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Anderson localization

Philip W. Anderson

1958 “Absence of diffusion
in certain random lattices”

sufficiently strong disorder −→ quantum localization

−→ eigenstates exponentially localized, no diffusion

−→ Anderson insulator

Nobel Prize 1977



Anderson Insulators & Metals
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Scaling theory of localization:
Abrahams, Anderson, Licciardello,
Ramakrishnan ’79

Modern approach:
RG for field theory (σ-model)

quasi-1D, 2D : all states are localized

d > 2: Anderson metal-insulator transition
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 point
critical disorder

review: Evers, ADM, Rev. Mod. Phys.
80, 1355 (2008)

large g: weak localization
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Field theory: non-linear σ-model

S[Q] =
πν

4

∫

ddr Str [−D(∇Q)2 − 2iωΛQ], Q2(r) = 1

Wegner’79 (replicas); Efetov’83 (supersymmetry)

σ-model manifold:

e.g., unitary class (broken time-reversal symmetry):

• fermionic replicas: U(2n)/U(n)×U(n) , n→ 0

• bosonic replicas: U(n, n)/U(n)×U(n) , n→ 0

• supersymmetry: U(1, 1|2)/U(1|1)×U(1|1)

fermionic replicas: “sphere”

bosonic replicas: “hyperboloid”

SUSY: {“sphere” × “hyperboloid”} “dressed” by anticommuting variables

with Coulomb interaction: Finkelstein’83



Disordered electronic systems: Symmetry classification

Altland, Zirnbauer ’97

Conventional (Wigner-Dyson) classes
T spin rot. symbol

GOE + + AI
GUE − +/− A
GSE + − AII

Chiral classes

T spin rot. symbol

ChOE + + BDI
ChUE − +/− AIII
ChSE + − CII

H =

(

0 t
t† 0

)

Bogoliubov-de Gennes classes

T spin rot. symbol

+ + CI
− + C
+ − DIII
− − D

H =

(

h ∆

−∆∗ −hT

)



Disordered electronic systems: Symmetry classification

Ham. RMT T S compact non-compact σ-model σ-model compact

class symmetric space symmetric space B|F sector MF

Wigner-Dyson classes

A GUE − ± U(N) GL(N,C)/U(N) AIII|AIII U(2n)/U(n)×U(n)

AI GOE + + U(N)/O(N) GL(N,R)/O(N) BDI|CII Sp(4n)/Sp(2n)×Sp(2n)

AII GSE + − U(2N)/Sp(2N) U∗(2N)/Sp(2N) CII|BDI O(2n)/O(n)×O(n)

chiral classes

AIII chGUE − ± U(p+ q)/U(p)×U(q) U(p, q)/U(p)×U(q) A|A U(n)

BDI chGOE + + SO(p+ q)/SO(p)×SO(q) SO(p, q)/SO(p)×SO(q) AI|AII U(2n)/Sp(2n)

CII chGSE + − Sp(2p+ 2q)/Sp(2p)×Sp(2q) Sp(2p, 2q)/Sp(2p)×Sp(2q) AII|AI U(n)/O(n)

Bogoliubov - de Gennes classes

C − + Sp(2N) Sp(2N,C)/Sp(2N) DIII|CI Sp(2n)/U(n)

CI + + Sp(2N)/U(N) Sp(2N,R)/U(N) D|C Sp(2n)

BD − − SO(N) SO(N,C)/SO(N) CI|DIII O(2n)/U(n)

DIII + − SO(2N)/U(N) SO∗(2N)/U(N) C|D O(n)

Symmetry alone is not always sufficient to characterize the system.

There may be also a non-trivial topology.

It may protect the system from localization.



IQHE: Z topological insulator

von Klitzing ’80 ; Nobel Prize ’85 IQHE flow diagram

Khmelnitskii’ 83, Pruisken’ 84
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Field theory (Pruisken):

σ-model with topological term

S =

∫

d2r

{

−σxx
8

Tr(∂µQ)2 +
σxy

8
TrǫµνQ∂µQ∂νQ

}

QH insulators −→ n = . . . ,−2,−1, 0, 1, 2, . . . protected edge states

−→ Z topological insulator



Z2 topological protection from localization: 1D

Many-channel 1D systems: 1D σ-model

Zirnbauer ’92 ; ADM, Müller-Groeling, Zirnbauer ’94

Exact calculation of 〈g〉(L/ξ) and 〈g2〉(L/ξ)
for all Wigner-Dyson classes (A, AI, AII)

class AII: 〈g〉 → 1/2, 〈g2〉 → 1/2 for L/ξ →∞
One channel remains delocalized!

This result included both σ-model with θ = 0

and with θ = π topological term

θ = 0 even number of channels, topologically trivial, g → 0

θ = π odd number of channels, g → 1

←→ edge of 2D topological insulator (QSH system)



Z2 topological protection from localization: 2D

Fendley, “Critical points in two-dimensional replica sigma models”

arXiv:cond-mat/0006360, lecture at NATO ASI

Abstract: I survey the kinds of critical behavior believed to be exhibited in
two-dimensional disordered systems. I review the different replica sigma models
used to describe the low-energy physics, and discuss how critical points appear
because of WZW and theta terms.



2D massless Dirac fermions

Graphene

Geim, Novoselov’04

Nobel Prize’10

Surface of 3D topological insulators

BiSb, BiSe, BiTe Hasan group ’08

σ-model field theory for disordered 2D Dirac fermions

Ostrovsky, Gornyi, ADM ’07

• Graphene: long-range disorder (no valley mixing)

• Surface states of 3D TI: no restriction on disorder range



2D Dirac fermions: σ-models with topological term

• Generic disorder (broken TRS) =⇒ class A (unitary)

S[Q] =
1

8
Str

[

−σxx(∇Q)2 +Q∇xQ∇yQ
]

= −σxx
8

Str(∇Q)2 + iπN [Q]

topol. invariant N [Q] ∈ π2(M) = Z

=⇒ Quantum Hall critical point

ln Σ

0

d
ln
Σ
�d

ln
L ΣU

*

Θ=Π

Θ=0σ = 4σ∗U ≃ 4× (0.5÷ 0.6)
e2

h

• Random potential (preserved TRS) =⇒ class AII (symplectic)

S[Q] = −σxx
16

Str(∇Q)2 + iπN [Q]

topological invariant: N [Q] ∈ π2(M) = Z2 = {0, 1}

Topological protection from localization !

Ostrovsky, Gornyi, ADM, PRL 98, 256801 (2007)



Dirac fermions in random potential: numerics

Bardarson, Tworzyd lo, Brouwer,
Beenakker, PRL ’07

Nomura, Koshino, Ryu, PRL ’07

• absence of localization confirmed

• log scaling towards the perfect-metal fixed point σ →∞



Schematic beta functions for 2D systems of symplectic class AII

Conventional spin-orbit systems

Dirac fermions
(topological protection)

surface of 3D top. insulator
or
graphene without valley mixing



Periodic table of Topological Insulators

Symmetry classes Topological insulators

p Hp Rp Sp π0(Rp) d=1 d=2 d=3 d=4

0 AI BDI CII Z 0 0 0 Z

1 BDI BD AII Z2 Z 0 0 0
2 BD DIII DIII Z2 Z2 Z 0 0
3 DIII AII BD 0 Z2 Z2 Z 0
4 AII CII BDI Z 0 Z2 Z2 Z

5 CII C AI 0 Z 0 Z2 Z2
6 C CI CI 0 0 Z 0 Z2
7 CI AI C 0 0 0 Z 0

0′ A AIII AIII Z 0 Z 0 Z

1′ AIII A A 0 Z 0 Z 0

Hp – symmetry class of Hamiltonians

Rp – sym. class of classifying space (of Hamiltonians with eigenvalues → ±1)

Sp – symmetry class of compact sector of σ-model manifold

Kitaev’09; Schnyder, Ryu, Furusaki, Ludwig’09; Ostrovsky, Gornyi, ADM’10



Classification of Topological insulators

Two ways to detect existence of TIs of class p in d dimensions:

(i) by inspecting the topology of classifying spaces Rp:
{

TI of type Z

TI of type Z2
⇐⇒ π0(Rp−d) =

{

Z

Z2

(ii) by analyzing homotopy groups of the σ-model manifolds:
{

TI of type Z ⇐⇒ πd(Sp) = Z Wess-Zumino term

TI of type Z2 ⇐⇒ πd−1(Sp) = Z2 θ = π topological term

WZ and θ = π terms make boundary excitations “non-localizable”

TI in d ⇐⇒ topological protection from localization in d− 1

Bott periodicity: πd(Rp) = π0(Rp+d) , periodicity 8



2D Dirac surface states of a 3D TI:

Disorder and interaction

Surface of 3D Z2 TI:

single 2D massless Dirac mode

With disorder:

Topological protection from localization,

RG flow towards supermetal

What is the effect of Coulomb interaction?

assume not too strong interaction rs =
√

2e2/ǫvF . 1

=⇒ no instabilities, no symmetry-breaking

=⇒ topological protection from localization persists

But interaction may destroy the supermetal phase!



Absence of localization in a symplectic wire

with odd number of channels



Topological protection: Reduction to 1D

Hollow cylinder threaded with magnetic flux Φ

Surface states: En(p) = ±

√

p2 +

(

n+
1

2
− eΦ
hc

)2

Time-reversal symmetry preserved for eΦ/hc integer or half-integer

Half-integer eΦ/hc =⇒ odd number of 1D channels

=⇒ no 1D localization =⇒ no 2D localization



Coulomb interaction in symplectic class AII: RG

cf. Altshuler, Aronov ’79; Finkelstein ’83

β(g) =
dg

d lnL
=

N

2
− 1 + (N2 − 1)F

weak antilocalization – ee-singlet + ee-multiplet

g – dimensionless conductance in units 2e2/πh

N – # of flavors (spin, valleys, etc)

Graphene: N = 4 (2 valleys, 2 spins)

−→ WAL wins −→ supermetal survives

Surface of a 3D TI: N = 1

−→ β(g) = −1/2 < 0 −→ ee-interaction wins

−→ conductance decreases upon RG

−→ Coulomb repulsion destroys supermetal phase

p,

ε−ωp−q,

q,ω

εεp,

ε−Ωp,

R RΑ

Α
Ω



more about RG: symplectic class, N = 1

with Coulomb interaction:

dg

d lnL
= −1

2
+ γc

dγc

d lnL
=

1 + γc

2g
− 2γ2

c

γc – Cooper-channel interaction constant

assume γc > 0 (no superconductivity)

under RG γc→ (2g)−1/2≪ 1

−→ γc does not affect scaling towards smaller g



more about RG: symplectic class, N = 1

for comparison, with weak short-range interaction:

dg

d lnL
=

1

2
+
γs

2
+ γc

dγs

d lnL
= −γs + 2γc

2g

dγc

d lnL
= −

γs

2g
− 2γ2

c

γs – spin-singlet interaction constant

under RG both interaction amplitudes remain small:

γc→ 1/2g ≪ 1, γs→ −1/g ≪ 1

−→ interaction does not affect scaling g →∞ (“supermetal”)



Interaction-induced quantum criticality in 3D TI

Ostrovsky, Gornyi, ADM, PRL 105, 036803 (2010)

• Interaction −→ tendency to localization at g ≫ 1

• Topology −→ protection from strong localization

(no flow towards g ≪ 1)

−→ novel quantum critical point should emerge at g ∼ 1

analogous to QH critical point, but here induced by interaction



β functions for symplectic class: Interaction and Topology
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Experiment: Conductivity via surface of 3D top. insulator

Wang et al, PRB’11 Chen et al, PRB ’11

Weak Antilocalization magnetoresistance as expected for class AII

But: Localizing T dependence as expected for Coulomb interaction

Experimental challenges (to study the predicted critical state):

• solely surface conduction

• tuning chemical potential to a vicinity of Dirac point



Quantum spin Hall transition

between 2D topological and normal insulators



QSHE in CdTe/HgTe/CdTe quantum wells: Experiment

Molenkamp group ’07

I — normal insulator, d = 5.5 nm

II, III, IV — inverted quantum well structure, d = 7.3 nm

−→ 2D topological insulator



2D TIs: QSHE phase diagram

In the presence of disorder, TI and normal insulator phases
are separated by the supermetal phase

transitions TI–supermetal and supermetal–NI
are in the coventional symplectic MIT universality class

Onoda, Avishai, Nagaosa ’07; Obuse et al ’07

Effect of Coulomb interaction on phase diagram — ?



2D TIs: QSHE phase diagram (cont’d)

no interaction with interaction

0

d
is
o
rd

er

band gap
0inverted normal

supermetal

normal
insulator

QSH
insulator

0

d
is
o
rd

er

band gap
0inverted normal

critical

normal
insulator

QSH
insulator

Coulomb interaction “kills” the supermetal phase

−→ quantum critical point of Quantum Spin Hall transition

with conductivity ∼ e2/h

alternative: critical phase (seems less likely)



Z2 edge in the presence of Coulomb interaction

Edge of 2D TI: single propagating mode in each direction

Impurity backscattering prohibited (symplectic time reversal invariance)

Coulomb interaction −→ Luttinger liquid , conductance e2/h

Xu, Moore ’06; Wu, Bernevig, Zhang ’06:

Umklapp processes (uniform or random)

∂D2/∂ lnL = (3− 8K)D2 K – Luttinger liquid parameter

Coulomb 1/r interaction: K(q) =

(

1 + 2α ln
q0

q

)−1/2

α = e2/π2ǫhvF

−→ D2 processes negligible up to the scale L0 ∼ q−1
0 exp

80

9α

What happens with TI beyond this scale is an interesting question
but purely academic for not too strong interaction:

rs = 1 −→ L0 ∼ 1060 nm > size of Universe

Thus, TI phase persists in the presence of not too strong Coulomb interaction



Experiment: HgTe/CdTe critical well thickness

Büttner, . . . , Molenkamp, arXiv:1009.2248

conductivity saturates with decreasing T at a value ∼ e2/h,

in agreement with theory



TI–NI transition: other realization

2D TI–NI transition can also be realized

on a surface of a 3D weak topological insulator

Recent works (no e-e interaction):

Ringel, Kraus, Stern, arXiv:1105.4351

Mong, Bardarson, Moore, arXiv:1109.3201



Multifractality and interaction:

Enhancement of superconductivity by Anderson localization

in collaboration with

I. Burmistrov, Landau Institute, Chernogolovka

I. Gornyi, Karlsruhe Institute of Technology & Ioffe Inst., St.Petersburg

arXiv:1102.3323, to be published in PRL



Multifractality at the Anderson transition

Pq =
∫

ddr|ψ(r)|2q inverse participation ratio

〈Pq〉 ∼











L0 insulator

L−τq critical

L−d(q−1) metal

τq = d(q − 1) + ∆q ≡ Dq(q − 1) multifractality

normal anomalous

d α0
α

d

0

f(
α)

metallic
critical

α− α+

|ψ|
2
 large |ψ|

2
 small

τq −→ Legendre transformation

−→ singularity spectrum f(α)

wave function statistics:

P(ln |ψ2|) ∼ L−d+f(ln |ψ2|/ lnL)

Lf(α) – measure of the set of points where |ψ|2 ∼ L−α



Multifractality and the field theory

• ∆q – scaling dimensions of operators O(q) ∼ (QΛ)q

d = 2 + ǫ: ∆q = −q(q − 1)ǫ+ O(ǫ4) Wegner ’80

• Infinitely many operators with negative scaling dimensions

• wave function correlations ←→ Operator Product Expansion

Wegner 85 ; Duplantier, Ludwig 91

• ∆1 = 0 ←→ 〈Q〉 = Λ naive order parameter uncritical

Transition described by an order parameter function F (Q)

Zirnbauer 86, Efetov 87

←→ distribution of local Green functions

and wave function amplitudes

ADM, Fyodorov ’91



Dimensionality dependence of multifractality
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Analytics (2 + ǫ, one-loop) and
numerics

τq = (q − 1)d− q(q − 1)ǫ+ O(ǫ4)

f(α) = d− (d+ ǫ− α)2/4ǫ+ O(ǫ4)

d = 4 (full)
d = 3 (dashed)
d = 2 + ǫ, ǫ = 0.2 (dotted)
d = 2 + ǫ, ǫ = 0.01 (dot-dashed)

Inset: d = 3 (dashed)
vs. d = 2 + ǫ, ǫ = 1 (full)

Mildenberger, Evers, ADM ’02



Multifractal wave functions at the Quantum Hall transition



Interaction scaling at criticality

Hartree, Fock

enhanced by multifractality

exponent ∆2 ≃ −0.52 < 0

Hartree – Fock

suppressed by multifractality

exponent µ2 ≃ 0.62 > 0

Burmistrov, Bera, Evers, Gornyi, ADM, Annals Phys. 326, 1457 (2011)

−→ Dephasing at QH and MI transitions



Temperature scaling of quantum Hall transition

Transition width exponent κ = 1/νzT = 0.42± 0.01

Wei, Tsui, Paalanen, Pruisken, PRL’88 ; Li et al., PRL’05, PRL’09



Scaling at QH transition: Theory and experiment

• Theory (short-range interaction):

−→ dephasing rate τ−1
φ ∝ T p with p = 1 + 2µ2/d

dephasing length Lφ ∝ T−1/zT zT = d/p

Transition width exponent κ =
1

zTν
=

1 + 2µ2/d

νd

µ ≃ 0.62 −→ p ≃ 1.62 −→ zT ≃ 1.23

ν ≃ 2.35 (Huckestein et al ’92, . . . ) −→ κ ≃ 0.346

ν ≃ 2.59 (Ohtsuki, Slevin ’09) −→ κ ≃ 0.314

• Experiment (long-range 1/r Coulomb interaction):

κ = 0.42± 0.01

Difference in κ fully consistent with short-range and

Coulomb (1/r) problems being in different universality classes



Superconductor-Insulator Transition

Haviland, Liu, Goldman, PRL’89

Bi and Pb films

Suppression of Tc by disorder



Anderson theorem

Abrikosov, Gorkov’59 ; Anderson’59

non-magnetic impurities do not affect s-wave superconductivity:

Cooper instability unaffected by diffusive motion

mean free path does not enter the expression for Tc

Anderson Theorem vs Anderson Localization – ?



Suppression of Tc of disordered films due to Coulomb repulsion

Combined effect of disorder and Coulomb (long-range) interaction

First-order perturbative correction to Tc: Maekawa, Fukuyama’81

RG theory: Finkelstein ’87

Tc suppressed; monotonously decays with increasing resistivity

This suppression is observed in many experiments

Mo-Ge films, Graybeal, Besley’84 Bi and Pb films, Haviland, Liu, Goldman’89



Enhancement of superconductivity by multifractality

short-range interaction

Feigelman, Ioffe, Kravtsov, Yuzbashyan, Cuevas, PRL ’07, Ann. Phys.’10 :

multifractality of wave functions near MIT in 3D

−→ enhancement of Cooper-interaction matrix elements

−→ enhancement of Tc as given by self-consistency equation

Questions:

• Can suppression of Tc for Coulomb repulsion and enhancement

due to multifractality be described in a unified way?

• What are predictions of RG ? Does the enhancement hold

if the repulsion in particle-hole channels is taken into account ?

• Effect of disorder on Tc in 2D systems ?



SIT in disordered 2D system: Orthogonal symmetry class

σ-model RG with short-range interaction:

dt

dy
= t2 − (

γs

2
+ 3

γt

2
+ γc)t

2

dγs

dy
= −t

2
(γs + 3γt + 2γc)

dγt

dy
= −t

2
(γs − γt − 2γc)

dγc

dy
= −

t

2
(γs − 3γt)− 2γ2

c y ≡ lnL

Interactions: singlet γs , triplet γt , Cooper γc

γs→ −1 −→ Finkelstein’s RG for Coulomb interaction

Disorder: dimensionless resistivity t = 1/G

Assume small bare values: t0 , γi,0≪ 1



SIT in disordered 2D system: Orthogonal class (cont’d)

Weak interaction −→ discard γit
2 contributions to dt/d lnL

d

dy





γs
γt
γc



 = −
t

2





1 3 2
1 −1 −2
1 −3 0









γs
γt
γc



−





0
0

2γ2
c



 ;
dt

dy
= t2

Eigenvalues and -vectors of linear problem (without BCS term γ2
c):

λ = 2t :





−1
1
1



 ; λ′ = −t :





1
1
−1



 and





1
−1
2





2D system is “weakly critical” (on scales shorter than ξ)

The eigenvalues λ, λ′ are exactly multifractal exponents:

λ ≡ −∆2 > 0 (RG relevant), λ′ = −µ2 < 0 (RG irrelevant)



SIT in disordered 2D system: Orthogonal class (cont’d)

Couplings that diagonalize the linear system:









γ

γ′

γ′′









=











−1
6

1
2

1
3

1
2

1
2 0

1
3 0 1

3



















γs

γt

γc









Upon RG γ increases, whereas γ′, γ′′ decrease.

Solution approaches the λ–eigenvector, i.e.. γs = −γt = −γc
−→ neglect γ′, γ′′ and keep γ only:

dγ

dy
= 2tγ − 2

3
γ2 t(y) =

t0

1− t0y

Superconductivity may develop if the starting value

γ0 =
1

6
(−γs,0 + 3γt,0 + 2γc,0) < 0



SIT in disordered 2D systems, orthogonal class: Results

Tc ∼ exp
{

−1/|γc,0|
}

(BCS) , G0 & |γ0|−1

Tc ∼ exp {−2G0} , |γ0|−1/2 . G0 . |γ0|−1

insulator , G0 . |γ0|−1/2

Non-monotonous dependence

of Tc on disorder (G0)

Exponentially strong enhancement

of superconductivity by multifractality

in the intermediate disorder range,

|γ0|−1/2 . G0 . |γ0|−1
SuperconductorInsulator

G0

Tc



SIT in disordered 2D system, orth. class: Results (cont’d)

1
tγγ 0

0 0

InsulatorSCBCS

0

Superconductor

Insulator

Superconductor

In
su
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r
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ln T �Tc
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t

Inset: Tc(t0)

t(T ) for
γc0 = 0.04,
γs0 = −0.005,
γt0 = 0.005,
and
t0 = 0.065÷ 0.12



Disordered 2D system: Symplectic symmetry class

Strong spin-orbit interaction −→ only spin-singlet modes survive

dt

dy
= −1

2
t2 − (

γs

2
+ γc)t

2

dγs

dy
= −t

2
(γs + 2γc)

dγc

dy
= −t

2
γs − 2γ2

c

t(y) =
t0

1 + yt0/2
antilocalization

d

dy

(

γs
γc

)

= −
t

2

(

1 2
1 0

)(

γs
γc

)

−
(

0

2γ2
c

)



Disordered 2D system: Symplectic class (cont’d)

Eigenvalues and -vectors of linear system:

λ =
t

2
:

(

−1
1

)

; λ′ = −t :

(

2
1

)

Again λ, λ′ are multifractal exponents:

λ ≡ −∆2 > 0 (RG relevant), λ′ = −µ2 < 0 (RG irrelevant)

Couplings that diagonalize
the linear system:

(

γ

γ′

)

=





−1
3

2
3

1
3

1
3





(

γs

γc

)

Upon RG γ increases, whereas γ′ decreases.

Solution approaches the λ–eigenvector, i.e.. γs = −γc
−→ neglect γ′ and keep γ only:

dγ

dy
=
t

2
γ − 2

3
γ2 t(y) =

t0

1 + t0y/2



Disordered 2D system, symplectic class: Results

Superconductivity if γ0 = 1
3(−γs,0 + 2γc,0) < 0

Tc ∼ exp
{

−1/|γc,0|
}

(BCS) , G0 & |γ0|−1

Tc ∼ exp
{

−c(G0/|γ0|)1/2
}

, 1 . G0 . |γ0|−1

Exponentially strong enhancement of superconductivity

by multifractality at 1 . G0 . |γ0|−1



Disordered 2D system, symplectic class: Results (cont’d)
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Before the system becomes insulator at t0 > t∗ ∼ 1:

further enhancement of Tc near Anderson transition point t∗



SIT near Anderson transition

Consider system at Anderson localization transition

in 2D (symplectic symmetry class) or 3D

dγ

dy
= −∆2γ − γ2

Superconductivity if γ0 < 0

∆2 < 0 – multifractal exponent at Anderson transition point

Tc ∼ |γ0|d/|∆2|

Exponentially strong enhancement of superconductivity:

Power-law instead of exponential dependence of Tc on interaction!

Agrees with Feigelman et al.



SIT near Anderson transition: Results

Superconductor
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II : crossover: Tc ∼ ξ−3 exp(−cξ∆2/|γ0|) (3D)



Experimental realizations ?

Key assumption: short-range character of interaction

−→ systems with strongly screened Coulomb interaction

Caviglia,. . . ,Mannhart,

Triscone, Nature’08

LaAlO3/SrTiO3 interface

ǫ ≈ 104



2D: Comments

I. BCS and BKT

Calculating Tc, we treated superconductivity on the BCS level.

Because of phase fluctuations, the actual transition in 2D is of the
BKT character.

However, the temperatures are close, TBKT ≃ Tc
Beasley, Mooij, Orlando, PRL ’79

Halperin, Nelson, JLTP’79

Kadin, Epstein, Goldman, PRB’83

Benfatto, Castellani, Giamarchi, PRB’09

Since the obtained enhancement of Tc is exponentially large,
it is equally applicable to TBKT



2D: Comments

II. Magnetoresistance in transverse field for |γ0| < t0 < |γ0|1/2



Summary

I. 2D transport in topological insulator systems:

interplay of localization, interaction, and topology

Coulomb inter. −→ quantum criticality, conductivity ∼ e2/h

• surface of a 3D top. insulator

• QSH transition between normal and topol. insulator in 2D

II. 2D disordered superconductors:

Short-range interaction −→
non-monotonous dependence of Tc on resistivity;

exponential enhancement of superconductivity by multifractality

• in 2D systems at intermediate disorder, |γ0| < t0 < |γ0|1/2

• near Anderson transition

Possible realizations: systems with strongly screened Coulomb
interaction (large background ǫ, metallic gate)



THE END


