quantum computation.
We use a 219-atom programmable quantum simulator to probe quantum spin liquid states. In our
approach, arrays of atoms are placed on the links of a kagome lattice and evolution under Rydberg
blockade creates frustrated quantum states with no local order. The onset of a quantum spin liquid
phase of the paradigmatic toric code type is detected by evaluating topological string operators
that provide direct signatures of topological order and quantum correlations. Its properties are
further revealed by using an atom array with nontrivial topology, representing a first step towards
topological encoding. Our observations enable the controlled experimental exploration of topological
quantum matter and protected quantum information processing.

Motivated by visionary theoretical work carried out
over the past five decades, a broad search is currently
underway to identify signatures of quantum spin liquids
(QSL) in novel materials [1, 2]. Moreover, inspired by
the intriguing predictions of quantum information the-
ory [3], techniques to engineer such systems for topologi-
cal protection of quantum information are being actively
explored [4]. Systems with frustration [5] caused by the
lattice geometry or long-range interactions constitute a
promising avenue in the search for QSLs. In particular,
such systems can be used to implement a class of so-
called dimer models [6–10], which are among the most
promising candidates to host quantum spin liquid states.
However, realizing and probing such states is challeng-
ing since they are often surrounded by other competing
phases. Moreover, in contrast to topological systems in-
volving time-reversal symmetry breaking, such as in the
fractional quantum Hall e↵ect [11], these states cannot
be easily probed via, e.g., quantized conductance or edge
states. Instead, to diagnose spin liquid phases, it is es-
sential to access nonlocal observables, such as topolog-
ical string operators [1, 2]. While some indications of
QSL phases in correlated materials have been previously
reported [12, 13], thus far, these exotic states of matter
have evaded direct experimental detection.

Programmable quantum simulators are well suited for
the controlled exploration of these strongly correlated
quantum phases [14–20]. In particular, recent work
showed that various phases of quantum dimer models
can be e�ciently implemented using Rydberg atom ar-
rays [21] and that a dimer spin liquid state of the toric
code type could be potentially created in a specific frus-
trated lattice [22]. We note that toric code states have

been dynamically created in small systems using quan-
tum circuits [23, 24]. However, some of the key prop-
erties, such as topological robustness, are challenging to
realize in such systems. Spin liquids have also been ex-
plored using quantum annealers, but the lack of coher-
ence in these systems has precluded the observation of
quantum features [25].

Dimer Models in Rydberg Atom Arrays. The key
idea of our approach is based on a correspondence [22]
between Rydberg atoms placed on the links of a kagome
lattice (or equivalently the sites of a ruby lattice), as
shown in Fig. 1A, and dimer models on the kagome lattice
[8, 10]. The Rydberg excitations can be viewed as “dimer
bonds” connecting the two adjacent vertices of the lat-
tice (Fig. 1B). Due to the Rydberg blockade [26], strong
and properly tuned interactions constrain the density of
excitations such that each vertex is touched by a maxi-
mum of one dimer. At 1/4 filling, each vertex is touched
by exactly one dimer, resulting in a perfect dimer cov-
ering of the lattice. Smaller filling fractions result in a
finite density of vertices with no proximal dimers, which
are referred to as monomers. A quantum spin liquid
can emerge within this dimer-monomer model close to
1/4 filling [22], and can be viewed as a coherent superpo-
sition of exponentially many degenerate dimer coverings
with a small admixture of monomers [10] (Fig. 1C). This
corresponds to the resonating valence bond (RVB) state
[6, 27], predicted long ago but so far still unobserved in
any experimental system.

To create and study such states experimentally, we uti-
lize two-dimensional arrays of 219 87Rb atoms individu-
ally trapped in optical tweezers [29, 30] and positioned
on the links of a kagome lattice, as shown in Fig. 1A. The
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FIG. 1. Dimer model in Rydberg atoms arrays. (A) Fluorescence image of 219 atoms arranged on the links of a kagome
lattice. The atoms, initially in the ground state |gi, evolve according to the many-body dynamics U(t). The final state of the
atoms is determined via fluorescence imaging of ground state atoms. Rydberg atoms are marked with red dimers on the bonds
of the kagome lattice. (B) We adjust the blockade radius to Rb/a = 2.4, by choosing ⌦ = 2⇡ ⇥ 1.4 MHz and a = 3.9 µm,
such that all six nearest neighbors of an atom in |ri are within the blockade radius Rb. A state consistent with the Rydberg
blockade at maximal filling can then be viewed as a dimer covering of the kagome lattice, where each vertex is touched by
exactly one dimer. (C) The quantum spin liquid state corresponds to a coherent superposition of exponentially many dimer
coverings. (D) Detuning �(t) and Rabi frequency ⌦(t) used for quasi-adiabatic state preparation. (E) (Top) Average density
of Rydberg excitations hni in the bulk of the system, excluding the outer three layers [28]. (Bottom) Probabilities of empty
vertices in the bulk (monomers), vertices attached to a single dimer, or to double dimers (weakly violating blockade). After
�/⌦ ⇠ 3, the system reaches ⇠ 1/4 filling, where most vertices are attached to a single dimer, consistent with an approximate
dimer phase.

atoms are initialized in an electronic ground state |gi and
coupled to a Rydberg state |ri via a two-photon optical
transition with Rabi frequency ⌦. The atoms in the Ry-
dberg state |ri interact via a strong van der Waals po-
tential V = V0/d

6, with d the interatomic distance. This
strong interaction prevents the simultaneous excitation
of two atoms within a blockade radius Rb = (V0/⌦)1/6

[26]. We adjust the lattice spacing a and the Rabi fre-
quency ⌦ such that, for each atom in |ri, its six nearest
neighbors are all within the blockade radius (Fig. 1B),
resulting in a maximum filling fraction of 1/4. The re-
sulting dynamics corresponds to unitary evolution U(t)
governed by the Hamiltonian

H

~ =
⌦(t)

2

X

i

�
x

i
� �(t)

X

i

ni +
X

i<j

Vijninj (1)

where ~ is the reduced Planck constant, ni = |riihri| is
the Rydberg state occupation at site i, �x

i
= |giihri| +

|riihgi| and �(t) is the time-dependent two-photon de-
tuning. After the evolution, the state is analyzed by
projective readout of ground state atoms (Fig. 1A, right
panel) [29].

To explore many-body phases in this system, we uti-
lize quasi-adiabatic evolution, in which we slowly turn
on the Rydberg coupling ⌦ and subsequently change the
detuning � from negative to positive values using a cu-
bic frequency sweep over about 2 µs (Fig. 1D). We stop

the cubic sweep at di↵erent endpoints and first measure
the density of Rydberg excitations hni. Away from the
array boundaries (which result in edge e↵ects permeat-
ing just two layers into the bulk), we observe that the
average density of Rydberg atoms is uniform across the
array (see Fig. S3 and [28]). Focusing on the bulk den-
sity, we find that for �/⌦ & 3, the system reaches the
desired filling fraction hni ⇠ 1/4 (Fig. 1E, top panel).
The resulting state does not have any obvious spatial or-
der (Fig. 1A) and appears as a di↵erent configuration
of Rydberg atoms in each experimental repetition (see
Fig. S4 and [28]). From the single-shot images, we evalu-
ate the probability for each vertex of the kagome lattice
to be attached to: one dimer (as in a perfect dimer cover-
ing), zero dimers (i.e. a monomer), or two dimers (repre-
senting weak blockade violations). Around �/⌦ ⇠ 4 we
observe an approximate plateau where ⇠ 80% of the ver-
tices are connected to a single dimer (Fig. 1E), indicating
an approximate dimer covering.

Measuring topological string operators. A defin-
ing property of a phase with topological order is that it
cannot be probed locally. Hence, to investigate the pos-
sible presence of a QSL state, it is essential to measure
topological string operators, analogous to those used in
the toric code model [3]. For the present model, there
are two such string operators, the first of which charac-
terizes the e↵ective dimer description, while the second
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Quantum spin liquids, exotic phases of matter with topological order, have been a major focus
of explorations in physical science for the past several decades. Such phases feature long-range
quantum entanglement that can potentially be exploited to realize robust quantum computation.
We use a 219-atom programmable quantum simulator to probe quantum spin liquid states. In our
approach, arrays of atoms are placed on the links of a kagome lattice and evolution under Rydberg
blockade creates frustrated quantum states with no local order. The onset of a quantum spin liquid
phase of the paradigmatic toric code type is detected by evaluating topological string operators
that provide direct signatures of topological order and quantum correlations. Its properties are
further revealed by using an atom array with nontrivial topology, representing a first step towards
topological encoding. Our observations enable the controlled experimental exploration of topological
quantum matter and protected quantum information processing.

Motivated by visionary theoretical work carried out
over the past five decades, a broad search is currently
underway to identify signatures of quantum spin liquids
(QSL) in novel materials [1, 2]. Moreover, inspired by
the intriguing predictions of quantum information the-
ory [3], techniques to engineer such systems for topologi-
cal protection of quantum information are being actively
explored [4]. Systems with frustration [5] caused by the
lattice geometry or long-range interactions constitute a
promising avenue in the search for QSLs. In particular,
such systems can be used to implement a class of so-
called dimer models [6–10], which are among the most
promising candidates to host quantum spin liquid states.
However, realizing and probing such states is challeng-
ing since they are often surrounded by other competing
phases. Moreover, in contrast to topological systems in-
volving time-reversal symmetry breaking, such as in the
fractional quantum Hall e↵ect [11], these states cannot
be easily probed via, e.g., quantized conductance or edge
states. Instead, to diagnose spin liquid phases, it is es-
sential to access nonlocal observables, such as topolog-
ical string operators [1, 2]. While some indications of
QSL phases in correlated materials have been previously
reported [12, 13], thus far, these exotic states of matter
have evaded direct experimental detection.

Programmable quantum simulators are well suited for
the controlled exploration of these strongly correlated
quantum phases [14–20]. In particular, recent work
showed that various phases of quantum dimer models
can be e�ciently implemented using Rydberg atom ar-
rays [21] and that a dimer spin liquid state of the toric
code type could be potentially created in a specific frus-
trated lattice [22]. We note that toric code states have

been dynamically created in small systems using quan-
tum circuits [23, 24]. However, some of the key prop-
erties, such as topological robustness, are challenging to
realize in such systems. Spin liquids have also been ex-
plored using quantum annealers, but the lack of coher-
ence in these systems has precluded the observation of
quantum features [25].

Dimer Models in Rydberg Atom Arrays. The key
idea of our approach is based on a correspondence [22]
between Rydberg atoms placed on the links of a kagome
lattice (or equivalently the sites of a ruby lattice), as
shown in Fig. 1A, and dimer models on the kagome lattice
[8, 10]. The Rydberg excitations can be viewed as “dimer
bonds” connecting the two adjacent vertices of the lat-
tice (Fig. 1B). Due to the Rydberg blockade [26], strong
and properly tuned interactions constrain the density of
excitations such that each vertex is touched by a maxi-
mum of one dimer. At 1/4 filling, each vertex is touched
by exactly one dimer, resulting in a perfect dimer cov-
ering of the lattice. Smaller filling fractions result in a
finite density of vertices with no proximal dimers, which
are referred to as monomers. A quantum spin liquid
can emerge within this dimer-monomer model close to
1/4 filling [22], and can be viewed as a coherent superpo-
sition of exponentially many degenerate dimer coverings
with a small admixture of monomers [10] (Fig. 1C). This
corresponds to the resonating valence bond (RVB) state
[6, 27], predicted long ago but so far still unobserved in
any experimental system.

To create and study such states experimentally, we uti-
lize two-dimensional arrays of 219 87Rb atoms individu-
ally trapped in optical tweezers [29, 30] and positioned
on the links of a kagome lattice, as shown in Fig. 1A. The
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FIG. 2. Detecting a dimer phase via diagonal string
operator. (A) The Z string operator measures the par-
ity of dimers along a string. (B) A perfect dimer cover-
ing always has exactly one dimer touching each vertex of
the array, so that hZi = �1 around a single vertex and
hZi = (�1)#enclosed vertices for larger loops. (C) Z parity
measurements following the quasi-adiabatic sweep of Fig. 1D,
with the addition of a 200 ns ramp-down of ⌦ at the end
to optimize preparation. At di↵erent endpoints of the sweep
and for di↵erent loop sizes (inset), we measure a finite hZi,
consistent with an approximate dimer phase.

probes quantum coherence between dimer states [22]. We
first focus on the diagonal operator Z =

Q
i2S

�
z

i
, with

�
z

i
= 1�2ni, that measures the parity of Rydberg atoms

along a string S perpendicular to the bonds of the kagome
lattice (Fig. 2A). For the smallest closed Z loop, which
encloses a single vertex of the kagome lattice, hZi = �1
for any perfect dimer covering. Larger loops can be de-
composed into a product of small loops around all the
enclosed vertices, resulting in hZi = (�1)# enclosed vertices

(Fig. 2B). Note that the presence of monomers or double-
dimers reduces the e↵ective contribution of each vertex,
resulting in a reduced hZi.

To measure hZi for di↵erent loops (Fig. 2C), we eval-
uate the string observables directly from single-shot im-
ages, averaging over many experimental repetitions and
over all loops of the same shape in the bulk of the lat-
tice [28]. In the range of detunings where hni ⇠ 1/4, we
clearly observe the emergence of a finite hZi for all loops,
with the sign matching the parity of enclosed vertices, as
expected for dimer states (Fig. 2B). The measured val-
ues are generally |hZi| < 1 and decrease with the loop
size, suggesting the presence of a finite density of defects,
as discussed below. Nevertheless, these observations in-
dicate that the state we prepare is consistent with an

approximate dimer phase.

We next explore quantum coherence properties of the
prepared state. To this end, we consider the o↵-diagonal
X operator, which acts on strings along the bonds of the
kagome lattice. It is defined in Fig. 3A by its action on
a single triangle [22]. Applying X on any closed string
maps a dimer covering to another valid dimer covering
(see e.g. Fig. 3B for a loop around a single hexagon). A
finite expectation value for X therefore implies that the
state contains a coherent superposition of one or more
pairs of dimer states coupled by that specific loop, a
prerequisite for a quantum spin liquid. The measure-
ment of X can be implemented by performing a collec-
tive basis rotation [22] illustrated in Fig. 3C. This rota-
tion is implemented by time-evolution under the Rydberg
Hamiltonian (eq. (1)) with � = 0 and reduced blockade
radius Rb/a = 1.53, such that only the atoms within
the same triangle are subject to the Rydberg blockade
constraint. Under these conditions, it is su�cient to
consider the evolution of individual triangles separately,
where each triangle can be described as a 4-level sys-
tem ( ). Within this subspace, after a time

⌧ = 4⇡/(3⌦
p
3), the collective 3-atom dynamics realizes

a unitary Uq which implements the basis rotation that
transforms an X string into a dual Z string [28].

Experimentally, the basis rotation is implemented fol-
lowing the state preparation by quenching the laser de-
tuning to �q = 0 and increasing the laser intensity
by a factor of ⇠ 200 to reduce the blockade radius to
Rb/a = 1.53 (Fig. 3D and [28]). We calibrate ⌧ by
preparing the state at �/⌦ = 4 and evolving under the
quench Hamiltonian for a variable time. We measure the
parity of a Z string that is dual to a target X loop, and
observe a sharp revival of the parity signal at ⌧ ⇠ 30 ns
(Fig. 3E) [22]. Fixing the quench time ⌧ , we measure
hXi for di↵erent values of the detuning � at the end of
the cubic sweep (Fig. 3F) and observe a finite X par-
ity signal for loops that extend over a large fraction of
the array. We emphasize that, in light of experimental
imperfections [28], the observation of finite parities for
string observables of up to 28 atoms within µs-long exper-
iments is rather remarkable. These observations clearly
indicate the presence of long-range coherence in the pre-
pared state.

Probing spin liquid properties. The study of closed
string operators shows that we prepare an approximate
dimer phase with quantum coherence between dimer cov-
erings. While these closed loops are indicative of topo-
logical order, it is important to compare their properties
to those of open strings to distinguish topological e↵ects
from trivial ordering—the former being sensitive to the
topology of the loop [31–33]. This comparison is shown in
Fig. 4D,E, indicating several distinct regimes. For small
�, we find that both Z and X loop parities factorize into
the product of the parities on the half-loop open strings—
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Quantum spin liquids, exotic phases of matter with topological order, have been a major focus
of explorations in physical science for the past several decades. Such phases feature long-range
quantum entanglement that can potentially be exploited to realize robust quantum computation.
We use a 219-atom programmable quantum simulator to probe quantum spin liquid states. In our
approach, arrays of atoms are placed on the links of a kagome lattice and evolution under Rydberg
blockade creates frustrated quantum states with no local order. The onset of a quantum spin liquid
phase of the paradigmatic toric code type is detected by evaluating topological string operators
that provide direct signatures of topological order and quantum correlations. Its properties are
further revealed by using an atom array with nontrivial topology, representing a first step towards
topological encoding. Our observations enable the controlled experimental exploration of topological
quantum matter and protected quantum information processing.

Motivated by visionary theoretical work carried out
over the past five decades, a broad search is currently
underway to identify signatures of quantum spin liquids
(QSL) in novel materials [1, 2]. Moreover, inspired by
the intriguing predictions of quantum information the-
ory [3], techniques to engineer such systems for topologi-
cal protection of quantum information are being actively
explored [4]. Systems with frustration [5] caused by the
lattice geometry or long-range interactions constitute a
promising avenue in the search for QSLs. In particular,
such systems can be used to implement a class of so-
called dimer models [6–10], which are among the most
promising candidates to host quantum spin liquid states.
However, realizing and probing such states is challeng-
ing since they are often surrounded by other competing
phases. Moreover, in contrast to topological systems in-
volving time-reversal symmetry breaking, such as in the
fractional quantum Hall e↵ect [11], these states cannot
be easily probed via, e.g., quantized conductance or edge
states. Instead, to diagnose spin liquid phases, it is es-
sential to access nonlocal observables, such as topolog-
ical string operators [1, 2]. While some indications of
QSL phases in correlated materials have been previously
reported [12, 13], thus far, these exotic states of matter
have evaded direct experimental detection.

Programmable quantum simulators are well suited for
the controlled exploration of these strongly correlated
quantum phases [14–20]. In particular, recent work
showed that various phases of quantum dimer models
can be e�ciently implemented using Rydberg atom ar-
rays [21] and that a dimer spin liquid state of the toric
code type could be potentially created in a specific frus-
trated lattice [22]. We note that toric code states have

been dynamically created in small systems using quan-
tum circuits [23, 24]. However, some of the key prop-
erties, such as topological robustness, are challenging to
realize in such systems. Spin liquids have also been ex-
plored using quantum annealers, but the lack of coher-
ence in these systems has precluded the observation of
quantum features [25].

Dimer Models in Rydberg Atom Arrays. The key
idea of our approach is based on a correspondence [22]
between Rydberg atoms placed on the links of a kagome
lattice (or equivalently the sites of a ruby lattice), as
shown in Fig. 1A, and dimer models on the kagome lattice
[8, 10]. The Rydberg excitations can be viewed as “dimer
bonds” connecting the two adjacent vertices of the lat-
tice (Fig. 1B). Due to the Rydberg blockade [26], strong
and properly tuned interactions constrain the density of
excitations such that each vertex is touched by a maxi-
mum of one dimer. At 1/4 filling, each vertex is touched
by exactly one dimer, resulting in a perfect dimer cov-
ering of the lattice. Smaller filling fractions result in a
finite density of vertices with no proximal dimers, which
are referred to as monomers. A quantum spin liquid
can emerge within this dimer-monomer model close to
1/4 filling [22], and can be viewed as a coherent superpo-
sition of exponentially many degenerate dimer coverings
with a small admixture of monomers [10] (Fig. 1C). This
corresponds to the resonating valence bond (RVB) state
[6, 27], predicted long ago but so far still unobserved in
any experimental system.

To create and study such states experimentally, we uti-
lize two-dimensional arrays of 219 87Rb atoms individu-
ally trapped in optical tweezers [29, 30] and positioned
on the links of a kagome lattice, as shown in Fig. 1A. The
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FIG. 3. Probing coherence between dimer states via o↵-diagonal string operator. (A) Definition of X string operator
on a single triangle of the kagome lattice. (B) On any closed loop, the X operator maps any dimer covering into another valid
dimer covering, such that hXi measures the coherence between pairs of dimer configurations. (C) The X operator is measured
by evolving the initial state under Hamiltonian (eq. (1)) with � = 0 and reduced blockade radius to encompass only atoms
within each individual triangle, implementing a basis rotation that maps X into Z. (D) In the experiment, after the state
preparation, we set the laser detuning to �q = 0 and we increase ⌦ to 2⇡ ⇥ 20 MHz to reach Rb/a = 1.53. (E) By measuring
the Z parity on the dual string (red) of a target X loop (blue) after a variable quench time, we identify the time ⌧ for which
the mapping in (C) is implemented. (F) We measure hXi for di↵erent final detunings of the cubic sweep and for di↵erent loop
sizes (inset), and find that the prepared state has long-range coherence that extends over a large fraction of the array [28].

in particular, the finite hZi is a trivial result of the low
density of Rydberg excitations. In contrast, loop parities
no longer factorize in the dimer phase (3 . �/⌦ . 5).
Instead, the expectation values for both open string oper-
ators vanish in the dimer phase, indicating the nontrivial
nature of the correlations measured by the closed loops
(see also [28]). More specifically, topological ordering in
the dimer-monomer model can break down either due to
a high density of monomers, corresponding to the trivial
disordered phase at small�/⌦, or due to the lack of long-
range resonances, corresponding to a valence bond solid
(VBS) [22]. Open Z and X strings distinguish the target
QSL phase from these proximal phases: when normalized
according to the definition from Bricmont, Frölich, Fre-
denhagen and Marcu [31, 32] (BFFM) (Fig. 4B,C), these
open strings can be considered as order parameters for
the QSL. In particular, open Z strings have a finite ex-
pectation value when the dimers form an ordered spatial
arrangement, as in the VBS phase. At the same time,
open X strings create pairs of monomers at their end-
points (Fig. 4A), so a finite hXi can be achieved in the
trivial phase where there is a high density of monomers.
Therefore, the QSL can be identified as the unique phase
where both order parameters vanish for long strings [22].

Figures 4F,G show the measured values of these or-
der parameters. We find that hZiBFFM is compatible
with zero on the entire range of �/⌦ where we ob-
served a finite Z parity on closed loops, indicating the
absence of a VBS phase (Fig. 4F), consistent with our
analysis of density-density correlations (Fig. S5 and [28]).
At the same time, hXiBFFM converges towards zero on
the longest strings for �/⌦ & 3.3 (Fig. 4G), indicat-

ing a transition out of the disordered phase. By com-
bining these two measurements with the regions of non-
vanishing parity for the closed Z and X loops (Figs. 2,3),
we conclude that for 3.3 . �/⌦ . 4.5 our results con-
stitute a direct detection of the onset of a quantum spin
liquid phase (shaded area in Fig. 4F,G).
The measurements of the closed loop operators in

Fig. 2,3 show that |hZi|, |hXi| < 1 and that the amplitude
of the signal decreases with the loop size, which results
from a finite density of quasiparticle excitations. Specifi-
cally, defects in the dimer covering such as monomers and
double-dimers can be interpreted as electric (e) anyons in
the language of lattice gauge theory [22]. Since the pres-
ence of a defect inside a closed loop changes the sign of Z,
the parity on the loop is reduced according to the number
of enclosed e-anyons as |hZi| = |h(�1)#enclosed e-anyonsi|.
The average number of defects inside a loop is expected to
scale with the number of enclosed vertices, i.e. with the
area of the loop, and indeed we observe an approximate
area-law scaling of |hZi| for small loop sizes (Fig. 4H).
However, for larger loops we notice a deviation towards a
perimeter-law scaling, which can emerge if pairs of anyons
are correlated over a characteristic length scale smaller
than the loop size (see [28] for a discussion of the ex-
pected scaling). Pairs of correlated anyons which are
both inside the loop do not change its parity since their
contributions cancel out; they only a↵ect hZi when they
sit across the loop, leading to a scaling with the length
of the perimeter. These pairs can be viewed as resulting
from the application of X string operators to a dimer
covering (Fig. 4A), originating, e.g., from virtual exci-
tations in the dimer-monomer model [28] or from errors

4
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a high density of monomers, corresponding to the trivial
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open X strings create pairs of monomers at their end-
points (Fig. 4A), so a finite hXi can be achieved in the
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in particular, the finite hZi is a trivial result of the low
density of Rydberg excitations. In contrast, loop parities
no longer factorize in the dimer phase (3 . �/⌦ . 5).
Instead, the expectation values for both open string oper-
ators vanish in the dimer phase, indicating the nontrivial
nature of the correlations measured by the closed loops
(see also [28]). More specifically, topological ordering in
the dimer-monomer model can break down either due to
a high density of monomers, corresponding to the trivial
disordered phase at small�/⌦, or due to the lack of long-
range resonances, corresponding to a valence bond solid
(VBS) [22]. Open Z and X strings distinguish the target
QSL phase from these proximal phases: when normalized
according to the definition from Bricmont, Frölich, Fre-
denhagen and Marcu [31, 32] (BFFM) (Fig. 4B,C), these
open strings can be considered as order parameters for
the QSL. In particular, open Z strings have a finite ex-
pectation value when the dimers form an ordered spatial
arrangement, as in the VBS phase. At the same time,
open X strings create pairs of monomers at their end-
points (Fig. 4A), so a finite hXi can be achieved in the
trivial phase where there is a high density of monomers.
Therefore, the QSL can be identified as the unique phase
where both order parameters vanish for long strings [22].

Figures 4F,G show the measured values of these or-
der parameters. We find that hZiBFFM is compatible
with zero on the entire range of �/⌦ where we ob-
served a finite Z parity on closed loops, indicating the
absence of a VBS phase (Fig. 4F), consistent with our
analysis of density-density correlations (Fig. S5 and [28]).
At the same time, hXiBFFM converges towards zero on
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ing a transition out of the disordered phase. By com-
bining these two measurements with the regions of non-
vanishing parity for the closed Z and X loops (Figs. 2,3),
we conclude that for 3.3 . �/⌦ . 4.5 our results con-
stitute a direct detection of the onset of a quantum spin
liquid phase (shaded area in Fig. 4F,G).
The measurements of the closed loop operators in

Fig. 2,3 show that |hZi|, |hXi| < 1 and that the amplitude
of the signal decreases with the loop size, which results
from a finite density of quasiparticle excitations. Specifi-
cally, defects in the dimer covering such as monomers and
double-dimers can be interpreted as electric (e) anyons in
the language of lattice gauge theory [22]. Since the pres-
ence of a defect inside a closed loop changes the sign of Z,
the parity on the loop is reduced according to the number
of enclosed e-anyons as |hZi| = |h(�1)#enclosed e-anyonsi|.
The average number of defects inside a loop is expected to
scale with the number of enclosed vertices, i.e. with the
area of the loop, and indeed we observe an approximate
area-law scaling of |hZi| for small loop sizes (Fig. 4H).
However, for larger loops we notice a deviation towards a
perimeter-law scaling, which can emerge if pairs of anyons
are correlated over a characteristic length scale smaller
than the loop size (see [28] for a discussion of the ex-
pected scaling). Pairs of correlated anyons which are
both inside the loop do not change its parity since their
contributions cancel out; they only a↵ect hZi when they
sit across the loop, leading to a scaling with the length
of the perimeter. These pairs can be viewed as resulting
from the application of X string operators to a dimer
covering (Fig. 4A), originating, e.g., from virtual exci-
tations in the dimer-monomer model [28] or from errors
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FIG. 3. (Color online) The phase diagram of the dimer models
at different fractional fillings f . The important details about each of
them are given in the text. The filling fraction 1/6 corresponds to a
triangular lattice QDM [19,46] while the half-filled case maps to an
easy-axis kagome antiferromagnet or a 3-dimer model [16,17]. The
focus of the present paper is at f = 1/3.

III. NUMERICAL CALCULATIONS AT 1/3 FILLING

We use a combination of tensor product states (TPS)
formalism and exact diagonalization (ED) methods to obtain
the phase diagram (Fig. 3, middle line) of the FPL model
on the triangular lattice. Necessary details about implementing
the numerical methods for different clusters are furnished in
the following subsections facilitating a systematic analysis of
our model. We take the value of g to be 1 which is a convenient
choice for further numerical calculations.

A. Entanglement entropy at the RK point: the Z2 liquid

One of the most interesting features of the Hamiltonian
in Eq. (7) is the existence of the exactly solvable RK point
(g = VRK). We start by showing that at this point the ground
state of our model (FPL) indeed has a topological order.

In order to characterize the topological order, an instructive
quantity to look at is the entanglement entropy (S) for
a bipartition of the system into two parts A and B. The
entanglement entropy of the reduced density matrix ρA of
subsystem A is defined as S = −Tr[ρA log ρA] where ρA

is obtained from the full density matrix by tracing out all
the degrees of freedom in the rest (B). For a gapped and
topologically ordered gapped ground state, S satisfies the “area
law” which goes as

S(L) = αL − γ + O(L−1) + · · · , (8)

where α in the leading term is a nonuniversal coefficient and
L is the perimeter of the subsystem A. The subleading term γ ,
also known as the topological entanglement entropy [47–50],

FIG. 4. (Color online) The plot shows the finite-size dependence
of the topological entanglement entropy γ as a function of L, the
perimeter of the subsystem A. The green dashed line corresponds to
the saturated value of ln 2 in the thermodynamic limit. The lattice
is constructed on an infinite cylinder assuming periodic boundary
condition in one direction. The black dashed line indicates the
bipartition of the cylinder separating the subsystem A from the rest
B. The inset shows the linear growth of the entanglement entropy S

with L.

is however universal bearing the anyonic content of the state
that reflects the topological order. This is directly related to
the total quantum dimension (D) of the underlying topological
field theory as γ = log D. Since D = 2 for a gapped Z2 liquid
(described by the Z2 gauge theory), the quantity γ in Eq. (8)
saturates to log 2 in the thermodynamic limit, i.e., L → ∞.

The ground state at the RK point can be exactly repre-
sented by tensor networks using the framework of projected
entangled-pair states (PEPS) [51,52]. We use this construction
on a cylindrical triangular lattice (Fig. 4) to calculate S as
a function of L and obtain γ (Fig. 4) using Eq. (8). The
subsystem A is constructed by bipartitioning the semiperiodic
triangular lattice with the dashed line as shown in Fig. 4. The
circumference L of the cylinder enters Eq. (8) as the perimeter
of the subsystem and should be much larger than the maximum
correlation length associated with the state [53,54]. The inset
of Fig. 4 shows the expected linear growth of S with L that
is predicted by the leading term in Eq. (8). The topological
entanglement entropy (γ ) is extracted from the intersection
of the function S on the y axis when extrapolated backward
and plotted against different values of L. The tendency of γ
to saturate at the value of log 2 for large L indicates the fact
that the RK point for the FPL model on the triangular lattice
represents the ground state of a topologically orderedZ2 liquid
akin to the other dimer models at 1/6 and 1/2 fillings [55,56].
This is one of the main results of this work.

However, away from the RK point in the accessible
parameter space, the ground state is no longer exactly known.
We adopt ED techniques to infer that the topological liquid
is stable even away from the RK point over a finite window
(see Fig. 3) up till when the system undergoes a quantum
phase transition into the LN phase beyond a critical value of
VRK. In the following subsections, we present the ED results
containing the information about the low-lying spectrum of
the model and measurements of various correlation functions
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them are given in the text. The filling fraction 1/6 corresponds to a
triangular lattice QDM [19,46] while the half-filled case maps to an
easy-axis kagome antiferromagnet or a 3-dimer model [16,17]. The
focus of the present paper is at f = 1/3.

III. NUMERICAL CALCULATIONS AT 1/3 FILLING

We use a combination of tensor product states (TPS)
formalism and exact diagonalization (ED) methods to obtain
the phase diagram (Fig. 3, middle line) of the FPL model
on the triangular lattice. Necessary details about implementing
the numerical methods for different clusters are furnished in
the following subsections facilitating a systematic analysis of
our model. We take the value of g to be 1 which is a convenient
choice for further numerical calculations.

A. Entanglement entropy at the RK point: the Z2 liquid

One of the most interesting features of the Hamiltonian
in Eq. (7) is the existence of the exactly solvable RK point
(g = VRK). We start by showing that at this point the ground
state of our model (FPL) indeed has a topological order.

In order to characterize the topological order, an instructive
quantity to look at is the entanglement entropy (S) for
a bipartition of the system into two parts A and B. The
entanglement entropy of the reduced density matrix ρA of
subsystem A is defined as S = −Tr[ρA log ρA] where ρA

is obtained from the full density matrix by tracing out all
the degrees of freedom in the rest (B). For a gapped and
topologically ordered gapped ground state, S satisfies the “area
law” which goes as

S(L) = αL − γ + O(L−1) + · · · , (8)

where α in the leading term is a nonuniversal coefficient and
L is the perimeter of the subsystem A. The subleading term γ ,
also known as the topological entanglement entropy [47–50],

FIG. 4. (Color online) The plot shows the finite-size dependence
of the topological entanglement entropy γ as a function of L, the
perimeter of the subsystem A. The green dashed line corresponds to
the saturated value of ln 2 in the thermodynamic limit. The lattice
is constructed on an infinite cylinder assuming periodic boundary
condition in one direction. The black dashed line indicates the
bipartition of the cylinder separating the subsystem A from the rest
B. The inset shows the linear growth of the entanglement entropy S

with L.

is however universal bearing the anyonic content of the state
that reflects the topological order. This is directly related to
the total quantum dimension (D) of the underlying topological
field theory as γ = log D. Since D = 2 for a gapped Z2 liquid
(described by the Z2 gauge theory), the quantity γ in Eq. (8)
saturates to log 2 in the thermodynamic limit, i.e., L → ∞.

The ground state at the RK point can be exactly repre-
sented by tensor networks using the framework of projected
entangled-pair states (PEPS) [51,52]. We use this construction
on a cylindrical triangular lattice (Fig. 4) to calculate S as
a function of L and obtain γ (Fig. 4) using Eq. (8). The
subsystem A is constructed by bipartitioning the semiperiodic
triangular lattice with the dashed line as shown in Fig. 4. The
circumference L of the cylinder enters Eq. (8) as the perimeter
of the subsystem and should be much larger than the maximum
correlation length associated with the state [53,54]. The inset
of Fig. 4 shows the expected linear growth of S with L that
is predicted by the leading term in Eq. (8). The topological
entanglement entropy (γ ) is extracted from the intersection
of the function S on the y axis when extrapolated backward
and plotted against different values of L. The tendency of γ
to saturate at the value of log 2 for large L indicates the fact
that the RK point for the FPL model on the triangular lattice
represents the ground state of a topologically orderedZ2 liquid
akin to the other dimer models at 1/6 and 1/2 fillings [55,56].
This is one of the main results of this work.

However, away from the RK point in the accessible
parameter space, the ground state is no longer exactly known.
We adopt ED techniques to infer that the topological liquid
is stable even away from the RK point over a finite window
(see Fig. 3) up till when the system undergoes a quantum
phase transition into the LN phase beyond a critical value of
VRK. In the following subsections, we present the ED results
containing the information about the low-lying spectrum of
the model and measurements of various correlation functions

075141-4

K. Roychowdhury,  
S. Bhattacharjee, F. Pollmann, 

Phys. Rev. B 92, 075141 
(2015). 

<latexit sha1_base64="axPlFDbjsZWgn9esE4309X8XbLc="></latexit>

‘Hard boson’ of Fendley, Sengupta, Sachdev

) ‘Dimer’ on triangular lattice!

0 0.5 1.0 1.5 2.0

(e)(a) (b) Stripe: � = 2.2, Rb = 1.2

(c) Nematic: � = 3.3, Rb = 1.7 (d) Staggered: � = 3.3, Rb = 2.1

<latexit sha1_base64="nhCxLWgNioVsDyETpUdycvw3F/4="></latexit>

The number of dimers is not conserved, and so the
Z2 gauge theory has finite gap matter fields.

Rydberg atoms on site-kagome lattice: theory



ROYCHOWDHURY, BHATTACHARJEE, AND POLLMANN PHYSICAL REVIEW B 92, 075141 (2015)

FIG. 3. (Color online) The phase diagram of the dimer models
at different fractional fillings f . The important details about each of
them are given in the text. The filling fraction 1/6 corresponds to a
triangular lattice QDM [19,46] while the half-filled case maps to an
easy-axis kagome antiferromagnet or a 3-dimer model [16,17]. The
focus of the present paper is at f = 1/3.

III. NUMERICAL CALCULATIONS AT 1/3 FILLING

We use a combination of tensor product states (TPS)
formalism and exact diagonalization (ED) methods to obtain
the phase diagram (Fig. 3, middle line) of the FPL model
on the triangular lattice. Necessary details about implementing
the numerical methods for different clusters are furnished in
the following subsections facilitating a systematic analysis of
our model. We take the value of g to be 1 which is a convenient
choice for further numerical calculations.

A. Entanglement entropy at the RK point: the Z2 liquid

One of the most interesting features of the Hamiltonian
in Eq. (7) is the existence of the exactly solvable RK point
(g = VRK). We start by showing that at this point the ground
state of our model (FPL) indeed has a topological order.

In order to characterize the topological order, an instructive
quantity to look at is the entanglement entropy (S) for
a bipartition of the system into two parts A and B. The
entanglement entropy of the reduced density matrix ρA of
subsystem A is defined as S = −Tr[ρA log ρA] where ρA

is obtained from the full density matrix by tracing out all
the degrees of freedom in the rest (B). For a gapped and
topologically ordered gapped ground state, S satisfies the “area
law” which goes as

S(L) = αL − γ + O(L−1) + · · · , (8)

where α in the leading term is a nonuniversal coefficient and
L is the perimeter of the subsystem A. The subleading term γ ,
also known as the topological entanglement entropy [47–50],
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the saturated value of ln 2 in the thermodynamic limit. The lattice
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B. The inset shows the linear growth of the entanglement entropy S
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is however universal bearing the anyonic content of the state
that reflects the topological order. This is directly related to
the total quantum dimension (D) of the underlying topological
field theory as γ = log D. Since D = 2 for a gapped Z2 liquid
(described by the Z2 gauge theory), the quantity γ in Eq. (8)
saturates to log 2 in the thermodynamic limit, i.e., L → ∞.

The ground state at the RK point can be exactly repre-
sented by tensor networks using the framework of projected
entangled-pair states (PEPS) [51,52]. We use this construction
on a cylindrical triangular lattice (Fig. 4) to calculate S as
a function of L and obtain γ (Fig. 4) using Eq. (8). The
subsystem A is constructed by bipartitioning the semiperiodic
triangular lattice with the dashed line as shown in Fig. 4. The
circumference L of the cylinder enters Eq. (8) as the perimeter
of the subsystem and should be much larger than the maximum
correlation length associated with the state [53,54]. The inset
of Fig. 4 shows the expected linear growth of S with L that
is predicted by the leading term in Eq. (8). The topological
entanglement entropy (γ ) is extracted from the intersection
of the function S on the y axis when extrapolated backward
and plotted against different values of L. The tendency of γ
to saturate at the value of log 2 for large L indicates the fact
that the RK point for the FPL model on the triangular lattice
represents the ground state of a topologically orderedZ2 liquid
akin to the other dimer models at 1/6 and 1/2 fillings [55,56].
This is one of the main results of this work.

However, away from the RK point in the accessible
parameter space, the ground state is no longer exactly known.
We adopt ED techniques to infer that the topological liquid
is stable even away from the RK point over a finite window
(see Fig. 3) up till when the system undergoes a quantum
phase transition into the LN phase beyond a critical value of
VRK. In the following subsections, we present the ED results
containing the information about the low-lying spectrum of
the model and measurements of various correlation functions
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