Anomalous Hall Effect in a Multiband Chiral Superconductor (e.g. Sr₂RuO₄)

Catherine Kallin, McMaster

<u>Ed Taylor</u> and CK, arXiv:111.4471

KITP (TI&SC) Dec 14, 2011

Anomalous or spontaneous Hall Effect

- AHE also occurs in topological insulators and metals
- Superconducting case is different. dc effect (in $Re(\sigma_H)$) is not quantized and not described by a Berry's curvature.
- Results apply in general to multiband chiral superconductors, but will focus on Sr₂RuO₄ and chiral p-wave, where results are relevant to Kerr effect at optical frequencies.

Experiments on Sr₂RuO₄

Evidence for odd-parity, triplet pairing:

- NMR [K. Ishida et al., *Nature* **396**, 658 (1998)]
- phase sensitive [Nelson et al., Science (2004)]
- half-quantum vortices [R. Budakian et al. (2011)]

Evidence for broken time-reversal symmetry:

- muSR [Luke et al., Nature 394, 558 (1998).]
- polar Kerr effect [J. Xia et al., PRL 97, 167002 (2006.]
- Josephson [F. Kidwingira et al., Science 314, 1271 (2006)]

Triplet with BTRS + SRO xtal symmetry + energetics → chiral p-wave order

Chiral p-wave superconductivity

$$\mathbf{d}(k) = D_0 \frac{\sin k_x \pm i \sin k_y}{k_F} \mathbf{Z}$$

$$|D(k)| = D_0$$

Breaks time-reversal symmetry; chirality = ±1

 k_x+ik_y degenerate with $k_x-ik_y \rightarrow$ can have domains

d || z (or c) \leftrightarrow S_z=0 or equal spin pairing in xy (ab) plane

Chiral p-wave state has topological order, analogous to 5/2 Moore-Read QH state, characterized by Chern number = ±1. (Read & Green 2000)

Spontaneous supercurrents for chiral p-wave

Equilibrium supercurrent within ξ of surface

(for single domain)

Stone and Roy (2004) Matsumato and Sigrist (1999) Screening current within $\lambda+\xi$ of surface

→ Magnetic field B~10G within λ of surface and B~20G at domain walls.

He3 scanning SQUID signal across ab face of Sr₂RuO₄ single crystal at T=0.27K

J.R. Kirtley, C. Kallin, C. Hicks, E.A. Kim, Y. Liu, K.A. Moler, Y. Maeno, PRB 76, 014526 (2007).

Smaller SQUIDs, Hall bar probes, micron samples

→ still no spontaneous fields observed

Experiments put upper bounds on edge currents which are ~ 3 orders of magnitude smaller than predicted.

Muon spin resonance sees internal fields below T_c

Interpreted as due to fields at domain walls → domains ~15 microns in size.

Other possibilities within chiral p-wave:

- impurities
- fields induced by muon

But difficult to reconcile with null measurements of edge and surface fields.

G.M. Luke et al., Physica B 289, 373 (2000). [Also W. Higemoto et al. unpublished]

Polar Kerr effect

Linearly polarized light is reflected as elliptically polarized light, with rotation of polarization axis by Kerr angle

Measured Kerr angle, θ_{K}

Cooled in (a) 93 G (b) -43 G [ω =0.8ev; Θ =65 nanorads]

J. Xia, Y. Maeno, P.T. Beyersdorf, M.M. Fejer, A. Kapitulnik, PRL 97, 167002 (2006).

Kerr angle determined by $\sigma_{xy}(\omega)$. Expt (Sagnac interferometer) measures contribution from $\sigma_H = (\sigma_{xy} - \sigma_{yx})/2$.

In system with Galilean invariance: $\mathbf{j}_s = \frac{ie^2 \Gamma_s / m}{W + id} \mathbf{E} \triangleright S_{xy} = 0$

→ No Kerr effect without breaking translation symmetry but broken translation symmetry and BTRS insufficient

Lowest order Born scattering (n_iU²) gives zero:

Higher order scattering can also contribute:

for I_{imp}~1000Å. Requires p-h asymmetry. Lutchyn, Nagornykh, Yakovenko, PRB 80, 104508 (2009).

Goryo identified diagrams of order n_iU³ (skew scattering) which contribute.

J. Goryo, PRB 78, 060501 (2008).

Thought to be dominant contribution

in Sr_2RuO_4 . Estimate: $\theta_K \sim 40$ nrads

Intrinsic contributions to σ_H and θ_K

- $\sigma_H(q,\omega)$ at finite q difficult to probe experimentally: Goryo and Ishikawa, Phys. Lett. A 246, 549 (1998).
- Effect due to edges (related to edge current): Furusaki, Matsumoto, Sigrist, PRB 64, 054514 (2001).
- Effect due to surface, particle-hole asymmetry and collective modes: Yip and Sauls, J. Low Temp. Phys. 86, 257 (1992).

These are much too small to explain polar Kerr experiments on Sr₂RuO₄.

All the above, plus disorder calculations, used a single band model. Can multibands give an intrinsic effect?

Sr₂RuO₄ band structure

Ru d-orbitals

Sr₂RuO₄ band structure

Can a multiband model resolve some of the puzzles?

Raghu, Kapitulnik and Kivelson studied chiral p-wave SC on the quasi 1-d

bands, PRL 105, 136401 (2010).

Find intraorbital p-wave pairing for d_{xz} and d_{yx} .

(a) Bands and pairing phases with no t".

Relative phase of intraorbital pairing is $\pi/2$.

hole

electron

a

b

Sr₂RuO₄ cleaved at 180 K

 $h\nu=28 \text{ eV}$

T = 10 K

(b) Bands and pairing phases with d_{xz} - d_{yx} hopping, t".

Sharp gap minima ~ (t"/t)2Tc

Energy Spectra for Chiral p-wave SC on cylinder

Chiral p-wave SC on 2d xy band gives one chiral mode at each edge of cylinder.
Chern number is ±1.

Chiral p-wave SC on 1d xz and yz bands gives one non-chiral mode at each edge of cylinder.

Hole and electron bands → Chern number is 0 → not topologically protected.

Could explain absence of observable edge/surface currents (and low-lying excitations)

Is there an intrinsic AHE in a multiband chiral superconductor?

$$S_{H}(W) = \frac{S_{xy}(W) - S_{yx}(W)}{2}$$

$$S_{xy}(\eta_{n}) = \frac{ie^{2}T}{W} \mathop{a}_{\mathbf{k},w_{n}} \operatorname{tr} \dot{\mathbf{e}} \hat{\mathbf{v}}_{x} G_{0}(\mathbf{k}, w_{n}) \hat{\mathbf{v}}_{y} G_{0}(\mathbf{k}, w_{n} + \eta_{n}) \dot{\mathbf{e}}$$

$$\P_{e}(k) \qquad k$$

$$\hat{\mathbf{v}}_{i} = \frac{\P e(k)}{\P k_{i}} \quad \text{(or } \frac{k_{i}}{m} \quad \text{for free electrons)}$$

$$\Rightarrow \quad \mathcal{S}_{H} \text{ vanishes for single band}$$

Consider two-band (two-orbital) case

$$H_0 = \begin{pmatrix} X_1(k) & e_{12}(k) \\ e_{12}(k) & X_2(k) \end{pmatrix}; \quad X_i = e_i - m \quad \text{Intraorbital pairing: } D_{11}, D_{22} \quad \Rightarrow 4 \times 4 \text{ G}_0$$

$$\text{Interorbital pairing: } D_{12}$$

The velocity matrix also has off-diagonal terms (interorbital transitions)

Is there an intrinsic AHE in a multiband chiral superconductor?

Nonzero contributions involve transitions between orbitals (ϵ_{12} or t") or between bands (Δ_{12}) and require different relative OP phases.

I.e. $\Delta(k) = e^{i\theta} [\Delta'(k) + i\Delta''(k)] \rightarrow \text{relative phase} = \phi(k) = \tan^{-1} [\Delta''(k)/\Delta'(k)]$

Changes sign with chirality.

$$S_{H}^{"}(W) = \frac{\rho e^{2}}{W^{2}} \sum_{\mathbf{k}} \frac{((\mathbf{v}_{11} - \mathbf{v}_{22}) \times \mathbf{v}_{12})_{z}}{E_{-}E_{+}} \left[e_{12} \operatorname{Im}(D_{11}^{*}D_{22}) + \chi_{1} \operatorname{Im}(D_{22}^{*}D_{12}) - \chi_{2} \operatorname{Im}(D_{11}^{*}D_{12}) \right] \times \left[d(W - E_{1} - E_{2}) - d(W + E_{1} + E_{2}) \right]$$

Applied to Raghu et al. quasi-1d model for Sr2RuO4

$$S_{H}^{T=0}(W) = 2e^{2} \frac{\text{Im} \langle c_{k1}^{+} c_{k2} \rangle [(\mathbf{v}_{11} - \mathbf{v}_{22})^{'} \mathbf{v}_{12}]_{z}}{(W + ie)^{2} - (E_{-} + E_{+})^{2}}$$

$$t = \mathcal{M} = 10t'' = 1eV$$

$$D_0 = 0.23 \text{meV}$$

Effect requires particle-hole asymmetry.

Note: photon with polarization in ab (xy) plane cannot cause transitions involving d_{xy} orbitals $\rightarrow \gamma$ band only enters indirectly through coherence factors

Applied to Raghu et al. quasi-1d model for Sr2RuO4

$$S_{H}(W) = 2e^{2} \sum_{\mathbf{k}} \frac{((\mathbf{v}_{11} - \mathbf{v}_{22}) \times \mathbf{v}_{12})_{z} e_{12} \operatorname{Im}(D_{11}^{*}D_{22})}{E_{-}E_{+}(E_{-} + E_{+}) \left[(E_{-} + E_{+})^{2} - (W + ie)^{2} \right]}$$

$$= \frac{e^{2}}{h} \frac{16D_{0}^{2} t''^{2} t}{\rho^{2}} \int_{-\rho}^{\rho} dx dy \frac{\sin^{2} x \sin^{2} y (\cos y \sin^{2} x + \cos x \sin^{2} y)}{E_{-}E_{+}(E_{-} + E_{+}) \left[(E_{-} + E_{+})^{2} - (W + ie)^{2} \right]}$$

Polar Kerr Effect

$$q_{K}(W) = \frac{4p}{dW} \operatorname{Im}_{\hat{e}}^{\acute{e}} \frac{S_{H}(W)}{n(n^{2} - 1)} \mathring{\mathbf{u}} , \quad n(W) = \sqrt{e_{\xi} - 4piS(W)/W}$$

- Results very similar with further neighbor hoppings. Also whether there are low-lying excitations has little effect on T=0 result.
- Spin-orbit coupling does not give any new effect but can play the role of interorbital hopping.
- Adding γ band will not change much, as it plays a passive role. Need substantial superconductivity on quasi-1d bands.
- Quasi-1d model seems to maximize the effect. Much smaller effect if SC primarily on γ band.

In conclusion

- Identified an intrinsic contribution to the polar Kerr effect (and spontaneous Hall effect) which is generic to multiband chiral superconductors provided there is interband pairing with a different relative phase than intraband pairing [Im(Δ*_{aa}Δ_{ab})], and broken p-h symmetry.
- The quasi-1d model for Sr₂RuO₄ gives θ_K comparable to experiment. By contrast, if SC is primarily on the Υ band, the Kerr angle would likely be reduced by more than an order of magnitude.
- Experiments with controlled disorder may determine if the observed Kerr angle is of intrinsic or extrinsic origin. Intrinsic would imply the SC is of a multiband nature. Other discrepancies point toward a multiband model of chiral p-wave.