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Symmetry protected topological (SPT) phases

T=0 phases of matter characterized by:

1. Energy gap No intrinsic topological

order 1n the bulk, i.e. no
» non-trivial braiding
3. Ground state becomes trivial statistics or gr ound state
if G explicitly broken degeneracy on torus

2.  Symmetry G not
spontaneously broken

Classic examples:
d=1 d=2 d=3

[ s oo 1 ’

Haldane S=1/ chain

Quantum spin-hall insulator Topological band insulator

Symmetry: time reversal,
or SO(3) spin rotation Symmetry: charge Symmetry: charge
or reflection conservation + time reversal conservation + time reversal



What SPT phases to study?

Some guidance (paraphrase):
“The life without reflection is not worth living.” - Socrates

®* Most theory of SPT phases focuses on internal symmetries, or on
non-interacting fermions

e Discrete symmetries of crystal lattices, including reflection, are
pervasive in solids, we should not ignore them when studying SPT
phases

® For crystalline SPT phases with strong interactions, some examples
and case studies, but no general theory



This talk: point group SPT phases

®* Focus on SPT phases protected by point group symmetry
(= pgSPT phases)

* A surprise: “pgSPT phases are easier than SPT phases protected by
internal symmetry in the same spatial dimension.”

® There 1s a mapping between pgSPT states in spatial dimension d
and certain lower-dimensional topological states with internal
symmetry



Overview of results

® (lassification and characterization of pgSPT phases in terms of
lower-dimensional topological states with internal symmetry

® pgSPT phase = stack/array of lower-dimensional topological

phases with internal symmetry

¢ For simplicity, this talk will mostly focus on reflection symmetry,
but the approach applies to any point group.

® Remark: reflection pgSPT’s are related to time-reversal SPT’s if one
assumes a Lorentz-invariant field theory description.
I will not make this assumption (more comments at the end).



Prior work on interacting point group SPT phases

d=1 (inversion symmetry):
Z.-C.Gu & X.-G. Wen

Pollmann, Turner, Berg, Oshikawa
X. Chen, Z.-C. Gu, X.-G. Wen
Schuch, Perez-Garcia, Cirac

Fuji, Pollmann, Oshikawa

Higher dimensions:

Y. Q1 & L. Fu; Isobe & L. Fu

G.-Y. Cho, C.-T. Hsieh, R. Leigh, T. Morimoto S. Ryu, O. Sule
A. Furusaki, T. Morimoto, C. Mudry, T. Yoshida

Ware, Kimchi, Parameswaran, Bauer

Lapa, Teo & Hughes

Y.-Z.You & C. Xu

Kapustin, Thorngren, Turzillo & Zitao Wang

MH & X. Chen



1. Bosonic mirror SPT phases in d=3

2. Electronic topological crystalline insulators with interactions

3. Point groups beyond reflection

4. Odds and ends, outlook



“Simplest interesting example”

Consider bosonic system in d=3 with only mirror (reflection) symmetry
0:(xy2) — (-x,y,2). (Ignore any other symmetry present.)

Cross section through bulk Adiabatic continuity (preserving symmetry):
o)
el
SPT ground state

/

9) = T)ry @ [9)ro ® T)or,

Region r; Region or; k \
Product states in Non-trivial state
Region ro regions 7, Or; in d=2 region ro

® The mirror symmetry becomes an internal Zo symmetry.

® The d=3 point group SPT state is equivalent to a d=2 state on the mirror
plane, with 7> internal symmetry.



Why can we dimensionally reduce?

$) = [T)ry ® 19} @ T)ory

®  (Quick argument: can locally trivialize any patch away from the mirror plane

Hamiltonian density

here can be changed -.as long as
: : corresponding changes
aribtrarily
o made here
- e

Region or;

Region r;

Region ro




Why can we dimensionally reduce?

$) = [T)ry ® 19} @ T)ory

® More detailed argument based on “cutting” a finite-depth quantum circuit

loc
, U
U"¢|p) = [product) U'ec can be represented as a

« loc
We can “cut” Ulec, to get anew Upr
quantum circuit U}’ loc acting only
n region 11

Act here with Ut°° L l | |
\< Act here with Up °¢ — oU;*0~

w <

loc loc|,¢> ‘ >r1 & |1;>7“0 ® |T>U"“1

Region r; Region o7/

Width w > £ | correlation length

Region ro



Dimensional Reduction — Classification

Proceed in two steps:

First: What d=2 quantum phases can occur on mirror plane?

Second: How to group d=2 states on mirror plane into equivalence classes
of d=3 quantum phases?



Dimensional Reduction — Classification

First: What d=2 quantum phases can occur on mirror plane?

“Integer” topological phases (gap, no anyons), preserving Z, symmetry

Two possibilities...

A. Non-trivial d=2 SPT phase with Z, symmetry
(Levin & Gu; X. Chen, Z.-C. Gu, Z.-X. Liu, X .-G. Wen)

Domain wall picture ® Gapless edge modes protected by Z»
symmetry
v) =) (~)NP)|D)
/ ® Stack to get non-trivial pgSPT phase
D

o




Dimensional Reduction — Classification

First: What d=2 quantum phases can occur on mirror plane?

B. Ejg state (Kitaev)

® This state has 8 co-propagating edge modes o — 87T_2 @ T
— quantized thermal Hall conductance H = 3 h

® No fractional excitations (anyons) in bulk

® [ike IQH state, but in bosonic system, o oly
not a SPT phase . .

To get a d=3 pgSPT state, make
alternating-chirality stack of Eg >
states




Dimensional Reduction — Classification

Second: How to group d=2 states on mirror plane into equivalence classes
of d=3 quantum phases?

® Naively, classification of d=2 phases directly gives a
classification of d=3 pgSPT phases.

® In this case, classification of d=2 phases 1s Z» X Z

/

From Z»> SPT
From Eg states

® But this is not the correct classification of d=3 phases,
instead 1t collapses to a coarser classification



Dimensional Reduction — Classification

Second: How to group d=2 states on mirror plane into equivalence classes
of d=3 quantum phases?

Three equivalence operations

A. Adiabatic continuity (preserving symmetry) Operations for
. . o d=2 phases.
B. Stable equivalence (adding trivial degrees of Gives Z» X Z
freedom)

C. “Adjoining layers”

X0l X
® Corresponds to making region
# surrounding the mirror plane wider

® Adjoined layers can be Ejs states



Collapse of d=2 classification

Second: How to group d=2 states on mirror plane into equivalence classes
of d=3 quantum phases?

® (=2 classification is Z» X Z

® Study effect of adjoining layers on two ES8 states:

Reflection exchanges . . .
adjoined layers Resulting state is non-chiral,

/‘\ two possibilities:

1. Trivial = Z> x Z>

» 2. d=2 72 SPT state — Z,

Can show it’s trivial by

Two ES states analyzing edge theory
(n=2 state of the Z),
reflection acts trivially Adjoined ES layers of Classification
- L1 collapses to Z> X Z
opposite chirality.




1. Bosonic mirror SPT phases in d=3

2. Electronic topological crystalline insulators with interactions

3. Point groups beyond reflection

4. Odds and ends, outlook



Topological crystalline insulators (mirror reflection)

Theory: Teo, Fu & Kane; T. Hsieh, H. Lin, J. Liu, W. Duan, A. Bansil, L. Fu; ...
Experiment: Tanaka, ... , Y. Ando; P. Dziawa, ..., T. Story;
S.-Y. Xu, ...,M. Z. Hasan; ...

® (Consider electrons with U(1) charge conservation and mirror
reflection 0 : (x,y,2) = (-x,y.,2)

® SPT phases = topological crystalline insulators (TCIs)
® Non-interacting electrons: Z classification, “mirror Chern number”

® TCI predicted and observed in PbixSnxTe

Interacting electrons:

Z 1s reduced to Zs. Isobe & Fu showed this by:

(1) Adding spatially varying Dirac mass terms to
“dimensionally reduce” the surface theory to 1d lines
(2) Using bosonization to show n=8 surface can be gapped



Interacting TClIs

Q: Is the Zg classification complete?

A: Full classification 1s Zg X Z»

/

Intrinsically strongly-
interacting electron TCI



Electron TCI: non-interacting limit

First, reproduce non-interacting Z classification using dimensional reduction

O 1s the

1. What can go on mirror plane? / reflection
eigenvalue of

A. Integer quantum Hall state (v=1) with o=+ the fermion field

B. Integer quantum Hall state (v=1) with o=-1

Naively gives Z x Z classification, which is too big.

2. Effect of adjoining layers
¢ A
Z x Z collapses

» » to correct Z
classification
v v v
v=1,0=1 \/ v=—1,0=-1

v=-1 layers, related by mirror




Electron TCI: interacting case

1. What can go on mirror plane? Es paramagnets:

Spin sector in Eg state,
IQH states with o=+1 trivial action of reflection

B 4

d=2 classification is: Z1@H x ZZEPT x ZFs

/ ]/:’fll’

2d SPT phases ¢

o= +1
protected by U(1) x Z> T
n=4 state 1s trivial:
Bilayer of opposite- gcg:lln;)el gspges out at
chirality IQH states: g€ (Isobe & Fu)
V= —n,




Electron TCI: interacting case

2. Collapse of d=2 classification (under adjoining layers operation)

d=2 classification is: 71QH « Zf PT 7 Es Collapses to Z», as for

/ bosonic mirror SPTs

v=-1 layers, related by mirror

Collapses to Zs... / \

v=1

A :

h o=1
_ _17
v v 4

v=20=1 -
Start with n=2 state Get root g?;e
of the Z/oH of the Z

Obtain Zg x Z» classification




1. Bosonic mirror SPT phases in d=3
2. Electronic topological crystalline insulators with interactions

3. Point groups beyond reflection

" 4. Odds and ends, outlook



Point groups beyond mirror reflection

Example: bosonic system with Cz, symmetry in d=3

(>, 1s generated by two perpendicular mirror planes

01

Q
\V}

Reduce onto “cross-shaped region:”
Two planes with Z; internal symmetry

d=1 axis with Z> x Z> symmetry

/ (Z»)* classification

Root states

® J=2 /> SPT phase on either
mirror plane

® (=] Haldane phase on d=1 axis

® (=2 Es states on mirror planes,
with chiralities as shown

/
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Surface properties

All the d=3 bosonic mirror SPT phases admit gapped, topologically
ordered surfaces with anomalous implementations of the symmetry.

® Dimensional reduction shows
Surface surfaces can be studied in “T-
junction” geometry.

® Anomaly of the 2+1 dimensional

surface can be canceled by anomaly
of a 2+1 dimensional bulk

Mirror plane

see also recent work
by Ethan Lake,

arX1v:1608.02736

® /, SPT root state: surface with toric code topological order,
mirror squares to (-1) on both bosonic particles “ePmP”

® [sroot state: surface with 3 fermion topological order,
preserving reflection (impossible in strict d=2)



Reflection and time reversal

® (lassifications for reflection and time-reversal are related:

d=3 b(?sonlc system, d.=3 bosonic system, 7> % 75
reflection time-reversal

d=3 fermions, d=3 fermions, 7
02=1 T2 = (-1)F 16

d=3 fermions, d=3 fermions, Trivial
&2 = (_1)F —— rivia
d=3 fermions, d=3 fermions, e x 7
U(1) x Reflection* U(1) x Time reversal* 8 2

® Follows from assuming a Lorentz-invariant field theory
description (see e.g. Witten arXiv:1508.0471)

* All fermions carry odd U(1) charge, bosons carry even U(1) charge



Summary & Outlook

Summary

® Point group SPT phases can be classified and studied by a
dimensional reduction to lower-dimensional topological phases
with internal symmetry

® All point group SPT phases can be constructed as stacks/arrays

Outlook

® Physical realizations, connections to other approaches, etc.
® Formal classification: what 1s the mathematical structure?
® Space group symmetry

® Dimensional reduction for point group symmetry enriched
topological (SET) phases



