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Motivation

Motivation: Quantized transport

God created all atoms equal;
all devices created by man are different

Hall conductance: Topological

What if there is no H and no |ψ〉?

Is response in open system geometric? Topological?

2 K. von Klitzing

Figure 1: Typical silicon MOSFET device used for measurements of the xx- and
xy-components of the resistivity tensor. For a fixed source-drain current between
the contacts S and D, the potential drops between the probes P − P and H − H
are directly proportional to the resistivities ρxx and ρxy. A positive gate voltage
increases the carrier density below the gate.

sistor as a function of the gate voltage. Since the electron concentration increases
linearly with increasing gate voltage, the electrical resistance becomes monotoni-
cally smaller. Also the Hall voltage (if a constant magnetic field of e.g. 19.8 Tesla
is applied) decreases with increasing gate voltage, since the Hall voltage is basi-
cally inversely proportional to the electron concentration. The black curve shows
the Hall resistance, which is the ratio of the Hall voltage divided by the current
through the sample. Nice plateaus in the Hall resistance (identical with the trans-
verse resistivity ρxy) are observed at gate voltages, where the electrical resistance
(which is proportional to the longitudinal resistivity ρxx) becomes zero. These ze-
ros are expected for a vanishing density of state of (mobile) electrons at the Fermi
energy. The finite gate voltage regions where the resistivities ρxx and ρxy remain
unchanged indicate, that the gate voltage induced electrons in these regions do not
contribute to the electronic transport- they are localized. The role of localized elec-
trons in Hall effect measurements was not clear. The majority of experimentalists
believed, that the Hall effect measures only delocalized electrons. This assump-
tion was partly supported by theory [3] and formed the basis of the analysis of
QHE data published already in 1977 [4]. These experimental data, available to
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Krauss maps

Krauss maps

Evolution of subsystems

|ψ〉s+b
Unitary−→ |ψ′〉s+b

Trb

y yTrb

ρs
Krauss−→ ρ′s

Trace and Positivity preserving

Krauss (CP) maps

ρ 7→
∑

AjρA
†
j︸ ︷︷ ︸

positive

,
∑

A†j Aj = 1︸ ︷︷ ︸
trace preserving

Bloch sphere:
Unitary:Rigid rotation

Krauss: Contraction
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Lindbladians

Lindbladians

δρ = L(ρ) δt

Lindblad: generator of Krauss maps

L(ρ) = −i [H, ρ] +
∑

[Γa, ρΓ∗a] + [Γaρ, Γ
∗
a] , H = H∗

Example (Thermalizaiton & Dephasing)

Gauge freedom: L invariant under

δΓ = g 1, δH = i(gΓ∗ − g∗Γ)

• Energy of system ambiguous;
• Fuzzy bdry
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Lindbladians

Adiabatic Lindbladians

φ ∈ Control space

H(φ), Γa(φ): Controlled Lindbladians

φ̇(s) Adiabatic drivers; s = εt slow time.

ερ̇ = Lφ(ρ): adiabatic evolution
Closed adiabatic path in control space

Φ1

Φ2

quantum Hall effect as control problem
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Adiabatic expansion

(Formal) Adiabatic expansion

Anzatz: ρ = ρ0 + ερ1 + . . .

Substitute in ερ̇ = L(ρ)

To O(ε): ερ̇0 = L(ρ0) + εL(ρ1) ={
L(ρ0) = 0; ρ0 = stationary

ρ1 = L−1(ρ̇0); ρ1 = slave

Adiabatic expansion slaved to stationary states

• σ = ρ0 inst. stat. state: L(σ) = 0
• ρ = σ + εL−1(σ̇) + . . .

Motion of the inst. stat. state.

adiabatic motion slaved to stat. state.
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Projection on stationary states

Projection on stationary states

Gap condition

Pφ = 1
2πi

∮
dz
Lφ−z :

projects on inst. stat. state

Exapmle: If σφ unique sta. state:
Pφ(ρ) = σφTr(ρ)

Useful fact about projections

PṖP = 0

Differentiate: P2 = P

0- Isolated eigenvalue, possibly degenerate
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Projection on stationary states

Parallel transport of stationary states

0 = LP ; by definition

[P,L] = 0; a fact about Lindbladians

ερ̇ = L(ρ) =⇒ P ρ̇ = PL(ρ) = L(Pρ) = 0

Stationary states move by parallel transport

Pσ̇ = 0

First order ODE: σ = P σ → σ̇ = Ṗσ Parallel transport
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Projection on stationary states

Rates and Response

Rates: εQ̇ = L∗(Q)

Exapmle: velocity =rate of position

Q̇ depend on (H, Γ)↔ L
Substitute adiabatic expansion〈

Q̇
〉

=
1

ε
Tr
(
ρL∗(Q)

)
=

1

ε
Tr
(
σL∗(Q)

)
+ Tr

(
L−1(σ̇)L∗(Q)

)
= Tr

(
L(σ)︸ ︷︷ ︸

0

Q
)

+ Tr
(
σ̇Q

)

Linear response:
〈
Q̇
〉

= Tr(Q σ̇) + O(ε)
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Projection on stationary states

Main results

Geometry & stability

• Motion of stat. states is by parallel transport
• Response of rates depends only on stationary states, not on dynamics
• Lindblad and Hamiltonians can share stationary states (dephasing,
decay to ground state)
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Projection on stationary states

Jerk, Rapid oscillations, and initial data

Jerked motion that starts on stationary states oscillates

No oscillations when slaved motion is not jerked

Yosi Avron, Martin Fraas, Gian Michele Graf ()Geometry of Response for open quantum systems October 14, 2011 11 / 13



Projection on stationary states

More on rates

Rates: Depend on (H, Γ);

Gauge independent

Example (Dephasing oscillator:)

2H = x2 + p2, Γ =
√
γH =⇒ f︸︷︷︸

force

= L∗(p) = −x︸︷︷︸
spring

− γp︸︷︷︸
friction

;

When charge conserved:

Current = rate of charge in semi-infinite box
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Projection on stationary states

Iso-spectral Lindbladians

Iso-spectral Lindbladians

H(φ) = U(φ)HU∗(φ), Γ(φ) = U(φ)ΓU∗(φ), U(φ) = e iDµφµ

Linear response of Ḋν is geometric:

The response coefficients are the expectations of the Lie algebra〈
Ḋν
〉

︸ ︷︷ ︸
response

= fµν φ̇µ︸︷︷︸
driving

, fµν = iTr([Dν ,Dµ]σ)︸ ︷︷ ︸
response coeff .

Use ∂µσ = i [Dµ, σ] and cyclicity of trace.
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