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Three “Mathematical” Objects

1 An ordered pair (x1, x2) of distinct real numbers

2 A knot in Euclidean 3-space E3

3 A gapped short-range-entangled d-dimensional lattice system with
fixed symmetry group

Mathematical definition:

1 19th century: reals characterized as complete ordered field

2 20th century: compact connected 1-dimensional submanifold

3 21th century?
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Moduli Spaces

1 An ordered pair (x1, x2) of distinct real numbers

M = R2 \�

Geometric Invariant: M �! R>0 (separation)

Topological Invariant: ⇡0M set of deformation classes

⇡0M
⇠=��! Sym2

Remark: ⇡0M is nontrivial because of gap condition x1 6= x2
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Moduli Spaces

2 A knot in Euclidean 3-space E3

Moduli space M is trickier to define, e.g. it is infinite-dimensional

Geometric Invariant:  : M �! R>0 (total curvature)

Topological Invariant: ⇡0M is the subject of knot theory

⇡0M �! polynomials (Jones, . . . )



Moduli Spaces

3 A gapped short-range-entangled d-dimensional lattice system with
fixed symmetry group

M not defined!

Geometric Invariant: Correlation functions

Topological Invariant: ⇡0M is the set of topological phases of matter
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Transition to Field Theory

Two principles: • The deformation class of a quantum system is
determined by its low energy behavior

• The low energy physics of a gapped system is
well-approximated by a topological

⇤ field theory

We approximate discrete nonrelativistic lattice models with continuous
relativistic field theories. A mathematical justification would be nice. . .

Main Point: There is an Axiom System for field theory!

• What is Quantum Field Theory? Axiom System a partial answer

• Originally introduced by Segal for 2d CFT

• Atiyah adapted to topological case (TFTs); connection to bordism

•
Extended locality developed to understand 3d Chern-Simons

• Applies to scale-dependent theories (with modifications)

• Allows to define and determine moduli space M for TFT
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Transition to Field Theory

Starting point: relativistic QFT on Minkowski spacetime Mn

Wick rotation: correlation functions are boundary values of holomorphic
functions on a complex domain D. Restrict to Euclidean space En

Background gravity: Formulate on compact Riemannian manifolds Xn

Mn ⇠⇠⇠B D ⇠⇠⇠B En ⇠⇠⇠B Xn
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Definition: An n-dimensional field theory is a homomorphism

F : Bordhn�1,ni(Hn) �! VecttopC

N.B.: The most far-reaching assertion is that the field theory can
be encoded by compact Riemannian manifolds
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Locality and Unitarity

The state space F (Y n�1) depends locally on Y

Expected if F is the e↵ective theory of a lattice model

Extended field theory: invariants for manifolds of dimension  n

Wick-rotated unitarity: reflection positivity

Open Question: What is extended reflection positivity?

We propose a solution for invertible topological theories

DSF iPad

DSF iPad

DSF iPad

DSF iPad

DSF iPad

DSF iPad

DSF iPad

DSF iPad

DSF iPad

DSF iPad

DSF iPad



Locality and Unitarity

The state space F (Y n�1) depends locally on Y

Expected if F is the e↵ective theory of a lattice model

Extended field theory: invariants for manifolds of dimension  n

Wick-rotated unitarity: reflection positivity

Open Question: What is extended reflection positivity?

We propose a solution for invertible topological theories

DSF iPad

DSF iPad

DSF iPad

DSF iPad

DSF iPad

DSF iPad

DSF iPad

DSF iPad



Locality and Unitarity

The state space F (Y n�1) depends locally on Y

Expected if F is the e↵ective theory of a lattice model

Extended field theory: invariants for manifolds of dimension  n

Wick-rotated unitarity: reflection positivity

Open Question: What is extended reflection positivity?

We propose a solution for invertible topological theories



Locality and Unitarity

The state space F (Y n�1) depends locally on Y

Expected if F is the e↵ective theory of a lattice model

Extended field theory: invariants for manifolds of dimension  n

Wick-rotated unitarity: reflection positivity

Open Question: What is extended reflection positivity?

We propose a solution for invertible topological theories

DSF iPad

DSF iPad

DSF iPad

DSF iPad

DSF iPad

DSF iPad

DSF iPad

DSF iPad

DSF iPad




Locality and Unitarity

The state space F (Y n�1) depends locally on Y

Expected if F is the e↵ective theory of a lattice model

Extended field theory: invariants for manifolds of dimension  n

Wick-rotated unitarity: reflection positivity

Open Question: What is extended reflection positivity?

We propose a solution for invertible topological theories



Locality and Unitarity

The state space F (Y n�1) depends locally on Y

Expected if F is the e↵ective theory of a lattice model

Extended field theory: invariants for manifolds of dimension  n

Wick-rotated unitarity: reflection positivity

Open Question: What is extended reflection positivity?

We propose a solution for invertible topological theories



Main Theorem

M0
top

(n,Hn) := moduli space of reflection positive invertible
n-dimensional extended topological field theories
with symmetry group Hn

Theorem (F.-Hopkins): There is a 1:1 correspondence

⇡
0

M0
top

(n,Hn) ⇠= [MTH,⌃n+1IZ]
tor

Conjecture (F.-Hopkins): There is a 1:1 correspondence

⇡
0

M(n,Hn) ⇠= [MTH,⌃n+1IZ]
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Comparison with Previous Results

The formula is computable, particularly in low dimensions

• Agrees in low dimensions with (super) group cohomology

• Kapustin and collaborators checked several cases

• New computations for free fermion systems

Verdict: The main theorem is confirmative, corrective, and predictive

Will show some concrete results at end of lecture
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Wick rotation of Symmetry Groups

Mn ⇠⇠⇠B D ⇠⇠⇠B En ⇠⇠⇠B Xn

Gn
⇢n��! IsomMn unbroken global relativistic symmetry group

Gn Gn/translations

K := ker(⇢n) internal symmetry group (compact)

1 // K //� _

✏✏

Gn
⇢n //

� _

✏✏

O
1,n�1� _

✏✏
1 // K(C) // Gn(C)

⇢n // On(C)

1 // K //?�

OO

Hn
⇢n //?�

OO

On
?�

OO
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1 // K // Hn
⇢n // On

Relativistic invariance: Image(⇢n) = SOn or On

Minimal internal symmetry group K:

states/symmetry Hn K k
0

bosons only SOn {1} 1
fermions allowed Spinn {±1} �1

bosons, time-reversal (T ) On {1} 1
fermions, T 2 = (�1)F Pin+n {±1} �1
fermions, T 2 = id Pin�n {±1} �1
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Relativistic 10-fold way

• For electron systems expect K = U(1) = T

• Spin/charge relation: �1 2 T is central element of Spinn (= (�1)F )

• Particle-hole symmetry: “breaks” K = T to K = {±1} or K = SU
2

Theorem: There are 10 stable symmetry groups H of this type:

K = T Spinc, Pinc,

Pinc̃+ := Pin+n{±1}T

Pinc̃� := Pin�n{±1}T

K = {±1} Spin, Pin+, Pin�

K = SU
2

Spin⇥{±1}SU2

Pin+⇥{±1}SU2

Pin�⇥{±1}SU2
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Uniform treatment via Cli↵ord algebras

Theorem: There are embeddings Hn(s) ,! Cli↵
+n⌦D(s) compatible

with Cli↵ord multiplication.

s Hc K Cartan D

0 Spin

c T A C
1 Pin

c T AIII Cli↵

C
�1

s H K Cartan D

0 Spin {±1} D R
�1 Pin

+ {±1} DIII Cli↵�1

�2 Pin

+ n{±1} T T AII Cli↵�2

�3 Pin

� ⇥{±1}SU2 SU2 CII Cli↵�3

4 Spin ⇥{±1}SU2 SU2 C H
3 Pin

+ ⇥{±1}SU2 SU2 CI Cli↵+3

2 Pin

� n{±1} T T AI Cli↵+2

1 Pin

� {±1} BDI Cli↵+1
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Free Fermion �! Invertible Field Theory

Scenario I: spinors as boundary theory

• (n� 1)-dimensional free fermion �! n-dimensional anomaly theory

• relativistic free fermion data: (ungraded) Cli↵0

+(n�3+s)-module S
• Lemma: S admits a mass term i↵ S� S⇤ extends to a module

over Cli↵
+(n�3+s)⌦Cli↵�1

• Atiyah-Bott-Shapiro: free fermion data

massive free fermion data
⇠= KOn�3+s(pt)

• Conjecture: deformation class of anomaly theory is

MTH(s)
ABS����! ⌃�sKO

[S]t���! ⌃n+1IZ.

Scenario II: massive spinors in the bulk

• massive n-dimensional free fermion data: Cli↵0

+(n�3+s)-module S
• Conjecture: deformation class of anomaly theory is as above
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• (n� 1)-dimensional free fermion �! n-dimensional anomaly theory
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Computations

M0
top

(n,Hn) := moduli space of reflection positive invertible
n-dimensional extended topological field theories
with symmetry group Hn

Theorem/Conjecture (F.-Hopkins): There is a 1:1 correspondence

⇡
0

M0(n,Hn) ⇠= [MTH,⌃n+1IZ] (1)

The physical principles suggest that in favorable cases this should be
isomorphic to the group of deformation classes of short-range-entangled
lattice systems with fixed symmetry, or SPT phases

Compute RHS of (1) using Adams spectral sequence. Forthcoming
paper with Jonathan Campbell to explain technique and more examples
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Computations

Class DIII (Pin+):

n ker� �! FFn(Pin
+)

���! TPn(Pin
+) �! coker�

4 16Z Z Z/16Z 0

3 0 Z/2Z Z/2Z 0

2 0 Z/2Z Z/2Z 0

1 0 0 0 0

0 2Z Z Z/2Z 0

• FFn is the group of free fermion theories (KO group)
• TPn(H) = ⇡

0

M0(n,Hn) is group of topological phases (Main Thm)
• � is the map described on the previous slide (essentially ABS)
• The FFn groups are well-known. Many TPn appear in the

condensed matter literature (together with �) via other methods
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Class AII (Pinc̃+):

n ker� �! FFn(Pin
c̃+)

���! TPn(Pin
c̃+) �! coker�

4 0 Z/2Z (Z/2Z)3 (Z/2Z)2

3 0 Z/2Z Z/2Z 0

2 0 0 0 0

1 0 Z Z 0

0 0 0 Z/2Z Z/2Z

• Topological insulator with time-reversal T 2 = (�1)F

• The free fermion Z/2Z are the Kane-Mele-Fu invariants

• Metlitski asked about TP
4

(Pinc̃+) vs. bordism computation

• The results in 3 dimensions are also known via non-bordism means
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Class CI (G+ = Pin+⇥{±1}SU2

):

n ker� �! FFn(G+)
���! TPn(G+) �! coker�

4 4Z Z Z/4Z⇥ Z/2Z Z/2Z
3 0 0 0 0

2 0 0 Z/2Z Z/2Z
1 0 0 0 0

0 2Z Z Z/2Z 0

• Computations confirm a conjecture of Wang-Senthil

• Unsure if TP
2,3(G+) are in the CM literature
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Summary

• Axiom System (field theory) enables definition/computation of M0

• The agreement with known results by very di↵erent means tests:

• Axiom System captures some essentials of field theory
• Wick-rotated theory on compact Xn detects long-range behavior
• Extended field theory
• Extended reflection positivity for invertible topological theories
• Long-range approximation of lattice systems via field theory

• Rigidity of compact Lie groups useful to prove structural theorems

• Relativistic 10-fold way

• Open Question: Extended reflection positivity in general
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