Topological phases protected by point group symmetry

Michael Hermele

Center for Theory of Quantum Matter

KITP October 20, 2016 with Hao Song, Sheng-Jie Huang and Liang Fu arXiv:1604.08151

Thanks to...

Hao Song (Boulder → Madrid)

Sheng-Jie Huang (Boulder)

Liang Fu (MIT)

Funding: Department of Energy Basic Energy Sciences, Grant # DE-SC0014415

Symmetry protected topological (SPT) phases

T=0 phases of matter characterized by:

- 1. Energy gap
- 2. Symmetry *G* not spontaneously broken
- 3. Ground state becomes trivial if *G* explicitly broken

No intrinsic topological order in the bulk, i.e. no non-trivial braiding statistics or ground state degeneracy on torus

Classic examples:

$$d=1$$

Haldane S=1 chain

Symmetry: time reversal, or SO(3) spin rotation, or reflection

$$d=2$$

Quantum spin-hall insulator

Symmetry: charge conservation + time reversal

$$d=3$$

Topological band insulator

Symmetry: charge conservation + time reversal

What SPT phases to study?

Some guidance (paraphrase):

"The life without reflection is not worth living." - Socrates

- Most theory of SPT phases focuses on internal symmetries, or on non-interacting fermions
- Discrete symmetries of crystal lattices, including reflection, are pervasive in solids, we should not ignore them when studying SPT phases
- For crystalline SPT phases with strong interactions, some examples and case studies, but no general theory

This talk: point group SPT phases

- Focus on SPT phases protected by point group symmetry (= pgSPT phases)
- A surprise: "pgSPT phases are *easier* than SPT phases protected by internal symmetry in the same spatial dimension."
- There is a mapping between pgSPT states in spatial dimension *d* and certain lower-dimensional topological states with internal symmetry

Overview of results

- Classification and characterization of pgSPT phases in terms of lower-dimensional topological states with internal symmetry
- pgSPT phase ≃ stack/array of lower-dimensional topological phases with internal symmetry
- For simplicity, this talk will mostly focus on reflection symmetry, but the approach applies to any point group.
- Remark: reflection pgSPT's are related to time-reversal SPT's if one assumes a Lorentz-invariant field theory description.

 I will not make this assumption (more comments at the end).

Prior work on interacting point group SPT phases

• d=1 (inversion symmetry):

Z.-C. Gu & X.-G. Wen
Pollmann, Turner, Berg, Oshikawa
X. Chen, Z.-C. Gu, X.-G. Wen
Schuch, Perez-Garcia, Cirac
Fuji, Pollmann, Oshikawa

• Higher dimensions:

Y. Qi & L. Fu; Isobe & L. Fu G.-Y. Cho, C.-T. Hsieh, R. Leigh, T. Morimoto S. Ryu, O. Sule A. Furusaki, T. Morimoto, C. Mudry, T. Yoshida Ware, Kimchi, Parameswaran, Bauer Lapa, Teo & Hughes Y.-Z. You & C. Xu Kapustin, Thorngren, Turzillo & Zitao Wang MH & X. Chen

Outline

- 1. Bosonic mirror SPT phases in d=3
- 2. Electronic topological crystalline insulators with interactions
- 3. Point groups beyond reflection
- 4. Odds and ends, outlook

"Simplest interesting example"

Consider bosonic system in d=3 with *only* mirror (reflection) symmetry $\sigma:(x,y,z)\to(-x,y,z)$. (Ignore any other symmetry present.)

- The mirror symmetry becomes an internal \mathbb{Z}_2 symmetry.
- The d=3 point group SPT state is equivalent to a d=2 state on the mirror plane, with Z_2 internal symmetry.

Why can we dimensionally reduce?

$$|\psi\rangle \to |T\rangle_{r_1} \otimes |\tilde{\psi}\rangle_{r_0} \otimes |T\rangle_{\sigma r_1}$$

• Quick argument: can locally trivialize any patch away from the mirror plane

Why can we dimensionally reduce?

$$|\psi\rangle \to |T\rangle_{r_1} \otimes |\tilde{\psi}\rangle_{r_0} \otimes |T\rangle_{\sigma r_1}$$

• More detailed argument based on "cutting" a finite-depth quantum circuit

$$U^{loc}|\psi\rangle = |\mathrm{product}\rangle$$

Uloc breaks symmetry

 U^{loc} can be represented as a finite-depth quantum circuit:

We can "cut" U^{loc} , to get a new quantum circuit U^{loc}_L acting only in region \mathbf{r}_1

Region r_0

Act here with $U_R^{loc} = \sigma U_L^{loc} \sigma^{-1}$

$$U_L^{loc}U_R^{loc}|\psi\rangle = |T\rangle_{r_1} \otimes |\tilde{\psi}\rangle_{r_0} \otimes |T\rangle_{\sigma r_1}$$

Width $w\gg \xi$, correlation length

Proceed in two steps:

First: What d=2 quantum phases can occur on mirror plane?

<u>Second</u>: How to group d=2 states on mirror plane into equivalence classes of d=3 quantum phases?

First: What d=2 quantum phases can occur on mirror plane?

"Integer" topological phases (gap, no anyons), preserving Z_2 symmetry Two possibilities...

A. Non-trivial d=2 SPT phase with Z_2 symmetry (Levin & Gu; X. Chen, Z.-C. Gu, Z.-X. Liu, X.-G. Wen)

Domain wall picture

$$|\psi\rangle = \sum_{D} (-1)^{N(D)} |D\rangle$$

- Gapless edge modes protected by Z₂ symmetry
- Stack to get non-trivial pgSPT phase

First: What d=2 quantum phases can occur on mirror plane?

- B. E₈ state (Kitaev)
- This state has 8 co-propagating edge modes $K_H = 8\frac{\pi^2}{3}\frac{k_B^2}{h}T$
- No fractional excitations (anyons) in bulk
- Like IQH state, but in bosonic system, *not* a SPT phase

To get a d=3 pgSPT state, make alternating-chirality stack of E₈ ______ states

Second: How to group d=2 states on mirror plane into equivalence classes of d=3 quantum phases?

• Naively, classification of d=2 phases directly gives a classification of d=3 pgSPT phases.

• In this case, classification of d=2 phases is $Z_2 \times Z$ From Z_2 SPT

• But this is *not* the correct classification of d=3 phases, instead it collapses to a coarser classification

Second: How to group d=2 states on mirror plane into equivalence classes of d=3 quantum phases?

Three equivalence operations

- A. Adiabatic continuity (preserving symmetry)
- B. Stable equivalence (adding trivial degrees of freedom)

Operations for d=2 phases. Gives $Z_2 \times Z$

C. "Adjoining layers"

- Corresponds to making region surrounding the mirror plane wider
- Adjoined layers can be E_8 states

Collapse of d=2 classification

Second: How to group d=2 states on mirror plane into equivalence classes of d=3 quantum phases?

- d=2 classification is $Z_2 \times Z$
- Study effect of adjoining layers on two E8 states:

Resulting state is non-chiral, two possibilities:

- 1. Trivial $\rightarrow Z_2 \times Z_2$
- 2. d=2 Z2 SPT state \rightarrow Z₄

Can show it's trivial by analyzing edge theory

Classification collapses to $Z_2 \times Z_2$

Outline

- 1. Bosonic mirror SPT phases in d=3
- 2. Electronic topological crystalline insulators with interactions
- 3. Point groups beyond reflection
- 4. Odds and ends, outlook

Topological crystalline insulators (mirror reflection)

```
Theory: Teo, Fu & Kane; T. Hsieh, H. Lin, J. Liu, W. Duan, A. Bansil, L. Fu; ... Experiment: Tanaka, ..., Y. Ando; P. Dziawa, ..., T. Story; S.-Y. Xu, ..., M. Z. Hasan; ...
```

- Consider electrons with U(1) charge conservation and mirror reflection $\sigma: (x,y,z) \rightarrow (-x,y,z)$
- SPT phases = topological crystalline insulators (TCIs)
- Non-interacting electrons: Z classification, "mirror Chern number"
- TCI predicted and observed in Pb_{1-x}Sn_xTe

Interacting electrons:

Z is reduced to Z_8 . Isobe & Fu showed this by:

- (1) Adding spatially varying Dirac mass terms to "dimensionally reduce" the surface theory to 1d lines
- (2) Using bosonization to show n=8 surface can be gapped

Interacting TCIs

Q: Is the \mathbb{Z}_8 classification complete?

A: Full classification is Z₈ x Z₂

Intrinsically stronglyinteracting electron TCI

Electron TCI: non-interacting limit

First, reproduce non-interacting Z classification using dimensional reduction

- 1. What can go on mirror plane?
 - A. Integer quantum Hall state (v=1) with $\sigma=+1$
 - B. Integer quantum Hall state (ν =1) with σ =-1

σ is the reflection eigenvalue of the fermion field

Naively gives $Z \times Z$ classification, which is too big.

2. Effect of adjoining layers

 $Z \times Z$ collapses to correct Zclassification

Electron TCI: interacting case

1. What can go on mirror plane?

IQH states with σ =+1

E₈ paramagnets:

Spin sector in E₈ state, trivial action of reflection

d=2 classification is:

$$Z^{IQH} imes Z_4^{SPT} imes Z_8^{E_8}$$

2d SPT phases protected by $U(1) \times Z_2$

Bilayer of oppositechirality IQH states:

$$\nu = n$$

$$\sigma = +1$$

$$\nu = -n,$$

$$\sigma = -1$$

n=4 state is trivial: can be gapped out at edge (Isobe & Fu)

Electron TCI: interacting case

2. Collapse of d=2 classification (under adjoining layers operation)

Obtain $\mathbb{Z}_8 \times \mathbb{Z}_2$ classification

Outline

- 1. Bosonic mirror SPT phases in d=3
- 2. Electronic topological crystalline insulators with interactions
- 3. Point groups beyond reflection
- 4. Odds and ends, outlook

Point groups beyond mirror reflection

Example: bosonic system with C_{2v} symmetry in d=3

 $C_{2\nu}$ is generated by two perpendicular mirror planes

Reduce onto "cross-shaped region:"

Two planes with Z_2 internal symmetry

d=1 axis with $Z_2 \times Z_2$ symmetry

- d=2 Z_2 SPT phase on either mirror plane
- d=1 Haldane phase on d=1 axis
- $d=2 E_8$ states on mirror planes, with chiralities as shown

Outline

- 1. Bosonic mirror SPT phases in d=3
- 2. Electronic topological crystalline insulators with interactions
- 3. Point groups beyond reflection
- 4. Odds and ends, outlook

Surface properties

All the d=3 bosonic mirror SPT phases admit gapped, topologically ordered surfaces with anomalous implementations of the symmetry.

Dimensional reduction shows surfaces can be studied in "T-junction" geometry.

Anomaly of the 2+1 dimensional surface can be canceled by anomaly of a 2+1 dimensional bulk

see also recent work by Ethan Lake, arXiv:1608.02736

- Z₂ SPT root state: surface with toric code topological order, mirror squares to (-1) on both bosonic particles "ePmP"
- E_8 root state: surface with 3 fermion topological order, preserving reflection (impossible in strict d=2)

Reflection and time reversal

• Classifications for reflection and time-reversal are related:

d=3 bosonic system, reflection	d=3 bosonic system, time-reversal	$Z_2 \times Z_2$
d=3 fermions, $\sigma^2 = 1$	d=3 fermions, $T^2 = (-1)^F$	Z_{16}
d=3 fermions, $\sigma^2 = (-1)^F$	d=3 fermions, $T^2 = 1$	Trivial
d=3 fermions, U(1) x Reflection*	d=3 fermions, U(1) x Time reversal*	$Z_8 \times Z_2$

• Follows from assuming a Lorentz-invariant field theory description (see e.g. Witten arXiv:1508.0471)

^{*} All fermions carry odd U(1) charge, bosons carry even U(1) charge

Summary & Outlook

Summary

- Point group SPT phases can be classified and studied by a dimensional reduction to lower-dimensional topological phases with internal symmetry
- All point group SPT phases can be constructed as stacks/arrays

<u>Outlook</u>

- Physical realizations, connections to other approaches, etc.
- Formal classification: what is the mathematical structure?
- Space group symmetry
- Dimensional reduction for point group symmetry enriched topological (SET) phases