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What 3D topological phases are there?

• Gapped
• Finite	ground	state	degeneracy
• Fractional	excitations	in	the	bulk

We	know	many	topological	phases	in	2D,	but	not	so	
many	in	3D



2D	topological	phases

• Fractional	quantum	Hall

• Toric code	(quantum	double)	Kitaev,	2003

• String-net	models	Levin,	Wen,	2005



2D	topological	phases

• Fractional	point	excitations	– anyons
• Fusion

• Braiding

• Braided	fusion	category



3D?

• Toric Code	– 3D	Z2 gauge	theory

• 3D	discrete	gauge	theory	– Aharonov Bohm	effect
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3D	twisted gauge	theory

• Z2 x	Z2 gauge	theory	(for	example)

• Dijkgraaf-Witten	gauge	theory,	1990
– Bosonic	gauge	charge
– Anyonic gauge	flux
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Wang,	Levin,	2014;	Jiang,	Mesaros,	Ran,	2014;	Wang,	Wen,	2015	



3D	topological	phase

• A	limited	variety	compared	to	2D
• What	are	the	phase	that	we	do	not	know?
• What	twisted	gauge	theory	with	fermonic
gauge	charge are	there?

• Generalize	Dijkgraaf Witten	to	include	
fermions

• Insight	from	a	very	different	construction	by	
Walker	and	Wang,	2011



Walker	Wang	model

• Wave	function	represents	space	time	
trajectory	of	2D	anyons

+ + +

+ …



Walker	Wang	model

• Input:	a	set	of	2D	anyons 𝐴,	their	fusion	and	braiding	
rule

• Output:	a	3D	gapped	exactly	solvable	lattice	model,	
with	𝐴 appearing	as	fractional	excitation	on	the	
surface

• What	is	the	order	in	the	bulk?



Walker	Wang	model

• If	𝐴 is	modular	(every	anyon can	be	detected	
from	braiding),	the	3D	bulk	has	trivial	
topological	order

• If	𝐴 is	non-modular	(a	subset	
𝐶 cannot	be	detected	from	
braiding),	the 3D bulk has
nontrivial topological order,
with quasi-particle excitation
in	𝐶



Walker	Wang	model

• Example	I:	𝐴 = 𝐼, 𝑒; 𝐶 = 𝐼, 𝑒. 	𝑒 is	a	boson		
– Bulk	order:	3D	Z2	gauge	theory
– Bulk	quasiparticle:	𝐶 = 𝐼, 𝑒.
– Surface	order:	𝐴 = 𝐼, 𝑒.

• Example	II:	𝐴 = 𝐼, 𝑠; 𝐶 = 𝐼. 	𝑠 is	a	semion
– Bulk	order:	trivial
– Bulk	quasiparticle:	𝐶 = 𝐼.
– Surface	order:	𝐴 = 𝐼, 𝑠.

Keyserlingk,	Burnell,	and	Simon,	2012



Walker	Wang	model

• Ways	WW	model	has	been	used:
– Exactly	solvable	model	of	fractional	quantum	Hall	
(on	the	surface)	Walker,	Wang,	2011

– Surface	topological	order	of	symmetry	protected	
topological	phase	Burnell,	Fidkowski,	XC,	Vishwanath,	2013-14

• Can	have	fractionalized	bulk,	
quasi-particle	content	easy	
to	determine Bulk	SPT	

order

Surface	anyon



Walker	Wang	model

• What	are	the	flux	loops	doing in	the	3D	bulk?
• Do	they	have	nontrivial	loop	braiding	
statistics?

• Can	they	represented	Dijkgraaf Witten	twisted	
gauge	theory?

• Yes



Summary	of	result

• The	set	of	input	2D	anyons such	that	the	bulk	
has	twisted	Z2 x	Z2 gauge	theory	topo	order

• What	the	input	set	𝐴 is
• How	we	demonstrate	the	twisted	topo	order
– Loop	braiding	statistics	from	membrane	operators
–Modular	transformation
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Summary	of	Result
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Modular	transformation

• Large	gauge	transformation	of	the	manifold	
the	system	lives	on

• The	corresponding	transformation	of	the	
degenerate	ground	space.

• 2D,	two	torus

• Projective	rep	of	𝑆𝐿(2, 𝑍)
• Distinguishes	different	2D	topological	order

Wen,	1990



3D	modular	transformation

• 3D,	three	torus

• Data	calculated	based	on	Dijkgraaf Witten	
theory	for	simple	twisted	gauge	theories

𝑆 𝑇45

Jiang,	Mesaros,	Ran,	2014;	Wang,	Wen,	2015;	Wan,	Wang,	He,	2015	



Mod.	Trans.	on	WW	model

• Minimal	lattice	model	of	Walker	Wang
• Trivalent
• 3	torus
• 6	spins
• Following	the	
2D	string-net	
procedure
Liu,Wang,You,Wen,2013



Mod.	Trans.	on	WW	model
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Mod.	Trans.	on	WW	model
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Mod.	Trans.	on	WW	model

• 𝑆 and	𝑇 matrices	thus	calculated	match	that	
of	Z2 x	Z2 Dijkgraaf Witten	twisted	gauge	
theory

• Confirming	the	topological	order

• What	is	the	input	set	of	2D	anyons 𝐴 ?



The	input

• General	rule:	
• Input:	set	of	anyons 𝐴,	with	a	central	subset	𝐶
(does	not	braid	with	everything)

• Output:	3D	theory	with	𝐶 as	quasiparticle	
excitations	in	the	bulk



The	input

• 𝐴 = 𝐼, 𝑒; 𝐶 = 𝐼, 𝑒. 	𝑒 is	a	boson
– 3D	Bulk	quasiparticle	content:	𝐶 = 𝐼, 𝑒
– 3D	Bulk	topo	order:	Z2 gauge	theory	(toric code)

• 𝐴 = 𝐼, 𝑒:, 𝑒;, 𝑒:𝑒;; 𝐶 = 𝐴.	𝑒:, 𝑒; are	bosons
– 3D	Bulk	q.p. content:	𝐶 = 𝐼, 𝑒:, 𝑒;, 𝑒:𝑒;
– 3D	Bulk	topo	order:	Z2 x	Z2 gauge	theory	(two	
copies	of	toric code)

• This	is	too	simple;	we	need	something	more	
‘twisted’



The	input	we	choose

• Take	the	irreducible	representations	of	the	𝐷=
group	(symmetry	of	a	square)

• 𝐼, 𝑒:, 𝑒;, 𝑒>, 1𝐷 Ω	 2𝐷
• 𝑒:×𝑒; = 𝑒>, Ω	×	𝑒" = Ω
• Ω	×	Ω = 𝐼 + 𝑒: + 𝑒; + 𝑒>
• 𝐼, 𝑒:, 𝑒;, 𝑒>, Ω can	all	be	self	and	mutual	bosonic
• 𝐶 = 𝐼, 𝑒:, 𝑒;, 𝑒>, Ω
• 3D	bulk	order:	𝐷= gauge	theory	(not	what	we	
want)



The	input	we	choose

• Take	the	irreducible	representations	of	the	𝐷=
group	(symmetry	of	a	square)

• 𝐼, 𝑒:, 𝑒;, 𝑒>, 1𝐷 Ω	 2𝐷
• 𝑒:×𝑒; = 𝑒>, Ω	×	𝑒" = Ω
• Ω	×	Ω = 𝐼 + 𝑒: + 𝑒; + 𝑒>
• Make	Ω a	semion,	consistent	with	fusion	rule
• Ω braids	with	itself,	not	a	3D	quasi-particle
• 3D	bulk	order:	Z2 x	Z2 gauge	theory	and	
twisted!



In	comparison

• Take	the	irreducible	representations	of	the	𝑄=
group	(the	quaternion	group)

• 𝐼, 𝑒:, 𝑒;, 𝑒>, 1𝐷 Ω	 2𝐷
• 𝑒:×𝑒; = 𝑒>, Ω	×	𝑒" = Ω
• Ω	×	Ω = 𝐼 + 𝑒: + 𝑒; + 𝑒>
• Make	Ω a	semion,	consistent	with	fusion	rule
• Ω braids	with	itself,	not	a	3D	quasi-particle
• 3D	bulk	order:	Z2 x	Z2 gauge	theory	and	NOT
twisted!



Where	this	is	from

• Surface	topological	order	of	Z2 x	Z2 symmetry	
protected	topological	phases

• A	semion Ω transforms	under	Z2 x	Z2
symmetry	as	𝑔4 = 𝑖𝜎4	, 𝑔9 = 𝜎9	, 𝑔5 = 𝜎5

• 2D	projective	rep	of	Z2 x	Z2
• 2D	regular	rep	of	𝐷=

Z2	x	Z2	
SPT

semion

XC,	Burnell,	Vishwanath,	Fidkowski,	2015



Where	this	is	from

• Surface	topological	order	of	Z2 x	Z2 symmetry	
protected	topological	phases

• A	semion Ω transforms	under	Z2 x	Z2
symmetry	as	𝑔4 = 𝑖𝜎4	, 𝑔9 = 𝜎9	, 𝑔5 = 𝜎5

• Gauge	Z2 x	Z2,	symmetry	
charges	become	frac.	Excitation

• Ω	×	Ω = 𝐼 + 𝑒: + 𝑒; + 𝑒>
• Bulk	twisted	Z2 x	Z2 gauge	
theory
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XC,	Burnell,	Vishwanath,	Fidkowski,	2015
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Where	this	is	from

• Surface	topological	order	of	Z2 x	Z2 symmetry	
protected	topological	phases

• A	semion Ω transforms	under	Z2 x	Z2
symmetry	as	𝑔4 = 𝑖𝜎4	, 𝑔9 = 𝑖𝜎9	, 𝑔5 = 𝑖𝜎5

• Gauge	Z2 x	Z2 ,	symmetry	
charges	become	frac.	Excitation

• Ω	×	Ω = 𝐼 + 𝑒: + 𝑒; + 𝑒>
• Bulk	un-twisted	Z2 x	Z2 gauge	
theory

Z2	x	Z2	
SPT

semion

XC,	Burnell,	Vishwanath,	Fidkowski,	2015



What	we	learned

• Walker	Wang	model	can	represent	3D	gauge	
theory

• WW	model	can	represent	3D	twisted gauge	
theory

• WW	model	can	have	nontrivial	loop	braiding	
statistics	(not	directly	shown)

• Modular	transformation	as	a	generic	way	to	
extract	topological	order	of	WW	model



What	we	learned

• To	find	twisted	gauge	theory	with	fermion	
gauge	charge

• Start	from	a	set	of	anyons 𝐴,	s.t.
• 𝐴 contains	a	central	subset	𝐶
• 𝐶 includes	all	the	irreps of	gauge	group	𝐺
• Some	of	the	irreps are	fermion,	others	are	
boson

• 𝐴 > 𝐶,	and	probably	has	to	be	nonabelian




