

Anomalous Hall effect in topological insulators

Dimitrie Culcer

Culcer and Das Sarma, PRB 83, 245441 (2011) D. Culcer, arXiv: 1108.3076 – review on TI transport

Outline

- Brief historical introduction to AHE
 - Long history many mechanisms contribute
- Magnetic TI
 - Quantum AHE in 2D
 - Quantum AHE in 3D
- Our work AHE in doped TI (metallic)
 - Density-matrix formulation of transport
 - Liouville equation → kinetic equation
 - Scattering terms absence of backscattering
 - Intrinsic mechanisms contributing to AHE
 - Extrinsic mechanisms contributing to AHE
 - Prediction for real materials
- Conclusions
 - D. Culcer and S. Das Sarma, PRB 83, 245441 (2011)
 - D. Culcer, arXiv: 1108.3076 review on TI transport

History of AHE

- AHE theory has a long history over 50 years
- Controversy started with J. M. Luttinger PR 112, 739 (1958)
 - Identified band structure contribution (intrinsic)
 - Later recognized to be related to Berry curvature
- J. Smit, Physica 24, 39 (1958)
 - Transport not possible without scattering
 - Introduced skew scattering
- L. Berger, PRB 2, 4559 (1970)
 - Introduced side jump
- P. Nozieres and C. Lewiner, J. Phys 34, 901 (1973)
 - Put all terms together classic paper
- Other mechanisms: cf. Burkov and Balents, PRL 2003

AHE review: N. Nagaosa et al, RMP 82, 1539 (2010)

Spin-orbit: Dirac equation

$$H = \begin{pmatrix} m \cdot I & \sigma \cdot p \\ \sigma \cdot p & -m \cdot I \end{pmatrix} = \alpha \cdot p + \beta m,$$

$$\psi \equiv \begin{pmatrix} \tilde{\varphi} \\ \tilde{\chi} \end{pmatrix}$$

$$\mathrm{i}\hbar\frac{\partial\varphi}{\partial t} = \left[\frac{1}{2m}\left(\mathbf{p} - \frac{e}{c}\mathbf{A}\right)^2 - \frac{e\hbar}{2mc}\boldsymbol{\sigma}\cdot\mathbf{B} + e\boldsymbol{\Phi}\right]\boldsymbol{\varphi}$$

This is the Pauli equation. Spin appears after you separate particles from antiparticles.

The next relativistic correction gives the spin-orbit interaction.

$$-\frac{e}{4m^2}\sigma\cdot(\mathbf{E}\times\mathbf{p})$$
 Here $\mathbf{E}=-\nabla V$

Position operator

- Spin-orbit is a relativistic correction
- Dirac Hamiltonian Foldy-Wouthuysen transformation
 - Yields effective Hamiltonian
- Apply this transformation to the position operator
 - Gives spin-orbit correction to r
 - Physical position operator

$$\hat{r}_{\mathrm{phys}} = \hat{r} + \lambda \hat{\sigma} \times \hat{k}$$

- Everything that contains r is modified
 - Interaction with an electric field
 - Scattering potential

New interaction terms

The position operator is modified

$$\hat{r}_{\mathrm{phys}} = \hat{r} + \lambda \hat{\sigma} \times \hat{k}$$

Interaction with electric field – in crystal momentum representation

$$H_{E,\mathbf{k}\mathbf{k}'}^{sc} = (e\mathbf{E} \cdot \hat{\mathbf{r}})_{\mathbf{k}\mathbf{k}'} \mathbb{1} = ie\mathbf{E} \cdot \frac{\partial}{\partial \mathbf{k}} \, \delta(\mathbf{k} - \mathbf{k}') \, \mathbb{1}$$

$$H_{E,\mathbf{k}\mathbf{k}'}^{sj} = e\lambda \, \boldsymbol{\sigma} \cdot (\mathbf{k} \times \mathbf{E}) \, \delta_{\mathbf{k}\mathbf{k}'}$$

Scattering potential – in crystal momentum representation

$$\bar{U}_{kk'} = \mathcal{U}_{kk'} \left(1 - i\lambda\sigma \cdot k \times k' \right)_{\lambda k_F^2 \ll 1}$$

Culcer, Hankiewicz, Vignale, Winkler, PRB 81, 125332 (2010)

Skew scattering

- Asymmetric scattering of spin ↑,↓
 - Spin ↑ scatter predominantly in one direction
 - Spin ↓ predominantly in the other direction
- Must go beyond first Born approximation
 - Typically 3rd order in scattering potential
 - cf. U⁴ term in Sinitsyn JPCM 20, 023201 (2008)

J. Smit, Physica 24, 39 (1958); P. Nozieres and C. Lewiner, J. Phys 34, 901 (1973)

Side-jump: Seitensprung

- Relativistic modification of position operator
 - Alters energy of interaction with an electric field

$$H_{E,\mathbf{k}\mathbf{k}'}^{sj} = e\lambda\,\sigma\cdot(\mathbf{k}\times\mathbf{E})\,\delta_{\mathbf{k}\mathbf{k}'}$$

Causes sideways displacement during scattering

$$\hat{J}^{Born}(f_{\pmb{k}}) = \langle \int_0^\infty \frac{dt'}{\hbar^2} [\hat{U}, e^{-\frac{i\hat{H}t'}{\hbar}} [\hat{U}, \hat{f}] \, e^{\frac{i\hat{H}t'}{\hbar}}] \rangle,$$
 Incoming wave Scattering outgoing wave

- All terms together for SO-coupled semiconductors/ferromagnets
 - N. A. Sinitsyn et al, PRB 75, 045315 (2007); A. A. Kovalev et al, PRB 79, 195129 (2009); S. Onoda et al, PRB 77, 165103 (2008); Crepieux & Bruno, PRB 64, 014416 (2001).

TI: Magnetic doping

- Consider doped TI no worries about interface with ferromagnet
- Total Hamiltonian describing magnetic interactions

$$H_{\mathrm{mag}}(r) = \boldsymbol{\sigma} \cdot \sum_{I} \mathcal{V}(r - R_I) s_I$$

k-diagonal part gives Zeeman interaction with magnetization M

$$H_{\mathrm{mag}}^{\mathbf{k}=\mathbf{k}'} = n_{\mathrm{mag}} J s \sigma_z \equiv M \sigma_z$$

k-off-diagonal part contributes to spin-dependent scattering

$$H_{\text{mag}}^{\mathbf{k}\neq\mathbf{k}'} = \frac{Js}{V} \sigma_z \sum_{I} e^{i(\mathbf{k}-\mathbf{k}')\cdot\mathbf{R}_I}.$$

- This also gives asymmetric scattering of spin ↑,↓
- Contributes to AHE in Born approximation

2D magnetic TI

- 2D TI, chemical potential in gap
 - Edge states 4 = 2 + 2: quantized AHE
 - Yu et al, Science 329, 61 (2010)
 - Chern number

2D Conduction

$$S_{xy} = \frac{e^2}{h}$$

3D magnetic TI

- 3D TI, chemical potential in gap
 - Half-quantized AHE
 - Zang and Nagaosa PRB 81, 245125 (2010)
 - Berry curvature

Bulk Conduction

$$S_{xy} = \frac{e^2}{2h}$$

3D magnetic TI

- Chemical potential in surface conduction band
 - QAHE is an exciting phenomenon
 - However, current TIs are doped
 - Half-quantized AHE one contribution
 - Steady-state problem
 - Electric field drives electrons
 - Impurities scatter electrons
 - Must deal with scattering
 - Determine Hall current
 - Intrinsic and extrinsic AHE
 - Which term is dominant?
 - Is it still universal?
 - How big is it?
 - What will be observed?

TI band structure

Effective Zeeman field

$$H_{0\mathbf{k}} = -Ak \, \boldsymbol{\sigma} \cdot \hat{\boldsymbol{\theta}} + \boldsymbol{\sigma} \cdot \boldsymbol{M} \equiv \frac{\hbar}{2} \, \boldsymbol{\sigma} \cdot \Omega_{\mathbf{k}},$$

- But no spin precession only one band
- Ω slightly tilted out of the plane by M
 - Small s_z component
- Typically M<<ε_F
- Remember current operator = spin

$$j = \frac{eA}{\hbar} \sigma \times \hat{z},$$

This will help explain band structure term

Full Hamiltonian

- $H = H_0 + H_E + U$
 - H_E = Electric field
 - Includes correction to position operator
 - U = Scattering potential
 - Includes correction to position operator
 - Impurity average

$$(n_i|\bar{U}_{kk'}|^2\delta_{ss'})/V$$

- $\epsilon_F T_p >> 1$
- $T_p = momentum relaxation time$
- ε_F in bulk gap electrons
- T=0 → no phonons, no e-e scattering
- Scattering due to charged impurities, roughness, magnetic
- Perturbation theory in λ

Density matrix

- Density operator $\hat{\rho}$
- Project onto states of definite wave vector k and spin s

Density matrix

$$ho_{oldsymbol{k}oldsymbol{k}'}
ho_{oldsymbol{k}oldsymbol{k}'} \equiv
ho_{oldsymbol{k}oldsymbol{k}'}^{ss'} = \langle oldsymbol{k}s|\hat{
ho}|oldsymbol{k}'s'
angle$$

- H₀, H_E diagonal in wave vector, off-diagonal in spin
- U off-diagonal in wave vector, diag./off-diag. in spin

$$U_{kk'} = \bar{U}_{kk'} \sum_{J} e^{i(k-k')\cdot R_J}$$

Divide DM into parts diagonal and off-diagonal in k

$$\rho_{\mathbf{k}\mathbf{k}'}^{ss'} = f_{\mathbf{k}}^{ss'} \delta_{\mathbf{k}\mathbf{k}'} + g_{\mathbf{k}\mathbf{k}'}^{ss'}$$

Liouville equation

- Apply electric field ~ study density matrix
 - Starting point: Liouville equation

$$\frac{d\hat{\rho}}{dt} + \frac{i}{\hbar} \left[\hat{H}_0 + \hat{H}_E + \hat{U}, \hat{\rho} \right] = 0,$$

- Method of solution Nakajima-Zwanzig projection (中岛二十)
- Project onto k and s

 kinetic equation
- Divide into equations for diagonal and off-diagonal parts

$$\begin{aligned} \rho_{\mathbf{k}\mathbf{k}'}^{ss'} &= f_{\mathbf{k}}^{ss'} \, \delta_{\mathbf{k}\mathbf{k}'} + g_{\mathbf{k}\mathbf{k}'}^{ss'} \\ \frac{df_{\mathbf{k}}}{dt} + \frac{i}{\hbar} \left[H_{0\mathbf{k}}, f_{\mathbf{k}} \right] &= -\frac{i}{\hbar} \left[H_{\mathbf{k}}^{E}, f_{\mathbf{k}} \right] - \frac{i}{\hbar} \left[\hat{U}, \hat{g} \right]_{\mathbf{k}\mathbf{k}} \\ \frac{dg_{\mathbf{k}\mathbf{k}'}}{dt} + \frac{i}{\hbar} \left[\hat{H}, \hat{g} \right]_{\mathbf{k}\mathbf{k}'} &= -\frac{i}{\hbar} \left[\hat{U}, \hat{f} + \hat{g} \right]_{\mathbf{k}\mathbf{k}'}, \end{aligned}$$

Kinetic equation

Reduce to equation for f – like Boltzmann equation

$$\frac{df_{\bm{k}}}{dt} \; + \; \frac{i}{\hbar} \left[H_{\bm{k}}, f_{\bm{k}} \right] + \hat{J}(f_{\bm{k}}) = -\frac{i}{\hbar} \left[H_{\bm{k}}^E, f_{\bm{k}} \right],$$
 Spin precession Scattering Driving term due to the electric field

Scattering term in the simplest case

$$\hat{J}(f_{\mathbf{k}}) = \frac{n_i}{\hbar^2} \lim_{\eta \to 0} \int \frac{d^2k'}{(2\pi)^2} |\bar{U}_{\mathbf{k}\mathbf{k'}}|^2 \int_0^\infty dt' \, e^{-\eta t'} \Big\{ e^{-iH_{\mathbf{k'}}t'/\hbar} \Big(f_{\mathbf{k}} - f_{\mathbf{k}}' \Big) \, e^{iH_{\mathbf{k}}t'/\hbar} + h.c. \Big\}.$$

Scattering in

Scattering out

This is 1st Born approximation – Fermi Golden Rule
 2nd Born approximation for spin-dependent scattering

Scattering term

Density matrix = Scalar + Spin

$$f_{\mathbf{k}} = n_{\mathbf{k}} \mathbb{1} + S_{\mathbf{k}}$$

Spin = Conserved spin + Precessing spin

$$S_{\mathbf{k}} = S_{\mathbf{k}\parallel} + S_{\mathbf{k}\perp}$$

Conserved spin – most important

Precessing spin – expect only singular contribution

Look at scattering term again (simplest Born approx.)

$$\int d\theta' \, |\bar{U}_{\boldsymbol{k}\boldsymbol{k}'}|^2 \, (s_{\boldsymbol{k}\parallel} - s_{\boldsymbol{k}'\parallel}) (1 + \cos\gamma) \, \sigma_{\boldsymbol{k}\parallel}$$

Suppression of backscattering

Need all delta-functions including –ve energy

Kinetic equation

Conserved spin density

$$\frac{dS_{\boldsymbol{k}\parallel}}{dt} + P_{\parallel}\hat{J}(f_{\boldsymbol{k}}) = \mathcal{D}_{\parallel}$$

Non-conserved spin density (also rotations &c)

$$\frac{dS_{\mathbf{k}\perp}}{dt} + \frac{i}{\hbar} \left[H_{\mathbf{k}}, S_{\mathbf{k}\perp} \right] + P_{\perp} \hat{J}(f_{\mathbf{k}}) = \mathcal{D}_{\perp}$$

- Solution expansion in $1/(\epsilon_{F}T)$
 - Fermi energy x momentum scattering time
 - Assumes $(\varepsilon_{F}\tau) >> 1$ in this sense it is semiclassical
 - Conserved spin gives leading order term linear int
 - Precessing spin gives next-to-leading term independent of

Culcer, Hwang, Stanescu, Das Sarma, PRB 82, 155457 (2010)

Skew scattering

- Scattering potential ~ spin-orbit coupling
 - In TI band structure SO strong
 - Therefore extrinsic SO should be strong
- Asymmetric scattering of spin ↑,↓

$$\bar{U}_{kk'} = \mathcal{U}_{kk'} \left(1 - i\lambda \sigma \cdot k \times k' \right).$$

- Typically 3rd order in scattering potential
 - In TI can appear in Born approximation

$$\hat{J}^{Born}(f_{\mathbf{k}}) = \langle \int_0^\infty \frac{dt'}{\hbar^2} \left[\hat{U}, e^{-\frac{i\hat{H}t'}{\hbar}} \left[\hat{U}, \hat{f} \right] e^{\frac{i\hat{H}t'}{\hbar}} \right] \rangle,$$

$$\hat{J}^{3rd}(f_{\mathbf{k}}) = -i \langle \int_{0}^{\infty} \frac{dt'dt''}{\hbar^3} [\hat{U}, e^{-\frac{i\hat{H}t'}{\hbar}} [\hat{U}, e^{-\frac{i\hat{H}t''}{\hbar}} [\hat{U}, \hat{f}] e^{\frac{i\hat{H}t''}{\hbar}}] e^{\frac{i\hat{H}t''}{\hbar}} \rangle,$$

- We do not know λ for TI
 - But that is of no consequence

$$\lambda k_F^2 \ll 1$$

J. Smit, Physica 24, 39 (1958); P. Nozieres and C. Lewiner, J. Phys 34, 901 (1973)

Side-jump

$$\hat{r}_{\mathrm{phys}} = \hat{r} + \lambda \hat{\sigma} \times \hat{k}$$

Interaction with electric field

$$H_{E,\mathbf{k}\mathbf{k}'}^{sj} = e\lambda\,\boldsymbol{\sigma}\cdot(\mathbf{k}\times\mathbf{E})\,\delta_{\mathbf{k}\mathbf{k}'}$$

Causes sideways displacement during scattering

$$\hat{J}^{Born}(f_{\mathbf{k}}) = \langle \int_0^\infty \frac{dt'}{\hbar^2} \left[\hat{U}, e^{-\frac{i\hat{H}t'}{\hbar}} \left[\hat{U}, \hat{f} \right] e^{\frac{i\hat{H}t'}{\hbar}} \right] \rangle,$$

- When band structure SO is present
 - Extra term Tse & Das Sarma PRB 74, 245309 (2006)

$$-rac{i}{\hbar}\left[H_E^{sj},
ho_{0m{k}}
ight]$$

- This is effectively an intrinsic side-jump term
- Also related to spin precession/rotation
- Side-jump is not necessarily related to scattering

Solving kin. eq. for AHE

- Driving terms
 - Bare driving term $(eE/\hbar) \cdot \frac{\partial f_{0k}}{\partial k}$
 - Side-jump driving term $-\frac{ie\lambda}{\hbar} \left[\sigma \cdot (k \times E), f_{0k} \right]$
- Perturbation theory in λ
 - Skew scattering also appears as a driving term
 - Side-jump scattering gives another driving term
- Terms to leading and next-to-leading order in (1/ε_Fτ)
 - Transport leading term linear int
 - Second term independent of
 - Appears to be disorder-independent but is NOT

Project repeatedly between conserved, precessing spin distributions – tedious

Main question

- We know there will be a band structure contribution (Nagaosa)
 - It will be of the order of the conductivity quantum
- Contributions from skew scattering and side jump
 - Skew scattering, side jump give extra driving terms
 - H is spin-dependent
 - U is spin-dependent
 - Spin structure of SS, SJ driving terms not obvious
 - Either of them could contribute to the parallel driving term
 - In that case it will give something ∞ MT
 - We are in the weak momentum scattering regime
 - Although M is small, such a term would dominate
 - It would overwhelm the band structure contribution
 - Does such a term exist?
 - A lot of algebra

What is the dominant term?

Dominant term in AHE

$$\sigma_{yx} = -\frac{e^2}{2h} \left(1 - \alpha \right),$$

- This is the contribution from the conduction band.
 - Band structure
 - Disorder renormalization.
 - The bare term has no α.
- Remember there is an extra term offset
- $\frac{e^2}{2h}$ from surface valence band
- What is observed is the disorder renormalization

See also: Zang & Nagaosa, PRB 81, 245125 (2010); Tse & MacDonald, PRL 105, 057401 (2010); Garate & Franz, PRL 104, 146802 (2010); Yokoyama *et al*, PRB 81, 121401 (2010).

Band structure AHE

- Ω tilted out of the plane by M
 - Small s_z component
- Coupled charge-spin dynamics
- Apply E//x
 - k_x changes adiabatically
 - $\Omega_{\rm v}$ changes adiabatically
 - Small rotation of s_z about new Ω_y
 - Small non-equilibrium s_x
 - SO → small non-equilibrium component of k_y

 - Total independent of M
 - Because of monopole at k=0

$$j = \frac{eA}{\hbar} \sigma \times \hat{z},$$

Other terms in AHE

Extrinsic AHE

$$\sigma_{yx}^{\text{ext}} = \frac{e^2}{2h} b_F \left(\lambda k_F^2 \right) \left(9 - \frac{8\tau}{\tau_{\mu}} + \frac{\tau}{\tau_{ss}^{\text{Born}}} + \frac{\tau^2}{2\tau_{ss}^{3rd}\tau_{c+}} \right).$$

- Skew scattering and side jump are negligible
- Why? SS, SJ give rise to effective magnetic field out of the plane

$$\bar{U}_{kk'} = \mathcal{U}_{kk'} \left(1 - i\lambda\sigma \cdot k \times k' \right).$$

$$H_{E,kk'}^{sj} = e\lambda\sigma \cdot (k \times E) \delta_{kk'}$$

- This wants to rotate the spin away from Ω (which is in-plane)
- It counteracts spin-momentum locking
- Therefore it can never give rise to a parallel term
 - Similar conclusion holds for magnetic impurities

Dominant contribution

- Band structure contribution dominant as long as ε_Fτ >> 1
 - Expect it to be independent of magnetization
 - Therefore it overwhelms all terms proportional to M, J
 - No skew scattering, side jump terms linear in τ
- Also overwhelms extrinsic SO since $\lambda k_F^2 \ll 1$
 - This is why we do not care about the size of λ
- In TI the wave vector determines the spin AND vice versa.
- Elastic scattering reduces this contribution renormalization
 - Cf. Molenkamp PRB 2006 for Rashba model
- Not included
 - Electric field correction to skew scattering 3rd order term in U

$$\int_0^{k_F} \frac{AkM}{(A^2k^2 + M^2)^{3/2}} = \frac{1}{A} \left(1 - \frac{M}{\sqrt{A^2k_F^2 + M^2}} \right).$$

Observation of AHE

- Bi2Se3, r_s~0.14 (assuming permittivity ~ 100)
- Disorder renormalization ~ same order of magnitude as intrinsic
 - Still topological depends on the same Berry curvature term
- Overall sign depends on type of scattering
 - Coulomb and short-range scattering give opposite signs
 - For Coulomb scattering

$$\sigma_{yx}^{int} \approx -0.53 \left(e^2/2h\right) \approx -e^2/4h$$

For short-range scattering

$$\sigma_{yx}^{int} \approx 0.18 \left(e^2/2h \right)$$

- In principle it could be zero but only for one sample
- Surfaces increase in quality charged impurities should be dominant
 - There will still be variation depending on r_s
 - As $r_s \to 0$, $0.53 \to 0.61$
 - As $r_s \rightarrow \infty$, $0.53 \rightarrow 0.12$

Summary

- Topological term dominates AHE
 - As long as $\varepsilon_{FT} >> 1$ independent of magnetization
 - Disorder renormalization non-universal
 - We expect 0.1-0.25 of conductivity quantum
 - Different signs for Coulomb, short-range scattering
- AHE explained by spin-charge coupling in TI
 - What is observed is the disorder renormalization.
- Problem surfaces connected observe one signal?

PHYSICAL REVIEW B 83, 245441 (2011)

Anomalous Hall response of topological insulators

Dimitrie Culcer

ICQD, Hefei National Laboratory for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei 230026, Anhui, China

S. Das Sarma

Condensed Matter Theory Center, Department of Physics, University of Maryland, College Park, Maryland 20742-4111, USA (Received 18 May 2011; published 28 June 2011)