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Operator Spectrum

A local operator has a scaling dimension: 

The scaling dimension determines the decay of the 2-point correlation function: 

It seems interesting and important to know the various fields with their 
corresponding scaling dimensions.  

Where can we find those in numerics ?

1.3 Towards a nonperturbative definition

We need a non-perturbative definition of a fixed point theory which does not make any reference
to the microscopic level (Lagrangian etc).

1.3.1 Operator spectrum

The first thing which characterizes any such theory is the spectrum of the local operators

Oi ! �i = scaling dimension . (1.29)

Once we know the dimension, the 2pt function is given by

hOi(x)Oi(0)i =
c

|x|2�

i

, (1.30)

where the coe�cient c = 1 can be chosen as a normalization convention. Scale transformations
are written as

x ! �x , O(x) ! O(�x) = ���O(x) . (1.31)

With this definition, the 2pt functions are invariant

hO(�x
1

)O(�x
2

)i =
1

|�x
1

� �x
2

|2�

= ��2�hO(x
1

)O(x
2

)i . (1.32)

The scale transformation can be understood physically as an RG transformation which leaves
the Hamiltonian and the correlation functions invariant, as long as the operators are appropri-
ately rescaled.

The above discussion concerned scalar operators, but there will be operators with nonzero
spin as well. We consider Lorentz (or rotation) invariant theories, so the operators will come
in irreducible representations of the SO(D) group.

1.3.2 Stress tensor and currents

Among the local operators of the theory, a special role will be played by the stress tensor Tµ⌫

and conserved currents Jµ associated to global symmetries. The minimal set of QFT axioms
(Wightman axioms) don’t require existence of the stress tensor as the energy and momentum
density, but only of the full energy and momentum charges, and analogously for the conserved
currents. However, the existence of these operators is a natural extra assumption. It means
that the theory preserves some locality.

If the IR fixed point can be reached from a UV theory which has a weakly coupled
Lagrangian description (and thus has a stress tensor), then the existence of a stress tensor
in the IR is guaranteed. On the other hand, if we reach the critical point starting from a
lattice, the stress tensor existence is not obvious. On the lattice there is no stress tensor, but
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1D Torus (Circle) Energy Spectra

3

|j1, j2, . . .⟩ where for odd-numbered sites j2i+1 ∈ {0, 1}, and
for even numbered-sites j2i ∈ {1/2, 3/2}. This re-labeling
maps the matrix elements ofXi into those of ei from Eq. (5).
We can now see that the Hamiltonian in Eq. (1) is that cor-

responding to a standard (integrable) lattice model descrip-
tion of the classical 2D tricritical Ising model, known as the
RSOS model [14]. Specifically, the two-row transfer matrix
T := T2T1 of this lattice model, shown in Fig. 3, is written
in terms of Boltzmann weightsW[i] assigned to a plaquette i
of the square lattice

T1 :=
∏

n

W[2n] , and T2 :=
∏

n

W[2n + 1]

with

W[i]j⃗
′

j⃗
=

sin[ π
k+2 − u]

sin π
k+2

1
j⃗′

j⃗
+

sinu

sin π
k+2

e[i]j⃗
′

j⃗
. (6)

The parameter u > 0 is a measure of the lattice anisotropy,
1 is the identity operator, and

e[i]j⃗
′

j⃗
:=

⎡

⎣

∏

m ̸=i

δj′
m

,jm

⎤

⎦

(

e[i]ji+1

ji−1

)j′
i

ji

. (7)

The Hamiltonian of the so-defined lattice model is obtained
from its transfer matrix by taking, as usual [15], the extremely
anisotropic limit, u ≪ 1,

T = exp{−a(H+ c1) + O(a2)}, a =
uϕ

sin[π/(k + 2)]
≪ 1

yielding H = −
∑

i
1
ϕei (c1 is an unimportant constant).

Since the operatorsXi can be identified with ei, this demon-
strates that the Hamiltonian of the Fibonacci chain is exactly
that of the correspondingk = 3RSOSmodel which is a lattice
description of the tricritical Ising model at its critical point.
The latter is a well-known (supersymmetric) CFT with cen-
tral charge c = 7/10 [16, 17]. Analogously one obtains [18]
for general k the (k−1)st unitary minimal CFT [19] of central
charge c = 1−6/(k+1)(k+2). A ferromagnetically coupled
Fibonacci chain (energetically favoring the fusion along the τ -
channel) is described by the critical 3-state Potts model with
c = 4/5 and, for general k, by the critical Zk-parafermion
CFT [14, 18, 20] with central charge c = 2(k − 1)/(k + 2).
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FIG. 3: Transfer matrix of the RSOS model.
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FIG. 4: Energy spectra for periodic Fibonacci chains of size L = 36
and L = 37. The spectra have been rescaled and shifted such that
the two lowest eigenvalues match the conformal field theory assign-
ments. The open boxes indicate the positions of the primary fields
of the c = 7/10 conformal field theory. The open circles give the
positions of multiple descendant fields as indicated. While we find
excellent agreement in general, finite-size effects lead to small dis-
crepancies for the higher energy states. The solid line is a cosine-fit
of the dispersion which serves as a guide to the eye.

Excitation spectra We have calculated the excitation
spectra of chains up to size L = 37 with open and periodic
boundary conditions using exact diagonalization, as shown in
Fig. 4. The numerical results not only confirm the CFT pre-
dictions but also reveal some important details about the cor-
respondence between continuous fields and microscopic ob-
servables. In general, low-energy states on a ring are associ-
ated with local conformal fields [21], whose holomorphic and
antiholomorphic parts belong to representations of the Vira-
soro algebra, described by conformal weights hL and hR. The
energy levels are given by

E = E1L +
2πv

L

(

−
c

12
+ hL + hR

)

, (8)
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I. INTRODUCTION

In these notes we study the transverse field Ising (TFI)
model on various spatial lattices in two dimensions.

The Hamiltonian is defined as follows:

H = �J
X

hi,ji

�z

i

�z

j

� h
x

X

i

�x

i

, (1)

and we set J = 1 in the following.
Our goal is to understand to what extent the low-lying en-

ergy spectrum reveals information about the properties of the
underlying conformal field theory (CFT).

II. PERIODIC CHAIN

As a warmup and reminder we display the energy spectrum
of the linear periodic TFI chain in one spatial dimension. In
this setup the correspondence between the energy spectrum
and the scaling dimensions of the CFT is established through
the rich conformal symmetry group in 1+1D.

CFTs in any dimension (including D ¼ 3). In Sec. V we
present bounds on 3D CFTs that follow from crossing
symmetry and compare them to what is known about the
3D Ising model. Finally, we discuss our results and future
directions for this program in Sec. VI.

II. OPERATOR CONTENT OF THE
3D ISING MODEL

We assume that the reader is familiar with the basic facts
about the Ising model and the critical phenomena in gen-
eral; see [1,24–27].

In this paper, we will be aiming for a solution of the 3D
Ising model in the continuum limit and at the critical
temperature T ¼ Tc. While the 2D Ising model was solved
exactly on the lattice and for any temperature by Onsager
and Kaufman in the 1940s, the 3D lattice case has resisted
all attempts for an exact solution. Istrail [28] proved in
2000 that solving the 3D Ising model on the lattice is a
NP-complete problem. However, this theorem does not
exclude the possibility of finding a solution in the
continuum limit.

The standard way to think about the continuum theory is
in terms of local operators (or fields). At T ¼ Tc, the theory
has scale (and, as we discuss below, conformal) invariance,
and each operator is characterized by its scaling dimension
! and Oð3Þ spin. The operators of spin higher than 1 are
traceless symmetric tensors.

In Table I we list a few notable local operators, which
split into odd and even sectors under the global Z2 sym-
metry (the Ising spin flip). The operators ! and " are the
lowest dimension Z2-odd and even scalars respectively—
these are the continuum space versions of the Ising
spin and of the product of two neighboring spins on the
lattice. The two next-to-lowest scalars in each Z2-sector
are called !0 and "0. Their dimensions are related to the
irrelevant critical exponents !A and ! measuring correc-
tions to scaling. The operator "00 is analogously related to
the next-to-leading Z2-even irrelevant exponent !2. The
stress tensor T"# has spin 2 and, as a consequence of being
conserved, canonical dimension !T ¼ 3. The lowest-
dimension spin 4 operator C"#$% has a small anomalous
dimension, related to the critical exponent !NR measuring
effects of rotational symmetry breaking on the cubic lattice.

The approximate values of operator dimensions given
in the table have been determined from a variety of theo-
retical techniques, most notably the & expansion, high-
temperature expansion, and Monte Carlo simulations; see
p. 47 of Ref. [1] for a summary. The achieved precision is
rather impressive for the lowest operator in each class, but
quickly gets worse for the higher fields. While ultimately
we would like to beat the old methods, it would be unwise
to completely dismiss this known information and restart
from scratch. Rather, we will be using it for guidance while
sharpening our own methods.
Among the old techniques, the & expansion ofWilson and

Fisher [2] deserves a separate comment. The well-known
idea of this approach is that the 3D Ising critical point and
the 4D free scalar theory can be connected by a line of fixed
points by allowing the dimension of space to vary continu-
ously between 3 and 4. For D ¼ 4$ &, the Wilson-Fisher
fixed point is weakly coupled and the dimensions of local
operators can be expanded order by order in &. For the most
important operators, like ! and ", these expansions have
been extended to terms of order as high as &5 [26], requiring
a five-loop perturbative field theory computation. However,
as often happens in perturbation theory, the resulting series
are only asymptotic. For the physically interesting case
& ¼ 1, their divergent nature already starts to show after
the first couple of terms. Nevertheless, after appropriate
resummation the & expansion produces results in agreement
with the other methods. So its basic hypothesis must be
right, and can give useful qualitative information about the
3D Ising operator spectrum, even where accurate quantita-
tive computations are missing.
It is now time to bring up the conformal invariance of the

critical point, conjectured by Polyakov [3]. This symmetry
is left unused in the renormalization group calculations
leading to the & expansion, and in most other existing
techniques.1 This is because it only emerges at the critical
point; it is not present along the flow. Conformal invariance
seems to be a generic feature of criticality, but why exactly
is not fully understood [31]. Recently there has been a
renewed interest in the question of whether there exist
interesting scale invariant but not conformal systems
[32–37]. We will simply assume as a working hypothesis
that the 3D Ising critical point is conformal.
A nice experimental test of conformal invariance would

be to measure the three-point function h!ðxÞ!ðyÞ"ðzÞi on
the lattice, to see if its functional form agrees with the one
fixed by conformal symmetry [3]. We do not know if this
has been done.
Using 3D conformal invariance, local operators can be

classified into primaries and descendants [5]. The primar-
ies2 transform homogeneously under the finite-dimensional

TABLE I. Notable low-lying operators of the 3D Ising model
at criticality.

Operator Spin l Z2 ! Exponent

! 0 $ 0.5182(3) ! ¼ 1=2þ '=2
!0 0 $ * 4:5 ! ¼ 3þ!A

" 0 þ 1.413(1) ! ¼ 3$ 1=#
"0 0 þ 3.84(4) ! ¼ 3þ!
"00 0 þ 4.67(11) ! ¼ 3þ!2

T"# 2 þ 3 n/a
C"#$% 4 þ 5.0208(12) ! ¼ 3þ!NR

1Conformal invariance has been used in studies of critical
OðNÞ models in the large N limit [29,30].

2These are usually called quasiprimaries in 2D CFTs.
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FIG. 1. (Color online) Upper panel: Table from the literature with
some 3D Ising scaling dimensions. Lower panel: Ising CFT spec-
trum including some of the descendants.

In Fig. 2 we show the globally rescaled energy spectrum of
a finite N

s

= 16 chain. The energy spectrum is arranged into
a combination of Virasoro towers on top of the three primary
fields (1, 1), (�,�), (✏, ✏) with scaling dimensions �(1,1) =
0, �(�,�) = 1/8, �(✏,✏) = 1. Note that the three primary
fields are all located at zero momentum. The structure on top
of the primary fields can be understood as the descendants in
two chiral sectors (R-L) corresponding to a shift of ±2⇡/L in
linear momentum [2].

III. TORUS (T2) APPROXIMANTS

IV. SPHERE (S2) APPROXIMANTS

Cardy pointed out that the infinite Rd can be conformally
mapped onto Sd�1 ⇥ R. If the dimension R is interpreted
as the (imaginary) time direction this means that the energy
spectrum of a suitable quantum Hamiltonian is related to the
eigenvalues of the CFT dilatation operator L0 on Rd.

In Ref. [1] a first attempt to exploit this idea based on a tes-
selation of the sphere by platonic solids was presented. They
pointed out that it is difficult to perform finite size scaling due
to the varying coordination number of the vertices for the dif-
ferent Platonic solids.

They however conjectured that at the critical point the fol-
lowing formulas should hold:

Ee

1 � Ee
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1 � Eo

0), (2)
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FIG. 2. (Color online) Low energy spectrum of a periodic TFI chain
with N

s

= 16. An assignment in terms of fields of the two chiral
sectors is given.
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1D Torus (Circle) Energy Spectra

For CFTs energy spectra of finite size (1+1D) systems arrange into conformal towers ! 3
|j1, j2, . . .⟩ where for odd-numbered sites j2i+1 ∈ {0, 1}, and
for even numbered-sites j2i ∈ {1/2, 3/2}. This re-labeling
maps the matrix elements ofXi into those of ei from Eq. (5).
We can now see that the Hamiltonian in Eq. (1) is that cor-

responding to a standard (integrable) lattice model descrip-
tion of the classical 2D tricritical Ising model, known as the
RSOS model [14]. Specifically, the two-row transfer matrix
T := T2T1 of this lattice model, shown in Fig. 3, is written
in terms of Boltzmann weightsW[i] assigned to a plaquette i
of the square lattice

T1 :=
∏

n

W[2n] , and T2 :=
∏

n

W[2n + 1]

with

W[i]j⃗
′

j⃗
=

sin[ π
k+2 − u]

sin π
k+2

1
j⃗′

j⃗
+

sinu

sin π
k+2

e[i]j⃗
′

j⃗
. (6)

The parameter u > 0 is a measure of the lattice anisotropy,
1 is the identity operator, and

e[i]j⃗
′

j⃗
:=

⎡

⎣

∏

m ̸=i

δj′
m

,jm

⎤

⎦

(

e[i]ji+1

ji−1

)j′
i

ji

. (7)

The Hamiltonian of the so-defined lattice model is obtained
from its transfer matrix by taking, as usual [15], the extremely
anisotropic limit, u ≪ 1,

T = exp{−a(H+ c1) + O(a2)}, a =
uϕ

sin[π/(k + 2)]
≪ 1

yielding H = −
∑

i
1
ϕei (c1 is an unimportant constant).

Since the operatorsXi can be identified with ei, this demon-
strates that the Hamiltonian of the Fibonacci chain is exactly
that of the correspondingk = 3RSOSmodel which is a lattice
description of the tricritical Ising model at its critical point.
The latter is a well-known (supersymmetric) CFT with cen-
tral charge c = 7/10 [16, 17]. Analogously one obtains [18]
for general k the (k−1)st unitary minimal CFT [19] of central
charge c = 1−6/(k+1)(k+2). A ferromagnetically coupled
Fibonacci chain (energetically favoring the fusion along the τ -
channel) is described by the critical 3-state Potts model with
c = 4/5 and, for general k, by the critical Zk-parafermion
CFT [14, 18, 20] with central charge c = 2(k − 1)/(k + 2).
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FIG. 3: Transfer matrix of the RSOS model.
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FIG. 4: Energy spectra for periodic Fibonacci chains of size L = 36
and L = 37. The spectra have been rescaled and shifted such that
the two lowest eigenvalues match the conformal field theory assign-
ments. The open boxes indicate the positions of the primary fields
of the c = 7/10 conformal field theory. The open circles give the
positions of multiple descendant fields as indicated. While we find
excellent agreement in general, finite-size effects lead to small dis-
crepancies for the higher energy states. The solid line is a cosine-fit
of the dispersion which serves as a guide to the eye.

Excitation spectra We have calculated the excitation
spectra of chains up to size L = 37 with open and periodic
boundary conditions using exact diagonalization, as shown in
Fig. 4. The numerical results not only confirm the CFT pre-
dictions but also reveal some important details about the cor-
respondence between continuous fields and microscopic ob-
servables. In general, low-energy states on a ring are associ-
ated with local conformal fields [21], whose holomorphic and
antiholomorphic parts belong to representations of the Vira-
soro algebra, described by conformal weights hL and hR. The
energy levels are given by

E = E1L +
2πv

L

(

−
c

12
+ hL + hR

)

, (8)
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and we set J = 1 in the following.
Our goal is to understand to what extent the low-lying en-

ergy spectrum reveals information about the properties of the
underlying conformal field theory (CFT).

II. PERIODIC CHAIN

As a warmup and reminder we display the energy spectrum
of the linear periodic TFI chain in one spatial dimension. In
this setup the correspondence between the energy spectrum
and the scaling dimensions of the CFT is established through
the rich conformal symmetry group in 1+1D.

CFTs in any dimension (including D ¼ 3). In Sec. V we
present bounds on 3D CFTs that follow from crossing
symmetry and compare them to what is known about the
3D Ising model. Finally, we discuss our results and future
directions for this program in Sec. VI.

II. OPERATOR CONTENT OF THE
3D ISING MODEL

We assume that the reader is familiar with the basic facts
about the Ising model and the critical phenomena in gen-
eral; see [1,24–27].

In this paper, we will be aiming for a solution of the 3D
Ising model in the continuum limit and at the critical
temperature T ¼ Tc. While the 2D Ising model was solved
exactly on the lattice and for any temperature by Onsager
and Kaufman in the 1940s, the 3D lattice case has resisted
all attempts for an exact solution. Istrail [28] proved in
2000 that solving the 3D Ising model on the lattice is a
NP-complete problem. However, this theorem does not
exclude the possibility of finding a solution in the
continuum limit.

The standard way to think about the continuum theory is
in terms of local operators (or fields). At T ¼ Tc, the theory
has scale (and, as we discuss below, conformal) invariance,
and each operator is characterized by its scaling dimension
! and Oð3Þ spin. The operators of spin higher than 1 are
traceless symmetric tensors.

In Table I we list a few notable local operators, which
split into odd and even sectors under the global Z2 sym-
metry (the Ising spin flip). The operators ! and " are the
lowest dimension Z2-odd and even scalars respectively—
these are the continuum space versions of the Ising
spin and of the product of two neighboring spins on the
lattice. The two next-to-lowest scalars in each Z2-sector
are called !0 and "0. Their dimensions are related to the
irrelevant critical exponents !A and ! measuring correc-
tions to scaling. The operator "00 is analogously related to
the next-to-leading Z2-even irrelevant exponent !2. The
stress tensor T"# has spin 2 and, as a consequence of being
conserved, canonical dimension !T ¼ 3. The lowest-
dimension spin 4 operator C"#$% has a small anomalous
dimension, related to the critical exponent !NR measuring
effects of rotational symmetry breaking on the cubic lattice.

The approximate values of operator dimensions given
in the table have been determined from a variety of theo-
retical techniques, most notably the & expansion, high-
temperature expansion, and Monte Carlo simulations; see
p. 47 of Ref. [1] for a summary. The achieved precision is
rather impressive for the lowest operator in each class, but
quickly gets worse for the higher fields. While ultimately
we would like to beat the old methods, it would be unwise
to completely dismiss this known information and restart
from scratch. Rather, we will be using it for guidance while
sharpening our own methods.
Among the old techniques, the & expansion ofWilson and

Fisher [2] deserves a separate comment. The well-known
idea of this approach is that the 3D Ising critical point and
the 4D free scalar theory can be connected by a line of fixed
points by allowing the dimension of space to vary continu-
ously between 3 and 4. For D ¼ 4$ &, the Wilson-Fisher
fixed point is weakly coupled and the dimensions of local
operators can be expanded order by order in &. For the most
important operators, like ! and ", these expansions have
been extended to terms of order as high as &5 [26], requiring
a five-loop perturbative field theory computation. However,
as often happens in perturbation theory, the resulting series
are only asymptotic. For the physically interesting case
& ¼ 1, their divergent nature already starts to show after
the first couple of terms. Nevertheless, after appropriate
resummation the & expansion produces results in agreement
with the other methods. So its basic hypothesis must be
right, and can give useful qualitative information about the
3D Ising operator spectrum, even where accurate quantita-
tive computations are missing.
It is now time to bring up the conformal invariance of the

critical point, conjectured by Polyakov [3]. This symmetry
is left unused in the renormalization group calculations
leading to the & expansion, and in most other existing
techniques.1 This is because it only emerges at the critical
point; it is not present along the flow. Conformal invariance
seems to be a generic feature of criticality, but why exactly
is not fully understood [31]. Recently there has been a
renewed interest in the question of whether there exist
interesting scale invariant but not conformal systems
[32–37]. We will simply assume as a working hypothesis
that the 3D Ising critical point is conformal.
A nice experimental test of conformal invariance would

be to measure the three-point function h!ðxÞ!ðyÞ"ðzÞi on
the lattice, to see if its functional form agrees with the one
fixed by conformal symmetry [3]. We do not know if this
has been done.
Using 3D conformal invariance, local operators can be

classified into primaries and descendants [5]. The primar-
ies2 transform homogeneously under the finite-dimensional

TABLE I. Notable low-lying operators of the 3D Ising model
at criticality.

Operator Spin l Z2 ! Exponent

! 0 $ 0.5182(3) ! ¼ 1=2þ '=2
!0 0 $ * 4:5 ! ¼ 3þ!A

" 0 þ 1.413(1) ! ¼ 3$ 1=#
"0 0 þ 3.84(4) ! ¼ 3þ!
"00 0 þ 4.67(11) ! ¼ 3þ!2

T"# 2 þ 3 n/a
C"#$% 4 þ 5.0208(12) ! ¼ 3þ!NR

1Conformal invariance has been used in studies of critical
OðNÞ models in the large N limit [29,30].

2These are usually called quasiprimaries in 2D CFTs.
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FIG. 1. (Color online) Upper panel: Table from the literature with
some 3D Ising scaling dimensions. Lower panel: Ising CFT spec-
trum including some of the descendants.

In Fig. 2 we show the globally rescaled energy spectrum of
a finite N

s

= 16 chain. The energy spectrum is arranged into
a combination of Virasoro towers on top of the three primary
fields (1, 1), (�,�), (✏, ✏) with scaling dimensions �(1,1) =
0, �(�,�) = 1/8, �(✏,✏) = 1. Note that the three primary
fields are all located at zero momentum. The structure on top
of the primary fields can be understood as the descendants in
two chiral sectors (R-L) corresponding to a shift of ±2⇡/L in
linear momentum [2].

III. TORUS (T2) APPROXIMANTS

IV. SPHERE (S2) APPROXIMANTS

Cardy pointed out that the infinite Rd can be conformally
mapped onto Sd�1 ⇥ R. If the dimension R is interpreted
as the (imaginary) time direction this means that the energy
spectrum of a suitable quantum Hamiltonian is related to the
eigenvalues of the CFT dilatation operator L0 on Rd.

In Ref. [1] a first attempt to exploit this idea based on a tes-
selation of the sphere by platonic solids was presented. They
pointed out that it is difficult to perform finite size scaling due
to the varying coordination number of the vertices for the dif-
ferent Platonic solids.

They however conjectured that at the critical point the fol-
lowing formulas should hold:

Ee

1 � Ee

0 = �
✏

(Eo

1 � Eo

0), (2)

and
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�
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0). (3)
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FIG. 2. (Color online) Low energy spectrum of a periodic TFI chain
with N

s

= 16. An assignment in terms of fields of the two chiral
sectors is given.
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In more than 1+1D, this relation does not hold for tori anymore, only for the sphere ! 

First mapping: radial quantisation, can reveal scaling dimension in higher d, 
but not easily accessible to numerics (although several efforts over the decades).

Energy spectra and CFTs in more than 1+1D ?
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In more than 1+1D, this is not expected to hold anymore for tori ! 

First mapping: radial quantization, can reveal scaling dimension in higher d, 
but not easily accessible to numerics (although several efforts over the decades). 

What about energy spectra on tori, which are numerically accessible? 

Is there a universal low-energy spectrum (and is it accessible numerically) ?  

How does it look like ? 

Any analogy to the spectrum of scaling dimensions ?

Energy spectra and CFT in more than 1+1D ?
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Torus Energy Spectra and QFT ? 

Spectrum of the “standard” 2+1D Ising transition 

Spectrum of the “Z2 confinement” transition (Ising*) 
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We want to investigate the torus energy spectrum at a quantum critical point. 

While we do not expect to find the exact spectrum of scaling dimensions, the 
spectrum is still expected to be universal, i.e. UV cutoff independent.  

The spectrum could however depend on the IR-cutoff (shape of torus)  
(c.f. “hearing the shape of the drum”) 

We start with a Z2 symmetry breaking transition, and consider the  
transverse field Ising (TFI) model as a particular microscopic realization

2+1D “standard” Ising CFT 

Universal Signatures of Quantum Critical Points from Finite-Size Torus Spectra:
A Window into the Operator Content of Higher-Dimensional Conformal Field Theories
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The low-energy spectra of many body systems on a torus, of finite size L, are well understood in magnetically
ordered and gapped topological phases. However, the spectra at quantum critical points separating such phases
are largely unexplored for 2+1D systems. Using a combination of analytical and numerical techniques, we show
that the low-energy torus spectrum at criticality provides a universal fingerprint of the underlying quantum field
theory Using a combination of analytical and numerical techniques, we accurately calculate and analyse the low-
energy torus spectrum at an Ising critical point which provides a universal fingerprint of the underlying quantum
field theory, with the energy levels given by universal numbers times 1/L. We highlight the implications of a
neighboring topological phase on the spectrum by studying the Ising* transition, in the example of the toric code
in a longitudinal field, and advocate a phenomenological picture that provides insight into the operator content
of the critical field theory.

PACS numbers: 05.30.Rt, 11.25.Hf, 75.10.Jm, 75.40.Mg1

Introduction — Quantum critical points continue to at-
tract tremendous attention in condensed matter, statistical me-
chanics and quantum field theory alike. Recent highlights in-
clude the discovery of quantum critical points which lie be-
yond the Ginzburg-Landau paradigm [1, 2], the striking suc-
cess of the conformal bootstrap program for Wilson-Fisher
fixed points [3], and the intimate connection between entan-
glement quantities and universal data of the critical quantum
field theory [4–8].

A surprisingly little explored aspect in this regard is the fi-
nite (spatial) volume spectrum on numerically easily acces-
sible geometries, such as the Hamiltonian spectrum on a 2D
spatial torus at the quantum critical point [9]. In the realm of
1+1D conformal critical points there exists a celebrated map-
ping between the spectrum of scaling dimensions of the field
theory in R2 and the Hamiltonian spectrum on a circle (space-
time cylinder: S1 ⇥ R) [10]. This result is routinely used to
perform accurate numerical spectroscopy of conformal criti-
cal points using a variety of numerical methods [11, 12]. In
higher dimensions the situation is less favorable: Cardy has
shown [13] that the corresponding conformal map can be gen-
eralized to a map between Rd and Sd�1 ⇥ R. While numeri-
cal simulations in this so-called radial quantization geometry
have been attempted at several occasions [14–18], this numer-
ical approach remains very challenging due to the curved ge-
ometry, which is inherently difficult to regularize in numerical
simulations.

Due to the absence of a known relation between the scaling
dimensions of the field theory and the torus energy spectra
our understanding of critical energy spectra is rather limited
beyond free theories [19–22].

In this Letter we present a combined numerical and analyt-
ical study of the Hamiltonian torus energy spectrum of the 3D
Ising conformal field theory (CFT). We demonstrate that the
torus energy spectrum provides a universal fingerprint of the

quantum field theory governing the critical point. It depends
only on the universality class of the transition and the shape
and boundary conditions of the torus, which acts as an in-
frared (IR) cutoff (but not on the lattice discretisation, i.e. the
ultraviolet cutoff). In this Letter we present a combined nu-
merical and analytical study of the Hamiltonian torus energy
spectrum of the 3D Ising conformal field theory (CFT), and
show that it is accessible with finite lattice studies and proper
finite-size scaling. Torus energy spectra provide a universal
fingerprint of the quantum field theory governing the critical
point and depend only on the universality class of the tran-
sition and the shape and boundary conditions of the torus,
which acts as an infrared (IR) cutoff (but not on the lattice dis-
cretisation, i.e. the ultraviolet cutoff), what we will explicitely
demonstrate here for the Ising CFT. This approach can thus be
regarded as a new numerical tool to investigate critical points.
We provide a quantitative analysis of many low-lying energy
levels of the standard Z2-symmetry breaking phase transition
in the 3D Ising universality class. We also advocate a phe-
nomenological picture that provides insight into the operator
content of the critical point. As an application we reveal that
the torus energy spectrum of the confinement transition be-
tween the Z2 topological ordered phase and the trivial (con-
fined) phase of the Toric code (TC) in a longitudinal magnetic
field can be understood as a specific combination of a subset
of the fields and several boundary conditions of the standard
3D Ising universality class. Since the operator content of the
partition function at criticality obviously differs from the stan-
dard 3D Ising universality class we term this transition a 3D
Ising* transition [23–25].

3D Ising universality class — In order to establish
demonstrate the universal nature of the low-energy spectrum
we study the 2+1D transverse field Ising (TFI) model
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“Raw” energy spectrum across the transition
small field: approx. 2-fold degeneracy due to Z2-symmetry breaking. 

large field: unique ground state in paramagnetic phase. 2
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FIG. 3. (Color online) Partial energy spectrum of the transverse field
Ising model on the square lattice for C4 (or C4v) symmetric samples
with N

s

= 16, 17, 18, 20, 25(⇥2), 32. A very preliminary as-
signment of fields is attempted. The dashed magenta vertical lines
denotes the location of the quantum phase transition according to
QMC and ED finite size results. Lower panel: all symmetry sectors
for a N

s

= 25 sample.

The idea being that (Eo

1 � Eo

0) measures the scale unit (de-
scendant spacing), while �

✏

= (d � 1/⌫) and �
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= 1
2 (d �

2 + ⌘) [3]

Cardy’s idea has been revived using (quantum) Monte
Carlo methods by Weigelt and Janke as well as Deng and
Blöte 10-15 years ago, and more recently by the high-energy
community.

So far: icosahedron (z = 5, N
s

= 12) and dodecahedron
(z = 3, N

s

= 20).

Further possibilities icosidodecahedron (z = 4, N
s

= 30),
snub cube, ...

V. TO DO LIST

The following things should be done:

1. Simulations with antiperiodic boundary conditions

2. Simulations with open boundary conditions
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FIG. 4. (Color online) Upper panel: partial energy spectrum of the
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Detailed finite size scaling
Square lattice at critical transverse field hc:

0.00 0.02 0.04 0.06 0.08 0.10

1/N

0

2

4

6

8

(E
�

E
0)
⇥
p

N
/�

0

�T (1.00)

�0
T (6.87)

�T + � (5.32)

1

"T (3.69)

"T + � (7.46)

⌧ = i - Square

0.00 0.02 0.04 0.06 0.08 0.10

1/N

�T (1.00)

�0
T (7.01)

�T + � (5.41)

"T + � (7.56)

1

"T (3.78)

⌧ = i - Square-Octagon

0.00 0.02 0.04 0.06 0.08 0.10

1/N

�T (1.00)

�0
T (6.93)

�T + � (5.77)

1

"T (3.73)

"T + � (7.82)

⌧ = 1
2 +

p
3

2 i - Triangular

0.00 0.02 0.04 0.06 0.08 0.10

1/N

�T (1.00)

�0
T (6.99)

�T + � (5.72)

1

"T (3.76)

"T + � (7.84)

⌧ = 1
2 +

p
3

2 i - Honeycomb

0.00 0.02 0.04 0.06 0.08 0.10

1/N

�T (1.00)

�0
T (6.91)

�T + � (5.74)

1

"T (3.73)

"T + � (7.81)

⌧ = 1
2 +

p
3

2 i - Kagome

 = 0, Z2 even  = 0, Z2 odd  = 1, Z2 even  = 1, Z2 odd QMC = 0, Z2 even  = 0, Z2 odd  = 1, Z2 even  = 1, Z2 odd QMC = 0, Z2 even  = 0, Z2 odd  = 1, Z2 even  = 1, Z2 odd QMC = 0, Z2 even  = 0, Z2 odd  = 1, Z2 even  = 1, Z2 odd QMC = 0, Z2 even  = 0, Z2 odd  = 1, Z2 even  = 1, Z2 odd QMC



Detailed finite size scaling
Square lattice at critical transverse field hc:
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Comparison with a different lattice
Square lattice and Square-Octagon lattice at their critical point: 

The spectra are identical after finite-size extrapolation!  
This is thus the genuine Ising CFT spectrum on a square torus !

0.00 0.02 0.04 0.06 0.08 0.10

1/N

0

2

4

6

8

(E
�

E
0)
⇥
p

N
/�

0

�T (1.00)

�0
T (6.87)

�T + � (5.32)

1

"T (3.69)

"T + � (7.46)

⌧ = i - Square

0.00 0.02 0.04 0.06 0.08 0.10

1/N

�T (1.00)

�0
T (7.01)

�T + � (5.41)

"T + � (7.56)

1

"T (3.78)

⌧ = i - Square-Octagon

0.00 0.02 0.04 0.06 0.08 0.10

1/N

�T (1.00)

�0
T (6.93)

�T + � (5.77)

1

"T (3.73)

"T + � (7.82)

⌧ = 1
2 +

p
3

2 i - Triangular

0.00 0.02 0.04 0.06 0.08 0.10

1/N

�T (1.00)

�0
T (6.99)

�T + � (5.72)

1

"T (3.76)

"T + � (7.84)

⌧ = 1
2 +

p
3

2 i - Honeycomb

0.00 0.02 0.04 0.06 0.08 0.10

1/N

�T (1.00)

�0
T (6.91)

�T + � (5.74)

1

"T (3.73)

"T + � (7.81)

⌧ = 1
2 +

p
3

2 i - Kagome

 = 0, Z2 even  = 0, Z2 odd  = 1, Z2 even  = 1, Z2 odd QMC = 0, Z2 even  = 0, Z2 odd  = 1, Z2 even  = 1, Z2 odd QMC = 0, Z2 even  = 0, Z2 odd  = 1, Z2 even  = 1, Z2 odd QMC = 0, Z2 even  = 0, Z2 odd  = 1, Z2 even  = 1, Z2 odd QMC = 0, Z2 even  = 0, Z2 odd  = 1, Z2 even  = 1, Z2 odd QMC

0.00 0.02 0.04 0.06 0.08 0.10

1/N

0

2

4

6

8

(E
�

E
0)
⇥
p

N
/�

0

�T (1.00)

�0
T (6.87)

�T + � (5.32)

1

"T (3.69)

"T + � (7.46)

⌧ = i - Square

0.00 0.02 0.04 0.06 0.08 0.10

1/N

�T (1.00)

�0
T (7.01)

�T + � (5.41)

"T + � (7.56)

1

"T (3.78)

⌧ = i - Square-Octagon

0.00 0.02 0.04 0.06 0.08 0.10

1/N

�T (1.00)

�0
T (6.93)

�T + � (5.77)

1

"T (3.73)

"T + � (7.82)

⌧ = 1
2 +

p
3

2 i - Triangular

0.00 0.02 0.04 0.06 0.08 0.10

1/N

�T (1.00)

�0
T (6.99)

�T + � (5.72)

1

"T (3.76)

"T + � (7.84)

⌧ = 1
2 +

p
3

2 i - Honeycomb

0.00 0.02 0.04 0.06 0.08 0.10

1/N

�T (1.00)

�0
T (6.91)

�T + � (5.74)

1

"T (3.73)

"T + � (7.81)

⌧ = 1
2 +

p
3

2 i - Kagome

 = 0, Z2 even  = 0, Z2 odd  = 1, Z2 even  = 1, Z2 odd QMC = 0, Z2 even  = 0, Z2 odd  = 1, Z2 even  = 1, Z2 odd QMC = 0, Z2 even  = 0, Z2 odd  = 1, Z2 even  = 1, Z2 odd QMC = 0, Z2 even  = 0, Z2 odd  = 1, Z2 even  = 1, Z2 odd QMC = 0, Z2 even  = 0, Z2 odd  = 1, Z2 even  = 1, Z2 odd QMC



Comparison with a different lattice
Square lattice and Square-Octagon lattice at their critical point: 

The spectra are identical after finite-size extrapolation!  
This is thus the genuine Ising CFT spectrum on a square torus !
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Comparison with a different lattice
Square lattice and Square-Octagon lattice at their critical point: 

The spectra are identical after finite-size extrapolation!  
This is thus the genuine Ising CFT spectrum on a square torus !
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Comparison with different modular parameter
Triangular, honeycomb and kagome lattice at their critical point: 

The spectra are identical after finite-size extrapolation!  
This is thus the genuine Ising CFT spectrum on a hexagonal torus !
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Comparing the different geometries
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The “square” and the “hexagonal” tori have a slightly different spectrum.  

The spectrum we see is the torus spectrum of the CFT  
describing the critical point.



Analytical approach: (4-epsilon)-expansion

Work done by S. Withsett and S. Sachdev. Lowest non-trivial order in epsilon.  

Rather good agreement between analytics and numerics.
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FIG. 1. The two torus geometries with 4-fold and 6-fold rota-
tion symmetry and their momentum-space grid in the vicinity of
the � = (0, 0) point. In the center of the lower row we display
the Wigner-Seitz cell of the torus, highlighting the 6-fold symmetry.
The momentum space variable  is defined as  = L

2⇡ |k|⌧2 with
⌧ = ⌧1 + i⌧2, L = |!1| = |!2| and k a momentum of the finite-size
cluster.

on five different two-dimensional Archimedian lattices [26]
at their respective quantum critical point [27][28]. In our fi-
nite size simulations the spatial setup is a torus whose linear
extents are determined by two spanning vectors !1 and !2

(c.f. left part of Fig. 1). The finite area leads to a discrete
momentum space (c.f. right part of Fig. 1) and is equivalent
to an infrared (IR) cutoff in the field theory. The use of a
lattice model on the other hand leads to an ultraviolet (UV)
cutoff in the form of a Brillouin zone. In the following we
will only consider tori with L = |!1| = |!2| and two dif-
ferent choices of the modular parameter ⌧ = !2/!1: ⌧ = i
(⌧ = 1/2 +

p
3/2i) corresponding to a square (hexagonal)

symmetry. The square and square-octagon (triangular, hon-
eycomb and kagome) lattices are simulated using a square
(hexagonal) IR-cutoff geometry to preserve the microscopic
C4 (C6) point group symmetry in the IR.

In a first step we have calculated the low-energy spectrum
of the Hamiltonian Eq. (1) using exact diagonalization (ED)
in all symmetry sectors on finite samples with up to N = 40
spins in total. The spectrum can be divided into Z2 even and
odd sectors (spin-flip symmetry), combined with irreducible
representations of the lattice space group. In the paramag-
netic phase at large h/J one finds a unique Z2 even ground
state in the fully symmetric spatial representation, with a fi-
nite gap above the ground state. At small h/J one finds two
quasi-degenerate ground states in the Z2 even and odd sec-
tor respectively (both in the symmetric spatial representation),
again with a finite gap above the ground state. At the quan-
tum critical point (h/J)

c

however the low-lying spectrum col-
lapses as 1/

p
N ⇠ 1/L, i.e. it exhibits a mass spectrum with

the mass scale set by the IR cutoff. To get rid of this scaling
we will multiply the excitation gaps with

p
N in the following

and will call that the spectrum. In Fig. 2 we display the finite
size spectra at the Ising critical point for all five different lat-
tices in the zero momentum sector � = (0, 0), as well as the

first momentum away from the � point ( = 1 in the right part
of Fig. 1). Since the speed of light is not known at this stage,
the spectrum for each lattice has been globally rescaled such
that the extrapolated energy of the first excited level (which
is Z2 odd and spatially symmetric) is set to one. One nicely
explicitely observes that the critical energy spectra of lattices
with the same type of IR cutoff ⌧ (the two leftmost panels and
the three rightmost panels) agree to rather high precision with
each other, when taking 1/N finite-size corrections into ac-
count. This means that the obtained critical energy spectra
indeed do not depend on the chosen UV discretization as it is
generally expected from a field theory point of view. In order
to corroborate the extrapolations based on ED we performed
extensive Quantum Monte Carlo (QMC) simulations [27] of
the transverse field Ising model at the critical point for all
five lattices. Based on imaginary time spin-spin correlations
it is possible to access the finite size gaps on lattices up to
N = 30 ⇥ 30 lattice sites. These data points (red small filled
circles) in Fig. 2 reproduce the ED data where available, and
allow us to confirm and sharpen the precision of the extrap-
olated energy spectrum. Based on the quantum numbers of
the first few low-lying energy levels we choose to label them
as torus analogues of the spectrum of scaling dimensions of
the 3D Ising CFT: �

T

and �0
T

refer to the first two levels in
the Z2 odd sector in the spatially symmetric representation,
while ✏

T

is the first excited state (above the vacuum 1) in the
Z2 even and spatially symmetric sector. The ”. . . + �” la-
bel refers to levels at the first momentum away from the �
point,  = 1. These levels are four-fold degenerate on the
square torus, while they are six-fold degenerate for the hexag-
onal torus. Although there is no known relation between
the torus spectrum and the scaling dimensions in flat space,
this phenomenological approach shows a qualitatively similar
structure as the operator content of the quantum field theory.

✏-expansion — We also compute the energy levels using
✏-expansion. Our starting point is �4 theory, which we define
by the Hamiltonian density

H =
Z

ddx


1
2
⇧2 +

1
2
(r�)2 +

s

2
�2 +

u

4!
�4

�
(2)

in d dimensions with the equal-time commutator
[�(x, t),⇧(x0, t)] = i�d(x � x0), and specialize to the
critical point, s = s

c

, u = u⇤. We generalize the two-
dimensional torus to arbitrary dimension by taking d/2
copies of the desired torii in Fig. 1, so that all spatial point-
symmetries are preserved during the calculation and no extra
length scales are introduced.

Our approach to the critical theory in a finite volume origi-
nated from Lüscher [29], and was extended to deal with finite
size criticality in classical systems by others [30, 31]. The
key observation is that the zero mode of the field generates in-
curable infrared divergences in perturbation theory, so it must
be separated and treated non-perturbatively. In the context of
the finite-size spectrum, this can be understood from Eq. (2)
by noticing that the Gaussian theory at s = 0 does not con-
tain any potential term for the zero mode, giving a continu-



Comparison between torus and sphere spectra

Torus spectra at low energy per sector resemble the spectrum on the sphere: 

We believe this handwaving resemblance might be more generally the case: 
“light states on the sphere have a light analogon on the torus”  
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Confinement transition
Z2 spin liquids are rather fashionable these days.  

The are phases with a four-fold ground state degeneracy on a torus, but 
the degeneracy is topological, and not related to symmetry breaking. 

One of the simplest incarnations of this phase appears in the Toric Code 
model by Kitaev. 

By an appropriate perturbation the topological phase (“deconfined”) gives way 
to a simple paramagnetic phase (“confined”). The transition is a confinement 
transition and is expected to be in the 2+1D = 3D Ising universality class. 

Q: Is the torus spectrum at criticality identical to the symmetry breaking case ?



Toric code in a magnetic field

We study the following microscopic model  
(but results will be independent of model): 

Toric code with a longitudinal magnetic field (S. Trebst et al., …):

1

Supplemental Material: Universal Signatures of
Quantum Critical Points from Finite-Size Torus

Spectra

LATTICE GEOMETRIES

FIG. 1. The different lattice geometries used for the TFI model. The
red boxes indicate the lattice basis cells, the arrows mark the Bravais-
vectors. The square and square-octagon lattices obey a C4 rotational
symmetry, the triangular, honeycomb and kagome lattices a C6 rota-
tional symmetry.

MAPPING THE PERTURBED TORIC CODE ONTO THE
TRANSVERSE FIELD ISING MODEL

In this section, we demonstrate an exact mapping of the
charge-free sector of the Toric Code model perturbed by a
longitudinal field to a transverse field Ising model with only
even states under spin-inversion. Such a mapping has already
been used in previous studies of the Toric Code [1–3], here we
will additionally show that the different groundstate sectors of
the Toric Code result in different boundary conditions of the
transverse field Ising model.

FIG. 2. The Toric Code on a torus. Black dots show the positions
of the Toric Code variables �x,z

i

, grey squares the dual lattice for the
variables µx,z

p

. T1,2 depict a choice of the two incontractible loops
winding around the torus. See text for further details.

The Hamiltonian of the Toric Code in a longitudinal field is
given by

H = �J
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where the �
i

describe spins on the links of a square lattice, p
denotes a plaquette and s a star on this lattice. All A

s

and B
p

commute with each other and thus the GS of the Hamiltonian
for h = 0 can be found by setting A

s

= 1 8s and B
p

= 1 8p.
On a torus, however, not all of the A
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and B
p

are linearly inde-
pendent, as
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= 1, leading to a 4-fould
degenerate groundstate manifold. This groundstate manifold
can be distinguished by the expectation values of the Wilson
loop operators t
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i

where the paths wind around the
torus along two non-contractible loops through the centers of
the edges of the lattice (e.g. parallel to T

1,2

in Fig. 2).
To perform the mapping to a transverse field Ising model

we first note, that A
s

and t
1,2

are still conserved for h 6= 0,
when the longitudinal field is turned on. So, we consider
the charge-free sector, A

s

= 1 8s, which describes the low-
energy physics even at criticality, and define the new variables
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on each site p of the dual lattice (center of plaquette p) [2]. We
choose two incontractible paths T

1,2

in x̂(ŷ) direction along
the lattice. The path c

p!(") is then a straight path from T
2(1)

to the site p in x̂(ŷ)-direction along the dual lattice (cf. Fig. 2).
It is straightforward to show that these variables fulfill the
Pauli-Algebra {µx
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where �x
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(x̂(ŷ)) describes a Pauli operator on a link in x̂(ŷ)-
direction on the lattice.

With this, the TC eventually maps onto the well-known TFI
model
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on the dual lattice and A
s

= 1 8s, as it was imposed.
The resulting transverse field Ising model (7) is invariant

under global spin-inversion I =
Q

p
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p

. From (3) it immedi-
ately follows that

I =
Y

p

B
p

= 1 (8)

where the last equality is always satisfied on a torus and so the
Toric Code maps to an even transverse field Ising model.



Numerics at criticality

Left: data for the TC at criticality, Right: Symmetry breaking  

The spectra at criticality do not agree ! What is going on ?

4

the condensation of the m particles and call it’s corresponding
field �. The critical theory turns out to be Ising*: � can only
be created in pairs, so the effective Lagrangian must be even in
a real field �, implying we should only include Z2 even states
in a critical Ising theory. In addition, � and �� are physi-
cally indistinguishable, and so both periodic and anti-periodic
boundary conditions have to be considered. We want to em-
phasize that this mapping is independent of any specific mi-
croscopic lattice model and should hold generically between
universal theories and their topological counterparts.

As a microscopic model illustrating this transition we study
the critical energy spectrum of the Toric Code Hamiltonian
perturbed by a longitudinal field [38–42]:

H
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= �J
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i
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i
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i

The �
i

describe S = 1/2-spins on the 2N edges of a square
lattice, p denotes a plaquette and s a star on the lattice. All
A

s

and B
p

commute with each other and so the model can
be solved analytically for h = 0 by setting A

s

= 1 8s and
B

p

= 1 8p [43]. On a torus the ground state manifold is,
however, four-fold degenerate and can be characterized by the
eigenvalues±1 of Wilson loops winding around the torus. An
e (m) particle is described by setting A

s

= �1 (B
p

= �1)
on a star (plaquette). The longitudinal field introduces a dis-
persion for the m particles which finally condense and drive
the phase transition at h = h

c

by confinement of the e parti-
cles [23–25, 38].

The above considerations regarding the relationship be-
tween Ising and Ising* QFT can be made very explicit for
the Toric Code. The Toric Code Eq. (3) in the sector without
e particles (A

s

= 1 8s) can be exactly mapped to an even TFI
model on the dual square lattice with N sites, where only the
even spin-flip sector is present [38, 44, 45]. The groundstate
manifold, described by the eigenvalues of the Wilson loops,
maps to both, periodic and anti-periodic boundary conditions
of the Ising model [46]. In the following we will make use of
this mapping to compute the finite-size torus spectrum of the
Ising* transition for ⌧ = i using ED.

In the left part of Fig. 4 we present the low-energy finite-
size spectrum of the Ising* transition obtained with ED sim-
ulations. The spectrum is rescaled with the same factor �0

as in Fig. 2 such that they can be easily compared. The rela-
tionship between the critical Ising and Ising* theories results
in the fact that the levels called "

T

(+�) in Fig. 2 are identi-
cally present in the Ising* spectrum (c.f. P/P levels in Fig. 4).
The most remarkable feature, however, is the presence of very
low-lying levels in the spectrum. They arise from the ground-
state manifold in the spin-liquid phase, where their splitting
exponentially scales to zero with L. At criticality they, how-
ever, scale as 1/

p
N as the entire low-energy spectrum. The

small relative splitting of the four lowest levels is surprisingly
small. The right panel of Fig. 4 shows a comparison of the
universal torus spectrum for an Ising* transition obtained with
ED and ✏-expansion similar to Fig. 3 [47]. A zoom into the
conspicous low-energy levels is shown in the inset. Again we

FIG. 4. Universal torus spectra for the Ising* QFT and the mod-
ular parameters ⌧ = i. The labels A/P etc. denote the boundary
conditions along the two directions of the torus, where P(A) means
(anti-)periodic. Left: Normalized low-energy spectrum from ED
with the same normalization constant �0 as in Fig. 2. The levels
in the P/P sector are the "T (+�) levels from the TFI spectrum. A
very remarkable feature are the four very low-lying levels which gov-
ern the four-fold degenerate groundstate manifold in the deconfined
phase. See Fig. 2 for further details. Right: Full symbols denote
numerical results obtained by ED, while empty symbols denote ✏-
expansion results. The dashed line shows a dispersion with the speed
of light. The inset is a zoom into the four lowest levels. See Fig. 3
for further details.

observe a decent agreement of the different methods fortify-
ing the idea of a universal torus spectrum also for the Ising*
transition This explicitely demonstrates, that the effect of a
neighbouring Z2 topological phase on the critical torus spec-
trum is not just an artefact of the exact mapping in the special
case of the Toric Code considered here for numerical simula-
tions.

Conclusions — We have shown that the torus energy
spectrum provides a characteristic fingerprint of the confor-
mal field theory and its operator content governing a quan-
tum critical point in 2+1D. We have computed the universal
torus energy spectrum for the Ising and Ising* transitions in
2+1D providing a characteristic fingerprint of the correspond-
ing conformal field theories and have highlighted the implica-
tions of a neighbouring Z2 spin liquid on the torus spectrum.
Additionally, we have presented a phenomenological picture

based on the quantum numbers of the individual energy levels
which shows a qualitatively similar structure as the operator
content of the field theory. Using the numerical and analyt-
ical technology presented in this paper it will be possible to
inspect and chart the characteristic spectrum of more complex
quantum critical points, such as O(N) Wilson-Fisher fixed
points, Gross-Neveu-Yukawa type phase transitions in inter-
acting Dirac fermion models [48, 49] or designer Hamiltoni-
ans displaying deconfined criticality [2].

A.M.L. thanks R.C. Brower, J.L. Cardy and A.W. Sand-
vik for discussions. L.-P.H. and M.S. acknowledge support
through the Austrian Science Fund SFB FoQus (F-4018).
S.W. and S.S. are supported by the U.S. NSF under Grant
DMR-1360789. We thank A. Wietek for his help on com-
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The Ising* transition

The explanation is that the operator content of the two transitions are different: 

In the Z2 symmetry breaking case we have Z2 even and odd levels and only 
one set of boundary conditions (fixed by the lattice model). 

In the confinement transition (Ising*), only Z2 even levels are allowed, and for  
periodic boundary conditions in the Toric Code, four different boundary 
conditions of the CFT become simultaneously apparent. 

This can be understood at the microscopic level in the Toric Code Hamiltonian 
and is supported by general field theoretical considerations. 

In the Ising* case the magnetic sector is completely absent, and the torus 
energy spectrum reflects this fact. 



The Ising* transition
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the condensation of the m particles and call it’s corresponding
field �. The critical theory turns out to be Ising*: � can only
be created in pairs, so the effective Lagrangian must be even in
a real field �, implying we should only include Z2 even states
in a critical Ising theory. In addition, � and �� are physi-
cally indistinguishable, and so both periodic and anti-periodic
boundary conditions have to be considered. We want to em-
phasize that this mapping is independent of any specific mi-
croscopic lattice model and should hold generically between
universal theories and their topological counterparts.

As a microscopic model illustrating this transition we study
the critical energy spectrum of the Toric Code Hamiltonian
perturbed by a longitudinal field [38–42]:
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The �
i

describe S = 1/2-spins on the 2N edges of a square
lattice, p denotes a plaquette and s a star on the lattice. All
A

s

and B
p

commute with each other and so the model can
be solved analytically for h = 0 by setting A

s

= 1 8s and
B

p

= 1 8p [43]. On a torus the ground state manifold is,
however, four-fold degenerate and can be characterized by the
eigenvalues±1 of Wilson loops winding around the torus. An
e (m) particle is described by setting A

s

= �1 (B
p

= �1)
on a star (plaquette). The longitudinal field introduces a dis-
persion for the m particles which finally condense and drive
the phase transition at h = h

c

by confinement of the e parti-
cles [23–25, 38].

The above considerations regarding the relationship be-
tween Ising and Ising* QFT can be made very explicit for
the Toric Code. The Toric Code Eq. (3) in the sector without
e particles (A

s

= 1 8s) can be exactly mapped to an even TFI
model on the dual square lattice with N sites, where only the
even spin-flip sector is present [38, 44, 45]. The groundstate
manifold, described by the eigenvalues of the Wilson loops,
maps to both, periodic and anti-periodic boundary conditions
of the Ising model [46]. In the following we will make use of
this mapping to compute the finite-size torus spectrum of the
Ising* transition for ⌧ = i using ED.

In the left part of Fig. 4 we present the low-energy finite-
size spectrum of the Ising* transition obtained with ED sim-
ulations. The spectrum is rescaled with the same factor �0

as in Fig. 2 such that they can be easily compared. The rela-
tionship between the critical Ising and Ising* theories results
in the fact that the levels called "

T

(+�) in Fig. 2 are identi-
cally present in the Ising* spectrum (c.f. P/P levels in Fig. 4).
The most remarkable feature, however, is the presence of very
low-lying levels in the spectrum. They arise from the ground-
state manifold in the spin-liquid phase, where their splitting
exponentially scales to zero with L. At criticality they, how-
ever, scale as 1/

p
N as the entire low-energy spectrum. The

small relative splitting of the four lowest levels is surprisingly
small. The right panel of Fig. 4 shows a comparison of the
universal torus spectrum for an Ising* transition obtained with
ED and ✏-expansion similar to Fig. 3 [47]. A zoom into the
conspicous low-energy levels is shown in the inset. Again we

FIG. 4. Universal torus spectra for the Ising* QFT and the mod-
ular parameters ⌧ = i. The labels A/P etc. denote the boundary
conditions along the two directions of the torus, where P(A) means
(anti-)periodic. Left: Normalized low-energy spectrum from ED
with the same normalization constant �0 as in Fig. 2. The levels
in the P/P sector are the "T (+�) levels from the TFI spectrum. A
very remarkable feature are the four very low-lying levels which gov-
ern the four-fold degenerate groundstate manifold in the deconfined
phase. See Fig. 2 for further details. Right: Full symbols denote
numerical results obtained by ED, while empty symbols denote ✏-
expansion results. The dashed line shows a dispersion with the speed
of light. The inset is a zoom into the four lowest levels. See Fig. 3
for further details.

observe a decent agreement of the different methods fortify-
ing the idea of a universal torus spectrum also for the Ising*
transition This explicitely demonstrates, that the effect of a
neighbouring Z2 topological phase on the critical torus spec-
trum is not just an artefact of the exact mapping in the special
case of the Toric Code considered here for numerical simula-
tions.

Conclusions — We have shown that the torus energy
spectrum provides a characteristic fingerprint of the confor-
mal field theory and its operator content governing a quan-
tum critical point in 2+1D. We have computed the universal
torus energy spectrum for the Ising and Ising* transitions in
2+1D providing a characteristic fingerprint of the correspond-
ing conformal field theories and have highlighted the implica-
tions of a neighbouring Z2 spin liquid on the torus spectrum.
Additionally, we have presented a phenomenological picture

based on the quantum numbers of the individual energy levels
which shows a qualitatively similar structure as the operator
content of the field theory. Using the numerical and analyt-
ical technology presented in this paper it will be possible to
inspect and chart the characteristic spectrum of more complex
quantum critical points, such as O(N) Wilson-Fisher fixed
points, Gross-Neveu-Yukawa type phase transitions in inter-
acting Dirac fermion models [48, 49] or designer Hamiltoni-
ans displaying deconfined criticality [2].

A.M.L. thanks R.C. Brower, J.L. Cardy and A.W. Sand-
vik for discussions. L.-P.H. and M.S. acknowledge support
through the Austrian Science Fund SFB FoQus (F-4018).
S.W. and S.S. are supported by the U.S. NSF under Grant
DMR-1360789. We thank A. Wietek for his help on com-

comparison between numerics and epsilon-expansion: 

At criticality the 4 “topological sectors” scale also as 1/L , but are much closer 
together than the next level above them. 
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Toric code with Ising interactions

Want to study a possible quantum phase transition between Z2 topological 
order and spontaneous global Z2 symmetry breaking. 

Toric code plus additional Ising interactions:

3

FIG. 2. Mapping of the Ising interactions from the Toric Code to the
new model. Solid lines show the original interactions, dotted lines
(in the same color) the mapped interactions. The two sublattices of
the square lattice are denoted by red squares/circles. The resulting
two-body Ising interactions decouple the sublattices, the four-body
interaction couples them.
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Appendix A: Mapping

In this section, we show in detail the exact mapping of the
charge-free sector of the Toric Code model perturbed by near-
est and next-to-nearest neighbour Ising couplings Eq. (??) to
a transverse field Ising model with additional four-spin cou-
plings Eq. (??). We also demonstrate, that only even states un-
der spin-inversion symmetry are present in the mapped model,
and periodic as well as antiperiodic boundary conditions have
to be considered to reconstruct the different topological sec-
tors in the perturbed Toric Code model. A similar mapping
has already been applied to the Toric Code in longitudinal
field [1–3].

FIG. 1. The Toric Code on a torus. Black dots show the positions
of the Toric Code variables �x,z

i

, grey squares the dual square lattice
for the variables µx,z

p

. T1,2 depict a choice of the two incontractible
loops winding around the torus. See text for further details.

The Hamiltonian of the Toric Code with Ising interactions
is given by
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where the �
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describe spins on the links of a square lattice, p
denotes a plaquette and s a star on this lattice. All A
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commute with each other and thus the GS of the Hamiltonian
for J
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leading to a 4-fould degenerate groundstate manifold. This
groundstate manifold can be distinguished by the expectation
values of the Wilson loop operators t1,2 =

Q
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where the
paths wind around the torus along two non-contractible loops
through the centers of the edges of the lattice (e.g. parallel to
T1,2 in Fig. 1).

To perform the mapping to a transverse field Ising model

we first note, that A
s

and t1,2 commute with the Ising interac-
tions, and are thus conserved. So, we consider the charge-free
sector, A

s

= 1 8s, which describes the low-energy physics
even at criticality, and define the new variables
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on each site p of the dual lattice (center of plaquette p) [3]. We
choose two incontractible paths T1,2 in x̂(ŷ) direction along
the lattice. The path c

p!(") is then a straight path from T2(1)

to the site p in x̂(ŷ)-direction along the dual lattice (cf. Fig. 1).
It is straightforward to show that these variables fulfill the
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} = 0, (µx

p

)2 = 1 and that

�x

i

(x̂) = µx

p(i),"µ
x
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where �x

i

(x̂(ŷ)) describes a Pauli operator on a link in x̂(ŷ)-
direction on the lattice.

We can now map each term in the Toric Code to our new
variables and obtain a transverse field Ising model with second
and third neighbour Ising couplings and an additional four-
spin coupling
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Fig. 2 demonstrates the mapping of the Ising interactions from
the Toric Code to the mapped model.

The resulting model is invariant under global spin-inversion
I =

Q
p

µz

p

. From Eq. (A2) it immediately follows that

I =
Y

p

B
p

= 1 (A7)

where the last equality is always satisfied on a torus and so
only even states in the mapped model are allowed.

Let us finally apply the mapping on the different ground-
state sectors characterized by the eigenvalues of t1,2. Using
Eq. (A4) and Eq. (A5) it follows that

t1 =
L�1Y

p=0

µx

(p,j)µ
x

(p+1,j) = µx

(0,j)µ
x
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where the index (p, j) labels the position px̂+ jŷ on the dual
lattice and L is the linear extend of the torus. An equiva-
lent relation can be computed for t2. The different ground-
state sectors of the Toric Code therefore map onto periodic
and antiperiodic boundary conditions of the transverse field
Ising model for both directions around the torus.
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In this section, we show in detail the exact mapping of the
charge-free sector of the Toric Code model perturbed by near-
est and next-to-nearest neighbour Ising couplings Eq. (??) to
a transverse field Ising model with additional four-spin cou-
plings Eq. (??). We also demonstrate, that only even states un-
der spin-inversion symmetry are present in the mapped model,
and periodic as well as antiperiodic boundary conditions have
to be considered to reconstruct the different topological sec-
tors in the perturbed Toric Code model. A similar mapping
has already been applied to the Toric Code in longitudinal
field [1–3].
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Fig. 2 demonstrates the mapping of the Ising interactions from
the Toric Code to the mapped model.
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where the last equality is always satisfied on a torus and so
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where the index (p, j) labels the position px̂+ jŷ on the dual
lattice and L is the linear extend of the torus. An equiva-
lent relation can be computed for t2. The different ground-
state sectors of the Toric Code therefore map onto periodic
and antiperiodic boundary conditions of the transverse field
Ising model for both directions around the torus.
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variables and obtain a transverse field Ising model with second
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(A6)

Fig. 2 demonstrates the mapping of the Ising interactions from
the Toric Code to the mapped model.

The resulting model is invariant under global spin-inversion
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where the last equality is always satisfied on a torus and so
only even states in the mapped model are allowed.

Let us finally apply the mapping on the different ground-
state sectors characterized by the eigenvalues of t1,2. Using
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where the index (p, j) labels the position px̂+ jŷ on the dual
lattice and L is the linear extend of the torus. An equiva-
lent relation can be computed for t2. The different ground-
state sectors of the Toric Code therefore map onto periodic
and antiperiodic boundary conditions of the transverse field
Ising model for both directions around the torus.
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FIG. 2. Mapping of the Ising interactions from the Toric Code to the
new model. Solid lines show the original interactions, dotted lines
(in the same color) the mapped interactions. The two sublattices of
the square lattice are denoted by red squares/circles. The resulting
two-body Ising interactions decouple the sublattices, the four-body
interaction couples them.
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In this section, we show in detail the exact mapping of the
charge-free sector of the Toric Code model perturbed by near-
est and next-to-nearest neighbour Ising couplings Eq. (??) to
a transverse field Ising model with additional four-spin cou-
plings Eq. (??). We also demonstrate, that only even states un-
der spin-inversion symmetry are present in the mapped model,
and periodic as well as antiperiodic boundary conditions have
to be considered to reconstruct the different topological sec-
tors in the perturbed Toric Code model. A similar mapping
has already been applied to the Toric Code in longitudinal
field [1–3].
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Fig. 2 demonstrates the mapping of the Ising interactions from
the Toric Code to the mapped model.
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where the last equality is always satisfied on a torus and so
only even states in the mapped model are allowed.

Let us finally apply the mapping on the different ground-
state sectors characterized by the eigenvalues of t1,2. Using
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where the index (p, j) labels the position px̂+ jŷ on the dual
lattice and L is the linear extend of the torus. An equiva-
lent relation can be computed for t2. The different ground-
state sectors of the Toric Code therefore map onto periodic
and antiperiodic boundary conditions of the transverse field
Ising model for both directions around the torus.
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lent relation can be computed for t2. The different ground-
state sectors of the Toric Code therefore map onto periodic
and antiperiodic boundary conditions of the transverse field
Ising model for both directions around the torus.
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FIG. 2. Mapping of the Ising interactions from the Toric Code to the
new model. Solid lines show the original interactions, dotted lines
(in the same color) the mapped interactions. The two sublattices of
the square lattice are denoted by red squares/circles. The resulting
two-body Ising interactions decouple the sublattices, the four-body
interaction couples them.
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Phase diagram of the Quantum Ashkin-Teller model

Rather poorly studied in the past, so here we perform a new QMC study:

first order 

3D XY

2 copies TFI

2 copies of 
3D Ising

paramagnet

both sublattices 
ordered

first order 

3D XY

only one 
 sublattice 

ordered

Phase structure 
in agreement with  
QFT results of Nc=2 
      theory with 
cubic anisotropy.
�4



Phase diagram of the Toric Code + Ising interactions

Translate the Ashkin-Teller results back to the Toric code + Ising:

first order*

3D XY*

(2 x 3D Ising)*

Z2 topological order

global  
Z2 symmetry 

breaking  
magnetic order

first order 

3D XY*

spatial symmetry 
 breaking

The direct transition 
between Z2 topological  
order and Z2 symmetry 
breaking can be: 

first order 

(2 x 3D Ising)*  
unstable fixed point 

3D XY* !



Spectroscopy of QCP

ED Torus Spectra in the Quantum Ashkin-Teller model at criticality:
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Spectroscopy of QCP

ED Torus Spectra in the Quantum Ashkin-Teller model at criticality:
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Torus energy spectrum of 3D XY*

Remove all odd charge sectors in 3D XY but add all 4 BC PP/PA/AP/AA sectors:
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Outline of this talk

Torus Energy Spectra and QFT ? 

Spectrum of the “standard” 2+1D Ising transition 

Spectrum of the “Z2 confinement” transition (Ising*) 

Spectrum of the 3D XY* Transition 

Outlook
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Conclusion / Outlook

We have shown that the universal torus energy spectrum of the CFT 
describing quantum critical points is accessible numerically. 

The torus energy spectrum contains valuable information on the “operator  
content”. It is e.g. able to discriminate the Ising from the Ising* universality class,  
and 2 x Ising from 3D XY 

We have preliminary results for O(2)/O(3) Wilson-Fisher fixed points and some  
Gross-Neveu critical points. 

We believe that this technology could help to shed light on more advanced 
topics, such as the SO(5) symmetry claimed to appear at deconfined critical 
points by Nahum et al.  

Results from CFT side ?
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2 i - Triangular
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2 i - Kagome
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Thank you for your attention !


