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• Gapped vs. gapless topological phases:

topological insulators
weak & strong

d=3
Weyl semimetal

1. helical: Dirac cone(s)
2. chiral: Fermi arc states

• Specific types of protected surface states: 

• Highlight on the “spin-to-surface locking”

bulk: topological invariants
surface: (protected) gapless surface states

Weyl semimetal
topological insulators

spin Berry phase



What is the spin-to-surface 
locking?

Not this one.

Hasan & Kane, Rev. Mod Phys. ’10

Hsieh et al., Nature, ’09

This is often referred to as 
“spin-to-momentum” locking

Zhang et al. Nature Phys. ’10; Liu et al., PRB ’10, Shan et al. NJP ’10

The surface effective 
Hamiltonian:



if one repeats the same procedure 
on a curved surface (cylinder) 

Interpretation: the “spin-to-surface” locking
spin = locked in-plane to the surface, i.e., 

but with one important correction: the “spin Berry phase”
KI, Takane & Tanaka, Phys. Rev. B 84, 195406 (2011)

Ans.: One finds almost the same thing.

with its frames following the tangential plane of the curved surface

What happens?

Zhang & Vishwanath PRL ’10; Ostrovsky et al., PRL ’10, Bardarson et al. PRL ’10, ...

so far everything was on a 
flat surface



plan of the talk



 0) spin Berry phase: a brief sketch of its derivation
 1) spin-to-surface locking in topological insulators

1.  Half-integer quantization of the orbital angular momentum
2. Enhancement of finite-size corrections:  

e.g., 1D gapless helical 
modes, associated with
i) a pi-flux tube
ii) dislocation lines

decays only algebraically

• direct consequences of the spin-to-surface locking:

• further applications:

part 1

relevance to the classification of 
topological defects in
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Teo & Kane, Phys. Rev. B 82, 115120 (2010)



2) Characteristic feature 
of the spin-to-surface 
locking in the Fermi arc 
surface states of a Weyl 
semimetal

part 2

• chiral spin-to-surface 
locking
• completely flat multiple 
subbands
• flatness: topologically 
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KI & Takane, arXiv:1109.3234, Phys. Rev. B in press.

Weyl points



• starting with a 3D bulk effective Hamiltonian:

The spin Berry phase: sketch of its derivation

• Having in mind that we will consider a 
boundary value problem of this sort,
we decompose the Hamiltonian into 
two parts:

• First, find in-gap surface solutions of  the radial eigenvalue 
problem:



• Then, find a linear combination:

that is compatible with the boundary 
condition:
which turns out to be

• Calculating the matrix elements:
one finds

The “spin Berry phase”
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Interpretation of the 
factor 1/2: the “spin-
to-surface locking”

• possible to absorb the 1/2 
factor in the definition of the 
(c1,c2)-spinor:

• In the transformed basis, with some redefinition of the spin frame,
one can rewrite the surface effective 
Hamiltonian as



Manifestations
 of the spin Berry phase

in weak and strong topological insulators 

•1D gapless helical modes, associated with

i) a pi-flux tube ii) dislocation lines

• Finite-size energy gap: algebraic decay
• Half-integer quantization of the orbital angular momentum 



Half-integer quantization of the orbital angular momentum

gap opening

spin Berry phase 

• boundary condition: periodic anti-periodic

Electronic state on the surface of a cylinder

• orbital part: plane-wave like

A direct consequence of the spin Berry phase:

algebraic decay of the 
finite-size energy gap

radius: R

(strong finite-size effects)

(half-integer quantization)
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Finite-size energy gap: algebraic decay
• conventional finite-size energy gap: 
exponential decay

z

infinitely large slab (thin film) of a TI

• finite-size energy gap due to the 
spin Berry phase

= an (infinitely long) rectangular pillar
slab with two side surfaces



 1D gapless helical modes
i) a pi-flux tube

• First recall the half-integer quantization:

• In the presence of an Aharonov-Bohm flux tube, 
this modifies as

gapless 

IF the AB flux:
THEN,

AB flux

spin Berry phase
anti-p.b.c

associated with



-0.4 -0.2 0.0 0.2 0.4

-1.0

-0.5

0.0

0.5

1.0

kz ê p
E

-0.4 -0.2 0.0 0.2 0.4

-1.0

-0.5

0.0

0.5

1.0

kz ê p

E

 Energy spectrum of a rectangular pillar of TI

• In the absence of AB flux • In the presence of AB flux

spectrum: gapped gapless

spin Berry phase spin Berry phase & AB flux
anti-p.b.c

Zhang & Vishwanath PRL ’10; Ostrovsky et al., PRL ’10, Bardarson et al. PRL ’10, ...
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An important (?) detail 
of this calculation:

mixing of counter-propagating 
1D modes gapped spectrum

bound states

pi-flux piercing a plaquette bound states
KI, Takane & Tanaka, Phys. Rev. B 84, 195406 (2011)



A remark on the 
anisotropic case 

KI, Takane & Tanaka, Phys. Rev. B 84, 195406 (2011)

(a)

(b)• Spin-to-surface locking is 
not a local concept !

(a remark for the experts)

• anisotropy associated 
with the crystal growth 
axis

• Only the global     -phase shift is robust. 

anisotropy along the x-axis

z
A=B



KI, Takane & Tanaka, Phys. 
Rev. B 84, 035443 (2011)

b=1,3,5,...

gapless 

• In the presence of a screw dislocation, 
this modifies as

 1D gapless helical modes

ii) dislocation lines

• First recall the half-integer quantization:

Ran, Zhang & Vishwanath, 
Nature Physics, 5, 298 (2009) 

IF AND
THEN,

Burgers vector:

even/odd feature w.r.t. b

associated with

spin Berry phase

screw dislocation
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 Even/odd feature with respect to b
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• The Dirac cone at

susceptible of the screw dislocation 
with
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continued from the last slide...

• Finite-size energy gap

KI, Takane & Tanaka, Phys. Rev. B 84, 035443 (2011)



• role of weak indices:

• 1D gapless helical modes protected by the finite-size 
energy gap

KI, Takane & Tanaka, Phys. Rev. B 84, 035443 (2011)

Ran, Zhang & Vishwanath, Nature Physics, 5, 298 (2009) 

condition for the existence of such 1D gapless helical modes

some remarks



 1. The spin-to-surface locking

 2. Further manifestations of the spin-to-surface locking:

i) leads to the half-integer quantization of the orbital 
angular momentum

ii) is not a local concept

Summary of the 1st half of talk

Peng et al., Nature Materials 9, 225 (2010)
• Aharonov-Bohm measurement in TI nanowires 

i) strong finite-size effects in TI nanowires
ii) 1D gapless helical modes along a pi-flux tube and 
dislocation lines KI, Takane & Tanaka, Phys. Rev. B 84, 195406 (2011)

KI, Takane & Tanaka, Phys. Rev. B 84, 035443 (2011)



How about the case of gapless topological phases?

part 2



• 3D Weyl semimetal may be realized in pyrochlore iridates: 
A2Ir2O7

• 3D Weyl semimetal is a 3D version of graphene:
flat edge modes of graphene
(zigzag, bearded edges)

Fermi arc states

2D
3D

X. Wan et al. PRB ’11; W. Witczak-Krempa & Y.-B. Kim, 
arXiv:1105.6108, ...

A.A. Burkov & L. Balents, arXiv:1105.5138, G. Xu et al. arXiv:1106.3125,...
or maybe somewhere else, in some other formats...

surface states 
of topological 
origin

L. Balents, Physics ’11

Fermi arc states
Weyl points
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Fujita, Wakabayashi, et al., 
JPSJ 65, 1920 (1996)

• graphene K

K’

K K’
A winding number:

can be defined, protecting the 
existence of a pair of Dirac 
points: K & K’

arg [q(k)]

bulk/edge 
corrrespondence

• class AIII

A. Schnyder, KITP, 2011; 
G.E. Volovik, books

Classification of the gapless 
topological phases

2D example

• protected point node : Z-type



• Weyl semimetal
• class A
• protected point 
node : Z-type

A 2D Chern number number:

can be defined, 
protecting the existence 
of a pair of Weyl points at 
kz = +k0, -k0 (kx = ky =0)

bulk/edge 
corrrespondence

Fermi arc 
surface states

Generalization to 3D 

K.-Y. Yang et al. arXiv:1105.2353

Weyl points
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geometry: a slab 
(0<x<L)

Fermi-arc 
surface states Weyl points

Protected surface 
states = Fermi arcs

How about spin-to-surface 
locking? 

On a cylinder,
the Fermi-arc surface states 
split into multiple 
completely flat subbands

flatness: 
topologically protected
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Chiral spin-to-surface locking in the Fermi-arc surface states
Analytic calculation:

Numerics:
• confirmed the closing of 
the gap in the presence of

• repeating the same type of analysis...

The basis eigenspinor: 

The surface effective 
Hamiltonian:



• completely flat multiple subbands
• flatness: topologically protected!
• chiral spin-to-surface locking: spin locked to the 
azimuthal component of the momentum

Conclusions
Gapped case : weak & strong topological insulators

Gapless case : Weyl semimetal / Fermi arc surface states

Acknowledgments: A. Schnyder, M. Sato, A. Ludwig, C.L. Kane, Y.-B. Kim, E.-G. 
Moon, A. Yamakage, T. Fukui, Y. Tanaka, ..., many other people 

• half-integer quantization of the orbital angular momentum
• algebraic (extremely slow of) decay of
• gapless helical modes along dislocation lines: role of weak 
indices: “How weak is a weak topological insulator?”

Ringel, Kraus, Stern, arXiv:1105.4351
C.-X. Liu, KITP 2011; R. Mong, Station Q, tomorrow



supplementary slides



Ran, arXiv:1006.5454; A. Schnyder et al. NJP ’10
“The weak indices are related to the strong indices in one lower 
dimension.”

“(d-1) indices”

 Classification in the presence of toplogical defects:

“It is these (d-1) indices that control the existence of one-
dimensional helical modes hosted by dislocations.”

Relation to 
the periodic table, “the ten-fold way”

d=3
d-1=2

strong weak 2D gapless surface 
Dirac cone

1D gapless helical modes

Teo & Kane, PRB 82, 115120 (2010)

A. Schnyder et al., PRB ’09; NJP ’10; A. Kitaev, AIP ’10
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• the effective spatial dimension:

d=3
D=1 d-D=d-1=2

The periodic table: Teo-Kane’s 
version

Teo & Kane, PRB 82, 115120 (2010)


