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• OBJECTIVE

? combine physics-based with data-driven modeling

? account for statistical signatures of turbulent flows using
stochastically-forced linearized models
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Stochastic modeling of turbulent flows
• PROPOSED APPROACH

? view second-order statistics as data for an inverse problem

• KEY QUESTIONS

? Can we identify forcing statistics to reproduce available statistics?

? Can this be done by white in-time stochastic process?

OUR CONTRIBUTION

principled way of turbulence modeling as an inverse problem

3 / 36



Stochastic modeling of turbulent flows
• PROPOSED APPROACH

? view second-order statistics as data for an inverse problem

• KEY QUESTIONS

? Can we identify forcing statistics to reproduce available statistics?

? Can this be done by white in-time stochastic process?

OUR CONTRIBUTION

principled way of turbulence modeling as an inverse problem

3 / 36



Input-output analysis
• TOOL FOR QUANTIFYING SENSITIVITY

? spatio-temporal frequency responses
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Response to stochastic forcing
• STOCHASTIC FORCING

white in t and y

harmonic in x and z

}
d(x, y, z, t) = d̂(y, t) eikxx eikzz

Farrell & Ioannou, Phys. Fluids A ’93

Bamieh & Dahleh, Phys. Fluids ’01
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Jovanović & Bamieh, J. Fluid Mech. ’05

• DETERMINISTIC FORCING

deterministic in y

harmonic in x, z, t

}
d(x, y, z, t) = d̂(y) eikxx eikzz eiωt

Trefethen et al., Science ’93
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Input-output analysis of turbulent flows
• STREAMWISE CONSTANT FLUCTUATIONS
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Input-output analysis of turbulent flows
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channel flow with Rτ = 547

spanwise wavenumber

del Álamo & Jiménez, J. Fluid Mech. ’06

Hwang & Cossu, McKeon & coworkers
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Response to stochastic inputs

ẋ = Ax + B d
stochastic input d stochastic output x

• LYAPUNOV EQUATION

? propagates white correlation of d into colored statistics of x

AX + XA∗ = −BWB∗

? colored-in-time d

AX + XA∗ = −
Z︷ ︸︸ ︷

(BH∗ + H B∗)

H := lim
t→∞

E (x(t) d∗(t)) +
1

2
BW

Georgiou, IEEE TAC ’02
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Response to stochastic inputs
• THEOREM

X = X∗ � 0 is the steady-state covariance of (A,B)

m

there is a solution H to

BH∗ + H B∗ = − (AX + XA∗)

m

rank

[
AX + XA∗ B

B∗ 0

]
= rank

[
0 B
B∗ 0

]

Georgiou, IEEE TAC ’02
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Lyapunov equation

discrete-time dynamics: xt+1 = Axt + B dt

white-in-time input: E (dt d
∗
τ ) = W δt− τ

• LYAPUNOV EQUATION

Xt+1 := E
(
xt+1 x

∗
t+1

)

= E
(

(Axt + B dt) (x∗tA
∗ + d∗tB

∗)
)

= AE (xt x
∗
t )A

∗ + BE (dt d
∗
t )B

∗

= AXtA
∗ + BWB∗

? continuous-time version

dXt

d t
= AXt + XtA

∗ + BWB∗
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Outline
• STRUCTURED COVARIANCE COMPLETION PROBLEM

? embed available statistical features in turbulence models

? complete unavailable data (via convex optimization)

• TURBULENCE MODELING

? case study: turbulent channel flow

? verification in linear stochastic simulations

• ALGORITHM

? Alternating Minimization Algorithm (AMA)

? works as proximal gradient on the dual problem

• SUMMARY AND OUTLOOK
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Low-Complexity Modeling of Partially Available
Second-Order Statistics: Theory and an Efficient

Matrix Completion Algorithm
Armin Zare, Student Member, IEEE, Yongxin Chen, Student Member, IEEE,

Mihailo R. Jovanović, Senior Member, IEEE, and Tryphon T. Georgiou, Fellow, IEEE

Abstract—State statistics of linear systems satisfy cer-
tain structural constraints that arise from the underlying
dynamics and the directionality of input disturbances. In
the present paper, we study the problem of completing par-
tially known state statistics. Our aim is to develop tools that
can be used in the context of control-oriented modeling
of large-scale dynamical systems. For the type of applica-
tions we have in mind, the dynamical interaction between
state variables is known while the directionality and dynam-
ics of input excitation is often uncertain. Thus, the goal
of the mathematical problem that we formulate is to iden-
tify the dynamics and directionality of input excitation in
order to explain and complete observed sample statistics.
More specifically, we seek to explain correlation data with
the least number of possible input disturbance channels.
We formulate this inverse problem as rank minimization,
and for its solution, we employ a convex relaxation based
on the nuclear norm. The resulting optimization problem
is cast as a semidefinite program and can be solved us-
ing general-purpose solvers. For problem sizes that these
solvers cannot handle, we develop a customized alternat-
ing minimization algorithm (AMA). We interpret AMA as a
proximal gradient for the dual problem and prove sublin-
ear convergence for the algorithm with fixed step-size. We
conclude with an example that illustrates the utility of our
modeling and optimization framework and draw contrast
between AMA and the commonly used alternating direction
method of multipliers (ADMM) algorithm.

Index Terms—Alternating minimization algorithm, convex
optimization, disturbance dynamics, low-rank approxima-
tion, matrix completion problems, nuclear norm regulariza-
tion, structured covariances.

I. INTRODUCTION

MOTIVATION for this work stems from control-oriented
modeling of systems with a large number of degrees of

freedom. Indeed, dynamics governing many physical systems
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are prohibitively complex for purposes of control design and
optimization. Thus, it is common practice to investigate low-
dimensional models that preserve the essential dynamics. To
this end, stochastically driven linearized models often represent
an effective option that is also capable of explaining observed
statistics. Further, such models are well-suited for analysis and
synthesis using tools from modern robust control.

An example that illustrates the point is the modeling of fluid
flows. In this, the Navier-Stokes equations are prohibitively
complex for control design [1]. On the other hand, linearization
of the equations around the mean-velocity profile in the presence
of stochastic excitation has been shown to qualitatively repli-
cate structural features of shear flows [2]–[10]. However, it has
also been recognized that a simple white-in-time stochastic ex-
citation cannot reproduce important statistics of the fluctuating
velocity field [11], [12]. In this paper, we introduce a mathemat-
ical framework to consider stochastically driven linear models
that depart from the white-in-time restriction on random distur-
bances. Our objective is to identify low-complexity disturbance
models that account for partially available second-order statis-
tics of large-scale dynamical systems.

Thus, herein, we formulate a covariance completion problem
for linear time-invariant (LTI) systems with uncertain distur-
bance dynamics. The complexity of the disturbance model is
quantified by the number of input channels. We relate the num-
ber of input channels to the rank of a certain matrix which
reflects the directionality of input disturbances and the corre-
lation structure of excitation sources. We address the resulting
optimization problem using the nuclear norm as a surrogate for
rank [13]–[20].

The relaxed optimization problem is convex and can be cast as
a semidefinite program (SDP) which is readily solvable by stan-
dard software for small-size problems. A further contribution
is to specifically address larger problems that general-purpose
solvers cannot handle. To this end, we exploit the problem struc-
ture, derive the Lagrange dual, and develop an efficient cus-
tomized Alternating Minimization Algorithm (AMA). Specif-
ically, we show that AMA is a proximal gradient for the dual
and establish convergence for the covariance completion prob-
lem. We utilize a Barzilai-Borwein (BB) step-size initialization
followed by backtracking to achieve sufficient dual ascent. This
enhances convergence relative to theoretically-proven sublinear
convergence rates for AMA with fixed step-size. We also draw
contrast between AMA and the commonly used ADMM by
showing that AMA leads to explicit, easily computable updates
of both primal and dual optimization variables.

The solution to the covariance completion problem gives rise
to a class of linear filters that realize colored-in-time distur-
bances and account for the observed state statistics. This is a

0018-9286 © 2016 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications standards/publications/rights/index.html for more information.

• TURBULENCE MODELING
J. Fluid Mech., page 1 of 45. c© Cambridge University Press 2016
doi:10.1017/jfm.2016.682

1

Colour of turbulence

Armin Zare1, Mihailo R. Jovanović1,† and Tryphon T. Georgiou1

1Department of Electrical and Computer Engineering, University of Minnesota,
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In this paper, we address the problem of how to account for second-order statistics
of turbulent flows using low-complexity stochastic dynamical models based on the
linearized Navier–Stokes equations. The complexity is quantified by the number of
degrees of freedom in the linearized evolution model that are directly influenced by
stochastic excitation sources. For the case where only a subset of velocity correlations
are known, we develop a framework to complete unavailable second-order statistics in
a way that is consistent with linearization around turbulent mean velocity. In general,
white-in-time stochastic forcing is not sufficient to explain turbulent flow statistics. We
develop models for coloured-in-time forcing using a maximum entropy formulation
together with a regularization that serves as a proxy for rank minimization. We show
that coloured-in-time excitation of the Navier–Stokes equations can also be interpreted
as a low-rank modification to the generator of the linearized dynamics. Our method
provides a data-driven refinement of models that originate from first principles and
captures complex dynamics of turbulent flows in a way that is tractable for analysis,
optimization and control design.

Key words: control theory, turbulence modelling, turbulent flows

1. Introduction
The advent of advanced measurement techniques and the availability of parallel

computing have played a pivotal role in improving our understanding of turbulent
flows. Experimentally and numerically generated data sets are becoming increasingly
available for a wide range of flow configurations and Reynolds numbers. An accurate
statistical description of turbulent flows may provide insights into flow physics and
will be instrumental in model-based control design for suppressing or promoting
turbulence. Thus, it is increasingly important to understand how structural and
statistical features of turbulent flows can be embedded in models of low complexity
that are suitable for analysis, optimization and control design.

Nonlinear dynamical models of wall-bounded shear flows that are based on
the Navier–Stokes (NS) equations typically have a large number of degrees of
freedom. This makes them unsuitable for analysis and control synthesis. The
existence of coherent structures in turbulent wall-bounded shear flows (Robinson
1991; Adrian 2007; Smits, McKeon & Marusic 2011) has inspired the development
of data-driven techniques for reduced-order modelling of the NS equations. However,

† Email address for correspondence: mihailo@umn.edu
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this end, stochastically driven linearized models often represent
an effective option that is also capable of explaining observed
statistics. Further, such models are well-suited for analysis and
synthesis using tools from modern robust control.
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flows. In this, the Navier-Stokes equations are prohibitively
complex for control design [1]. On the other hand, linearization
of the equations around the mean-velocity profile in the presence
of stochastic excitation has been shown to qualitatively repli-
cate structural features of shear flows [2]–[10]. However, it has
also been recognized that a simple white-in-time stochastic ex-
citation cannot reproduce important statistics of the fluctuating
velocity field [11], [12]. In this paper, we introduce a mathemat-
ical framework to consider stochastically driven linear models
that depart from the white-in-time restriction on random distur-
bances. Our objective is to identify low-complexity disturbance
models that account for partially available second-order statis-
tics of large-scale dynamical systems.

Thus, herein, we formulate a covariance completion problem
for linear time-invariant (LTI) systems with uncertain distur-
bance dynamics. The complexity of the disturbance model is
quantified by the number of input channels. We relate the num-
ber of input channels to the rank of a certain matrix which
reflects the directionality of input disturbances and the corre-
lation structure of excitation sources. We address the resulting
optimization problem using the nuclear norm as a surrogate for
rank [13]–[20].

The relaxed optimization problem is convex and can be cast as
a semidefinite program (SDP) which is readily solvable by stan-
dard software for small-size problems. A further contribution
is to specifically address larger problems that general-purpose
solvers cannot handle. To this end, we exploit the problem struc-
ture, derive the Lagrange dual, and develop an efficient cus-
tomized Alternating Minimization Algorithm (AMA). Specif-
ically, we show that AMA is a proximal gradient for the dual
and establish convergence for the covariance completion prob-
lem. We utilize a Barzilai-Borwein (BB) step-size initialization
followed by backtracking to achieve sufficient dual ascent. This
enhances convergence relative to theoretically-proven sublinear
convergence rates for AMA with fixed step-size. We also draw
contrast between AMA and the commonly used ADMM by
showing that AMA leads to explicit, easily computable updates
of both primal and dual optimization variables.

The solution to the covariance completion problem gives rise
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bances and account for the observed state statistics. This is a
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Problem setup

AX + X A∗ = − (BH∗ + H B∗)︸ ︷︷ ︸
Z

known entries of X

• PROBLEM DATA

? system matrix A; output matrix C

? partially available entries of X

• UNKNOWNS

? missing entries of X

? disturbance dynamics Z

{
input matrix B

input power spectrum H
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Inverse problem

• CONVEX OPTIMIZATION PROBLEM

minimize
X,Z

− log det (X) + γ ‖Z‖∗

subject to AX + X A∗ + Z = 0 physics

(C X C∗)ij = Gij for given i, j available data

? nuclear norm: proxy for rank minimization

‖Z‖∗ :=
∑

σi(Z)

Fazel, Boyd, Hindi, Recht, Parrilo, Candès, Chandrasekaran, . . .
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Filter design

filter

ż = Af z + Bw

d = Cf z + w

linear system

ẋ = Ax + B d

y = C x

w d y

? white-in-time input

E (w(t1)w
∗(t2)) = Ω δ(t1 − t2)

? filter dynamics

Af = A + B Cf

Cf =

(
H∗ − 1

2
ΩB∗

)
X−1
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Low-rank modification

filter
linearized
dynamics

white
noise
w x

colored
noise

d

colored input: ẋ = Ax + B d

modified
dynamics

white
noise
w x

low-rank modification: ẋ = (A + B Cf )x + B w
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Turbulent channel flow

output covariance:

Φ(k) := lim
t→∞

E (v(t,k)v∗(t,k))

v = [u v w ]T

k − horizontal wavenumbers

A =

[
A11 0
A12 A22

]

known elements of Φ(k)
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Turbulent channel flow• KEY OBSERVATION

? white-in-time forcing: too restrictive

λi (AXdns + XdnsA
∗)

Jovanović & Georgiou, APS DFD ’10
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One-point correlations
normal stresses shear stress

y y

Nonlinear simulations −
Solution to inverse problem ◦

20 / 36



Two-point correlations
nonlinear simulations covariance completion

Φ11

Φ12
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Φ33, dns Φ33 Φ33(y+ = 15, : )

y

y

y

y y
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Importance of physics

• COVARIANCE COMPLETION PROBLEM

minimize
X,Z

− log det (X) + γ ‖Z‖∗

subject to AX + X A∗ + Z = 0 physics

(C X C∗)ij = Gij for given i, j available data

physics helps!
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Verification in stochastic simulations

• Rτ = 180; kx = 2.5, kz = 7

uu

y

uv

y

Direct Numerical Simulations −
Linear Stochastic Simulations ◦

E

t
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Power spectral density

• Rτ = 186; kx = 2.5, kz = 7

trace (T (ω) T ∗(ω))

original linearized NS model

eddy-viscosity enhanced model

dynamics w/ low-rank modification

ω

T (ω) = −C (iωI + A)−1B
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Modeling nonlinear terms

linearized dynamics

nonlinear terms
−(v · ∇) v

v

ẋ = Ax + Bw + B d

v = C x

Cf

white
noise
w

d

v

x

equivalence at the level of 2nd order statistics
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ALGORITHM
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Primal and dual problems

• PRIMAL
minimize

X,Z
− log det (X) + γ ‖Z‖∗

subject to AX + BZ − C = 0

• DUAL
maximize

Y1, Y2
log det (A† Y ) − 〈G, Y2〉

subject to ‖Y1‖2 ≤ γ

A† − adjoint of A; Y :=

[
Y1

Y2

]
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SDP characterization

Z = Z+ − Z−, Z+ � 0, Z− � 0

minimize
X,Z+, Z−

− log det (X) + γ trace (Z+ + Z−)

subject to AX + BZ − C = 0

Z+ � 0, Z− � 0
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Customized algorithms

• ALTERNATING DIRECTION METHOD OF MULTIPLIERS (ADMM)

Boyd et al., Found. Trends Mach. Learn. ’11

• ALTERNATING MINIMIZATION ALGORITHM (AMA)

Tseng, SIAM J. Control Optim. ’91
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Augmented Lagrangian

Lρ(X,Z;Y ) = − log det (X) + γ ‖Z‖∗ + 〈Y,AX + BZ − C〉

+
ρ

2
‖AX + BZ − C‖2F

• METHOD OF MULTIPLIERS

? minimizes Lρ jointly over X and Z

(
Xk+1, Zk+1

)
:= argmin

X,Z
Lρ(X,Z;Y k)

Y k+1 := Y k + ρ
(
AXk+1 + BZk+1 − C

)
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ADMM vs AMA
• ADMM

Xk+1 := argmin
X

Lρ(X,Zk;Y k)

Zk+1 := argmin
Z

Lρ(Xk+1, Z;Y k)

Y k+1 := Y k + ρ
(
AXk+1 + BZk+1 − C

)

• AMA

Xk+1 := argmin
X

L0(X,Z
k;Y k) matrix inverse

Zk+1 := argmin
Z

Lρ(Xk+1, Z;Y k) sv-thresholding

Y k+1 := Y k + ρk
(
AXk+1 + BZk+1 − C

)
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Properties of AMA

• COVARIANCE COMPLETION VIA AMA

? proximal gradient on the dual problem

? sub-linear convergence with constant step-size

STEP-SIZE SELECTION

? Barzilla-Borwein initialization followed by backtracking

? positive definiteness of Xk+1

? sufficient dual ascent

Zare, Chen, Jovanović, Georgiou, IEEE TAC ’16
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Zare, Chen, Jovanović, Georgiou, IEEE TAC ’16

33 / 36



Challenges
• TURBULENCE MODELING

? development of turbulence closure models

? modeling higher-order moments

? design of flow estimators/controllers

• ALGORITHMIC

? alternative rank approximations

(e.g., iterative re-weighting, matrix factorization)

? improving scalability

• THEORETICAL

? conditions for exact recovery

? convergence rate of AMA with BB step-size initialization
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Summary
• THEORETICAL AND ALGORITHMIC DEVELOPMENTS

? Zare, Chen, Jovanović, Georgiou, IEEE TAC ’16 (in press)

? Zare, Jovanović, Georgiou, IEEE CDC ’16

• APPLICATION TO TURBULENT FLOWS

? Zare, Jovanović, Georgiou, J. Fluid Mech. ’16 (in press)

arXiv:1602.05105

• CUSTOMIZED ALGORITHMS FOR COVARIANCE COMPLETION

? ADMM vs AMA

? AMA works as a proximal gradient on the dual problem
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