Scattering theory of topological insulators

Anton Akhmerov
with Carlo Beenakker, Jan Dahlhaus, Cosma Fulga,
Fabian Hassler, and Michael Wimmer

KITP workshop "topological insulators and superconductors", 29 November 2011

Outline

1. Topological invariant and topological insulators
2. Scattering approach example: Majorana fermions in 1D
3. General case: dimensional reduction
4. Applications

Topological insulators and superconductors

Topological insulator is

- A material with a band gap in the bulk (and a certain discrete symmetry)
- It has protected zero energy states at the edge
- Number of these states is a topological invariant $\mathcal{Q}[H(\mathbf{k})]$, an integer which does not change under small perturbations.

Classification

Three discrete symmetries (Altland\&Zirnbauer):
$\mathcal{T}: H(k)=U_{\mathcal{T}} H^{*}(-k) U_{\mathcal{T}}^{\dagger}, \mathcal{P}: H(k)=-U_{\mathcal{P}} H^{*}(-k) U_{\mathcal{P}}^{\dagger}$, $\mathcal{C}: H(k)=-U_{\mathcal{C}} H(k) U_{\mathcal{C}}^{\dagger}$,

Classification

Three discrete symmetries (Altland\&Zirnbauer):
$\mathcal{T}: H(k)=U_{\mathcal{T}} H^{*}(-k) U_{\mathcal{T}}^{\dagger}, \mathcal{P}: H(k)=-U_{\mathcal{P}} H^{*}(-k) U_{\mathcal{P}}^{\dagger}$,
$\mathcal{C}: H(k)=-U_{\mathcal{C}} H(k) U_{\mathcal{C}}^{\dagger}$, give 10 symmetry classes

Classification

Three discrete symmetries (Altland\&Zirnbauer):
$\mathcal{T}: H(k)=U_{\mathcal{T}} H^{*}(-k) U_{\mathcal{T}}^{\dagger}, \mathcal{P}: H(k)=-U_{\mathcal{P}} H^{*}(-k) U_{\mathcal{P}}^{\dagger}$,
$\mathcal{C}: H(k)=-U_{\mathcal{C}} H(k) U_{\mathcal{C}}^{\dagger}$,
give 10 symmetry classes and a lot of topological insulators (Kitaev):

Symmetry class	1	2	3	4	5	6	7	8
A		\mathbb{Z}		\mathbb{Z}		\mathbb{Z}		\mathbb{Z}
AlII	\mathbb{Z}		\mathbb{Z}		\mathbb{Z}		\mathbb{Z}	
Al				\mathbb{Z}		\mathbb{Z}_{2}	\mathbb{Z}_{2}	\mathbb{Z}
BDI	\mathbb{Z}				\mathbb{Z}		\mathbb{Z}_{2}	\mathbb{Z}_{2}
D	\mathbb{Z}_{2}	\mathbb{Z}				\mathbb{Z}		\mathbb{Z}_{2}
DIII	\mathbb{Z}_{2}	\mathbb{Z}_{2}	\mathbb{Z}				\mathbb{Z}	
All		\mathbb{Z}_{2}	\mathbb{Z}_{2}	\mathbb{Z}				\mathbb{Z}
CII	\mathbb{Z}		\mathbb{Z}_{2}	\mathbb{Z}_{2}	\mathbb{Z}			
C		\mathbb{Z}		\mathbb{Z}_{2}	\mathbb{Z}_{2}	\mathbb{Z}		
CI			\mathbb{Z}		\mathbb{Z}_{2}	\mathbb{Z}_{2}	\mathbb{Z}	

Scattering matrix

$$
\binom{\psi_{L}}{\psi_{R}}_{\text {out }}=S\binom{\psi_{L}}{\psi_{R}}_{\text {in }}
$$

- Describes scattering of free particles from the system at the Fermi level.
- Is also constrained by symmetry.
- Easy to tell an insulator from a conductor.

What about $\mathcal{Q}(S)$?

Simple case: Majorana fermions (1D superconductor)

Reflection matrix r has
Current conservation:

$$
r r^{\dagger}=1 \Rightarrow|\operatorname{det} r|=1
$$

Particle-hole symmetry:

$$
r=\left(\begin{array}{ll}
r_{e e} & r_{h e} \\
r_{e h} & r_{h h}
\end{array}\right)=\left(\begin{array}{ll}
r_{e e} & r_{h e} \\
r_{h e}^{*} & r_{e e}^{*}
\end{array}\right) \Rightarrow \operatorname{Im} \operatorname{det} r=0
$$

Together:

$$
\operatorname{det} r= \pm 1
$$

Simple case: Majorana fermions (1D superconductor)

$\operatorname{det} r=-1 \Rightarrow \operatorname{det}(r-1)=0 \Leftrightarrow$ bound state at zero energy. \Rightarrow Superconductor is in topologically nontrivial phase.

Scattering invariant

$$
\mathcal{Q}=\operatorname{sign} \operatorname{det} r
$$

Scattering invariant

$$
\mathcal{Q}=\operatorname{sign} \operatorname{det} r
$$

Phase transition is accompanied by a single fully transmitted mode.

Other TI's in 1D

Idea:

1. Find all disconnected groups of fully reflecting r 's.
2. Find what distinguishes them.
3. Check that this quantity is indeed $\mathcal{Q}(r)$.

Other TI's in 1D

Idea:

1. Find all disconnected groups of fully reflecting r 's.
2. Find what distinguishes them.
3. Check that this quantity is indeed $\mathcal{Q}(r)$.
lt works!

Symmetry	D	DIII	AIII	BDI	CII
$\mathcal{Q}(r)$	sign det r	$\operatorname{sign~Pf} r$	$\nu(r)$	$\nu(r)$	$\nu(r)$

Question

What about higher dimensions?

Higher dimensions: QHE

- Not insulating due to edge states?

Higher dimensions: QHE

- Not insulating due to edge states? Solution: roll it up.

Higher dimensions: QHE

- Not insulating due to edge states? Solution: roll it up.
- No difference from 1D?

Higher dimensions: QHE

- Not insulating due to edge states?

Solution: roll it up.

- No difference from 1D?

Solution: thread flux, quantized charge pumping appears.

Higher dimensions: QHE

- Not insulating due to edge states?

Solution: roll it up.

- No difference from 1D?

Solution: thread flux, quantized charge pumping appears.

- Charge pumping is a winding number of det $r(\Phi)$!

Dimensional reduction

1. Start from d-dimensional $H_{d}\left(\mathbf{k}_{d}\right)$.

Dimensional reduction

1. Start from d-dimensional $H_{d}\left(\mathbf{k}_{d}\right)$.
2. Close $d-1$ dimensions with twisted boundary conditions.

Dimensional reduction

1. Start from d-dimensional $H_{d}\left(\mathbf{k}_{d}\right)$.
2. Close $d-1$ dimensions with twisted boundary conditions.
3. Calculate $r\left(\mathbf{k}_{d-1}\right)$.

Dimensional reduction

1. Start from d-dimensional $H_{d}\left(\mathbf{k}_{d}\right)$.
2. Close $d-1$ dimensions with twisted boundary conditions.
3. Calculate $r\left(\mathbf{k}_{d-1}\right)$.
4. Classify topologically disconnected families of $r(\mathbf{k})$.

Dimensional reduction

1. Start from d-dimensional $H_{d}\left(\mathbf{k}_{d}\right)$.
2. Close $d-1$ dimensions with twisted boundary conditions.
3. Calculate $r\left(\mathbf{k}_{d-1}\right)$.
4. Classify topologically disconnected families of $r(\mathbf{k})$.

Q: Isn't that a lot of work?

Dimensional reduction II

Idea: reduce problem to a known one.

Dimensional reduction II

Idea: reduce problem to a known one.
With chiral symmetry $\mathcal{C}, r(\mathbf{k})=r^{\dagger}(\mathbf{k})$, so define

$$
H_{d-1}(\mathbf{k})=r(\mathbf{k})
$$

Dimensional reduction II

Idea: reduce problem to a known one.
With chiral symmetry $\mathcal{C}, r(\mathbf{k})=r^{\dagger}(\mathbf{k})$, so define

$$
H_{d-1}(\mathbf{k})=r(\mathbf{k})
$$

Without chiral symmetry define

$$
H_{d-1}(\mathbf{k})=\left(\begin{array}{cc}
0 & r(\mathbf{k}) \\
r^{\dagger}(\mathbf{k}) & 0
\end{array}\right)
$$

Dimensional reduction II

Idea: reduce problem to a known one.
With chiral symmetry $\mathcal{C}, r(\mathbf{k})=r^{\dagger}(\mathbf{k})$, so define

$$
H_{d-1}(\mathbf{k})=r(\mathbf{k})
$$

Without chiral symmetry define

$$
H_{d-1}(\mathbf{k})=\left(\begin{array}{cc}
0 & r(\mathbf{k}) \\
r^{\dagger}(\mathbf{k}) & 0
\end{array}\right)
$$

This $H_{d-1}(\mathbf{k})$ has the same topology as $r(\mathbf{k})$,
(Symmetry of H_{d-1} is shifted according to the Kitaev's periodic table.)

Algorithm for $\mathcal{Q}(S)$

1. Start from d-dimensional $H_{d}\left(\mathbf{k}_{d}\right)$.
2. Close $d-1$ dimensions with twisted boundary conditions.
3. Calculate $r\left(\mathbf{k}_{d-1}\right)$ and $H_{d-1}(\mathbf{k})$.
4. Finally, look up the expression for $\mathcal{Q}\left(H_{d-1}\right)$.

Applications I: 1D

1. Half-integer conductance quantization in a topological QPC

Applications I: 1D

1. Half-integer conductance quantization in a topological QPC

2. Quantized transmission and shot noise at the phase transition.

Applications I: 1D

1. Half-integer conductance quantization in a topological QPC

2. Quantized transmission and shot noise at the phase transition.
3. RMT of topological superconductors:

In N-channel $\operatorname{dot}\left\langle G^{N}\right\rangle_{\text {trivial }} \neq\left\langle G^{N}\right\rangle_{\text {nontrivial }}$

Applications II: QHE

Quantized conductance peaks in a mesoscopic phase transition.

Applications III: uses for \mathcal{Q}

1. High numerical efficiency:
systems of 2000×2000 vs 60×60 in 2 D
and of $50 \times 50 \times 50$ vs $12 \times 12 \times 12$ in 3 D
2. A new tool to study phase transitions with disorder. Conductance scaling in disordered QHE:

$$
\sigma=\sigma_{0}+C_{1}\left(\mu-\mu_{0}\right)^{2} L^{-2 / \nu} .
$$

Topological invariant scaling:

$$
\mathcal{Q}=1 / 2+C_{2}\left(\mu-\mu_{0}\right) L^{-1 / \nu} .
$$

Summary

- Topological invariant can be calculated from $r(\mathbf{k})$.
- Scattering approach provides a universal framework for studying signatures of topology in transport.

Summary

Thank you all.
The end.

