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Symmetry protected topological (SPT) phases

1. Energy gap

2. Symmetry G not 
spontaneously broken

3. Ground state becomes trivial 
if G explicitly broken

T=0 phases of matter characterized by:

No intrinsic topological 
order in the bulk, i.e. no 
non-trivial braiding 
statistics or ground state 
degeneracy on torus

Classic examples:
d=2

Quantum spin-hall insulator  
 
Symmetry: charge 
conservation + time reversal  

d=3

Topological band insulator  
 
Symmetry: charge 
conservation + time reversal  
 

d=1

Haldane S=1 chain  
 
Symmetry: time reversal, 
or SO(3) spin rotation,  
or reflection



What SPT phases to study?

• Most theory of SPT phases focuses on internal symmetries, or on 
non-interacting fermions

• Discrete symmetries of crystal lattices, including reflection, are 
pervasive in solids, we should not ignore them when studying SPT 
phases

• For crystalline SPT phases with strong interactions, some examples 
and case studies, but no general theory

Some guidance (paraphrase):  
“The life without reflection is not worth living.” - Socrates



This talk: point group SPT phases

• Focus on SPT phases protected by point group symmetry  
(= pgSPT phases)

• A surprise: “pgSPT phases are easier than SPT phases protected by 
internal symmetry in the same spatial dimension.”

• There is a mapping between pgSPT states in spatial dimension d 
and certain lower-dimensional topological states with internal 
symmetry



Overview of results

• Classification and characterization of pgSPT phases in terms of 
lower-dimensional topological states with internal symmetry

• pgSPT phase ≃ stack/array of lower-dimensional topological 
phases with internal symmetry

• For simplicity, this talk will mostly focus on reflection symmetry, 
but the approach applies to any point group.

• Remark: reflection pgSPT’s are related to time-reversal SPT’s if one 
assumes a Lorentz-invariant field theory description.  
I will not make this assumption (more comments at the end).



Prior work on interacting point group SPT phases

• d=1 (inversion symmetry):  
Z.-C. Gu & X.-G. Wen  
Pollmann, Turner, Berg, Oshikawa 
X. Chen, Z.-C. Gu, X.-G. Wen 
Schuch, Perez-Garcia, Cirac  
Fuji, Pollmann, Oshikawa

• Higher dimensions: 
Y. Qi & L. Fu; Isobe & L. Fu  
G.-Y. Cho, C.-T. Hsieh, R. Leigh, T. Morimoto S. Ryu, O. Sule 
A. Furusaki, T. Morimoto, C. Mudry, T. Yoshida 
Ware, Kimchi, Parameswaran, Bauer  
Lapa, Teo & Hughes  
Y.-Z. You & C. Xu 
Kapustin, Thorngren, Turzillo & Zitao Wang  
MH & X. Chen 



Outline

1. Bosonic mirror SPT phases in d=3

2. Electronic topological crystalline insulators with interactions

3. Point groups beyond reflection

4. Odds and ends, outlook



“Simplest interesting example”

Consider bosonic system in d=3 with only mirror (reflection) symmetry  
σ : (x,y,z) → (-x,y,z).  (Ignore any other symmetry present.)

�
Cross section through bulk

Region r0

Region r1 Region σr1

Adiabatic continuity (preserving symmetry):

| i ! |T ir1 ⌦ | ̃ir0 ⌦ |T i�r1

SPT ground state

Product states in 
regions r1, σr1

Non-trivial state 
in d=2 region r0

• The mirror symmetry becomes an internal Z2 symmetry.

• The d=3 point group SPT state is equivalent to a d=2 state on the mirror 
plane, with Z2 internal symmetry.



Why can we dimensionally reduce?

�

Region r0

Region r1 Region σr1

| i ! |T ir1 ⌦ | ̃ir0 ⌦ |T i�r1

• Quick argument: can locally trivialize any patch away from the mirror plane

Hamiltonian density 
here can be changed 
aribtrarily

…as long as 
corresponding changes 
made here



Why can we dimensionally reduce?

Region r0

Region r1 Region σr1

| i ! |T ir1 ⌦ | ̃ir0 ⌦ |T i�r1

• More detailed argument based on “cutting” a finite-depth quantum circuit

U loc| i = |producti Uloc can be represented as a 
finite-depth quantum circuit:

Act here with U loc

L

We can “cut” Uloc, to get a new 
quantum circuit        acting only 
in region r1

U loc

L

Act here with U loc

R

= �U loc

L

��1

w

U loc

L

U loc

R

| i = |T i
r1 ⌦ | ̃i

r0 ⌦ |T i
�r1

Width                , correlation length w � ⇠

U loc

U loc

L

Uloc breaks symmetry



Dimensional Reduction → Classification

First: What d=2 quantum phases can occur on mirror plane?

Second: How to group d=2 states on mirror plane into equivalence classes 
of d=3 quantum phases?

Proceed in two steps:



Dimensional Reduction → Classification

First: What d=2 quantum phases can occur on mirror plane?

“Integer” topological phases (gap, no anyons), preserving Z2 symmetry

A. Non-trivial d=2 SPT phase with Z2 symmetry  
(Levin & Gu; X. Chen, Z.-C. Gu, Z.-X. Liu, X.-G. Wen)

Two possibilities…

| i =
X

D

(�1)N(D)|Di

Domain wall picture • Gapless edge modes protected by Z2 
symmetry

• Stack to get non-trivial pgSPT phase

�



Dimensional Reduction → Classification

First: What d=2 quantum phases can occur on mirror plane?

B.  E8 state (Kitaev)

To get a d=3 pgSPT state, make 
alternating-chirality stack of E8 
states

T
x

� �T
x

• This state has 8 co-propagating edge modes  
→ quantized thermal Hall conductance 

• No fractional excitations (anyons) in bulk

• Like IQH state, but in bosonic system,  
not a SPT phase

KH = 8
⇡2

3

k2B
h

T



Dimensional Reduction → Classification

Second: How to group d=2 states on mirror plane into equivalence classes 
of d=3 quantum phases?

• Naively, classification of d=2 phases directly gives a 
classification of d=3 pgSPT phases.

• In this case, classification of d=2 phases is Z2 × Z

• But this is not the correct classification of d=3 phases, 
instead it collapses to a coarser classification

From Z2 SPT
From E8 states



Dimensional Reduction → Classification

A. Adiabatic continuity (preserving symmetry)

B. Stable equivalence (adding trivial degrees of 
freedom)

Three equivalence operations

Operations for 
d=2 phases. 
Gives Z2 × Z 

C.  “Adjoining layers”
�

| ir0 ! |Li ⌦ | ir0 ⌦ |Ri

• Corresponds to making region 
surrounding the mirror plane wider

• Adjoined layers can be E8 states

Second: How to group d=2 states on mirror plane into equivalence classes 
of d=3 quantum phases?

�



Collapse of d=2 classification

• d=2 classification is Z2 × Z

• Study effect of adjoining layers on two E8 states:

Second: How to group d=2 states on mirror plane into equivalence classes 
of d=3 quantum phases?

Two E8 states  
(n=2 state of the Z),  
reflection acts trivially Adjoined E8 layers of 

opposite chirality.

Reflection exchanges 
adjoined layers � Resulting state is non-chiral, 

two possibilities:

1. Trivial → Z2 × Z2

2. d=2 Z2 SPT state → Z4

Can show it’s trivial by 
analyzing edge theory

Classification 
collapses to Z2 × Z2
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Topological crystalline insulators (mirror reflection)

• Consider electrons with U(1) charge conservation and mirror 
reflection σ : (x,y,z) → (-x,y,z)

• SPT phases = topological crystalline insulators (TCIs)

• Non-interacting electrons: Z classification, “mirror Chern number”

• TCI predicted and observed in Pb1-xSnxTe

Theory: Teo, Fu & Kane; T. Hsieh, H. Lin, J. Liu, W. Duan, A. Bansil, L. Fu; …  
Experiment: Tanaka, … , Y. Ando; P. Dziawa, …, T. Story;  
S.-Y. Xu, …, M. Z. Hasan; …

Interacting electrons:  

Z is reduced to Z8. Isobe & Fu showed this by: 
 
(1) Adding spatially varying Dirac mass terms to  
“dimensionally reduce” the surface theory to 1d lines  
(2) Using bosonization to show n=8 surface can be gapped



Interacting TCIs

Q: Is the Z8 classification complete?

A: Full classification is Z8 x Z2

Intrinsically strongly-
interacting electron TCI



Electron TCI: non-interacting limit

First, reproduce non-interacting Z classification using dimensional reduction

1. What can go on mirror plane?

A. Integer quantum Hall state (ν=1) with σ=+1

B. Integer quantum Hall state (ν=1) with σ=-1

Naively gives Z × Z classification, which is too big.

2. Effect of adjoining layers

⌫ = 1,� = 1 ⌫ = �1,� = �1

Z × Z collapses 
to correct Z 
classification

σ is the 
reflection 
eigenvalue of 
the fermion field

ν=-1 layers, related by mirror



Electron TCI: interacting case

1. What can go on mirror plane?

d=2 classification is:  

IQH states with σ=+1 

2d SPT phases 
protected by U(1) × Z2

⌫ = n,

� = +1

⌫ = �n,

� = �1

Bilayer of opposite-
chirality IQH states:

ZIQH ⇥ ZSPT
4 ⇥ ZE8

n=4 state is trivial: 
can be gapped out at 
edge (Isobe & Fu) 

E8 paramagnets: 
Spin sector in E8 state, 
trivial action of reflection



Electron TCI: interacting case

d=2 classification is:  ZIQH ⇥ ZSPT
4 ⇥ZE8

2. Collapse of d=2 classification (under adjoining layers operation)

Collapses to Z2, as for 
bosonic mirror SPTs

Collapses to Z8… ν=-1 layers, related by mirror

⌫ = 2,� = 1

Start with n=2 state 
of the ZIQH

⌫ = 1,

� = 1

⌫ = �1,

� = �1

Get root state  
of the ZSPT

4

Obtain  Z8 × Z2 classification
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Point groups beyond mirror reflection

Example: bosonic system with C2v symmetry in d=3

C2v is generated by two perpendicular mirror planes
�1

�2

Reduce onto “cross-shaped region:”  
 
Two planes with Z2 internal symmetry  
 
d=1 axis with Z2 × Z2 symmetry

Root states

• d=2 Z2 SPT phase on either 
mirror plane

• d=1 Haldane phase on d=1 axis

• d=2 E8 states on mirror planes, 
with chiralities as shown

(Z2)4 classification
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Surface properties

All the d=3 bosonic mirror SPT phases admit gapped, topologically 
ordered surfaces with anomalous implementations of the symmetry.

• Dimensional reduction shows 
surfaces can be studied in “T-
junction” geometry.

• Anomaly of the 2+1 dimensional 
surface can be canceled by anomaly 
of a 2+1 dimensional bulk

• Z2 SPT root state:  surface with toric code topological order, 
mirror squares to (-1) on both bosonic particles “ePmP”

• E8 root state: surface with 3 fermion topological order, 
preserving reflection (impossible in strict d=2)

see also recent work 
by Ethan Lake,  
arXiv:1608.02736



Reflection and time reversal

• Classifications for reflection and time-reversal are related:

• Follows from assuming a Lorentz-invariant field theory 
description (see e.g. Witten arXiv:1508.0471)

* All fermions carry odd U(1) charge, bosons carry even U(1) charge

d=3 bosonic system, 
reflection

d=3 bosonic system,  
time-reversal Z2 × Z2 

d=3 fermions,  
σ2 = 1

d=3 fermions,  
T2 = (-1)F Z16

d=3 fermions,  
σ2 = (-1)F

d=3 fermions,  
T2 = 1 Trivial

d=3 fermions,  
U(1) x Reflection*

d=3 fermions,  
U(1) x Time reversal* Z8 × Z2 



Summary & Outlook

• Physical realizations, connections to other approaches, etc.

• Formal classification: what is the mathematical structure?

• Space group symmetry

• Dimensional reduction for point group symmetry enriched 
topological (SET) phases

• Point group SPT phases can be classified and studied by a 
dimensional reduction to lower-dimensional topological phases 
with internal symmetry

• All point group SPT phases can be constructed as stacks/arrays

Summary

Outlook


