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Turbulence modeling

stochastic stochastic
¢ = Az + Bd input linearized output
_—m _—
y = Cuz dynamics
e OBJECTIVE

x combine physics-based with data-driven modeling

= account for statistical signatures of turbulent flows using
stochastically-forced linearized models



e PROPOSED APPROACH

x view second-order statistics as data for an inverse problem

e KEY QUESTIONS

= Can we identify forcing statistics to reproduce available statistics?

= Can this be done by white in-time stochastic process?
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OUR CONTRIBUTION
principled way of turbulence modeling as an inverse problem
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Input-output analysis

e TOOL FOR QUANTIFYING SENSITIVITY
* spatio-temporal frequency responses
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IMPLICATIONS FOR

physics: insight into mechanisms

control: control-oriented modeling




e STOCHASTIC FORCING
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e STOCHASTIC FORCING

white intandy R _ .
o d(z,y,2,t) = d(y,t) ikt gik=2
harmonic inz and z
Farrell & loannou, Phys. Fluids A '93
Bamieh & Dahleh, Phys. Fluids 01

Jovanovi¢ & Bamieh, J. Fluid Mech. '05

e DETERMINISTIC FORCING
deterministic iny . , , .
. . d(fE, Y, 2, t) _ d(y) elsz elkzz elwt
harmonic inz, z, ¢
Trefethen et al., Science 93
Jovanovié, PhD Thesis '04
McKeon & Sharma, J. Fluid Mech. 10
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e STREAMWISE CONSTANT FLUCTUATIONS

energy density

Input-output analysis of turbulent flows

channel flow with R, = 547
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Response to stochastic inputs

stochastic input d

= Az + Bd

stochastic output =

e LYAPUNOV EQUATION

* propagates white correlation of d into colored statistics of «

AX + XA* = —-BWDB*



Response to stochastic inputs

stochastic input d

= Az + Bd

stochastic output =

e LYAPUNOV EQUATION

* propagates white correlation of d into colored statistics of «
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* colored-in-time d
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e THEOREM

X = X* = 0 isthe steady-state covariance of (A, B)

0

there is a solution H to
BH* + HB* = —(AX + XA*)

0

kAX+XA* Bl K 0 B
ran B o| = rank g

Georgiou, IEEE TAC 02
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Lyapunov equation
discrete-time dynamics: T = Az + Bd,

white-in-time input: E(d,d) = W _,

e LYAPUNOV EQUATION
Xiv1 = E(mp137,)
= E((Az + Bd,) (zjA* + d;B*))
= AE (xv,z;) A* + BE(d, d;) B*
= AX,A* + BWB*
* continuous-time version

d X;
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Outline
STRUCTURED COVARIANCE COMPLETION PROBLEM

* embed available statistical features in turbulence models

* complete unavailable data (via convex optimization)

TURBULENCE MODELING
* case study: turbulent channel flow

* verification in linear stochastic simulations

ALGORITHM
* Alternating Minimization Algorithm (AMA)

* works as proximal gradient on the dual problem

SUMMARY AND OUTLOOK
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Details
e THEORY AND ALGORITHMS

@ IEEE TRANSACTIONS ON AUTOMATIC CONTROL, VOL. 00, NO. 00, 2016 1

LOW-CompIexity Modeling of Partially Available
Second-Order Statistics: Theory and an Efficient
Matrix Completion Algorithm

Armin Zare, Student Member, IEEE, Yongxin Chen, Student Member, IEEE,
Mihailo R. Jovanovi¢, Senior Member, IEEE, and Tryphon T. Georgiou, Fellow, IEEE
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e TURBULENCE MODELING
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STRUCTURED COVARIANCE COMPLETION
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Problem setup
known entries of X

9 9 ?
AX + XA* = —(BH* + HB"
9 ?
) \\
?
e PROBLEM DATA ?

* system matrix A; output matrix C

= partially available entries of X

e UNKNOWNS

* missing entries of X

. _ input matrix B
» disturbance dynamics Z <
input power spectrum H
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Inverse problem

e CONVEX OPTIMIZATION PROBLEM

— logdet (X Z ||«
HllI)l(_lHleze og e( )""YH ||

)

subjectto AX 4+ XA* + Z =0 physics
(CXC%);; = Gy forgiven i, available data
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Inverse problem

e CONVEX OPTIMIZATION PROBLEM

— logdet (X Z ||«
HllI)l(_lHleze og e( )""YH ||

)

subjectto AX 4+ XA* + Z =0 physics
(CXC%);; = Gy forgiven i, available data

= nuclear norm: proxy for rank minimization
1Z]l. =) 0i(2)

Fazel, Boyd, Hindi, Recht, Parrilo, Candés, Chandrasekaran, . ..
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Filter design

filter linear system
——| 2= Afz+ Buw d ¢ = Az + Bd
d= Crz+w y = Cx

» white-in-time input
~ filter dynamics

Af = A + BCj
1

Cy = (H* - 593*) X!
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Low-rank modification

white colored
noise noise linearized
w ] filter 7| dynamics

colored input:

T = Az + Bd

16/36



Low-rank modification

white colored
noise noise linearized
> fi > . >
w filter P dynamics T

colored input: & = Az + Bd

white
noise modified
- >
w dynamics x

low-rank modification: & = (A + BCf)z + Bw

16/36



TURBULENCE MODELING
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Turbulent channel flow

output covariance: Yy v
¢(k) = lim E(v(tk)v'(tk) 1 /
— 00 u

—
v = [uv w]f . —,1,”/ I w//
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e KEY OBSERVATION

» white-in-time forcing: too restrictive

)\i (Aans + ansA*)
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Jovanovi¢ & Georgiou, APS DFD ’10
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One-point correlations

normal stresses shear stress

0.5 1

Nonlinear simulations —

NN
™~

Solution to inverse problem ©
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Two-point correlations
nonlinear simulations covariance completion
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Importance of physics

e COVARIANCE COMPLETION PROBLEM
inimi — logdet (X Z ||«
minimize  — logdet (X) + 712

subjectto AX 4+ XA* + Z =0 physics
(CXC%);; = Gy forgiven i, available data

physics helps!
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Verification in stochastic simulations

o R =180k, =25,k, =7

15 %1073 5 x10
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Direct Numerical Simulations —

Linear Stochastic Simulations ©
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Power spectral density

o R =186, k; =2.5,k, =7

trace (T (w) T*(w))

original linearized NS model
eddy-viscosity enhanced model

dynamics w/ low-rank modification

-100 50 o 50 100

T(w) = —C(iwl + A)'B
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Modeling nonlinear terms

> linearized dynamics >

nonlinear terms
—(v-V)v

26/36



Modeling nonlinear terms

> linearized dynamics LN
nonlinear terms
—(v-V)v )

white

noise v

— t = Ax + Bw + Bd ——>
> v = Cuzx
d X
Cr |«

equivalence at the level of 2nd order statistics
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ALGORITHM
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Primal and dual problems
e PRIMAL
mir)l(irgize — logdet (X) + v [|Z]l.

subjectto AX + BZ — C =0
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e PRIMAL

e DUAL

Primal and dual problems

mir)l(irgize — logdet (X) + || Z||«

subjectto AX + BZ — C =0

maximize logdet (ATY) — (G,Y5)
Y1,Y2

subject to ||Yi|l2 < ~

At — adjoint of A; Y =
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SDP characterization

Z:Z+—Z_, Z_;_EO, Z_EO

minimize —logdet (X) + ytrace(Z; + Z_)
X, %4, 2-

subjectto AX + BZ — C =0
Z, =0, Z_ =0
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Customized algorithms

e ALTERNATING DIRECTION METHOD OF MULTIPLIERS (ADMM)

Boyd et al., Found. Trends Mach. Learn. ’11

e ALTERNATING MINIMIZATION ALGORITHM (AMA)

Tseng, SIAM J. Control Optim. 91
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Augmented Lagrangian

L,(X,Z;Y) = —logdet (X) + v[|Z|l. + (Y, AX + BZ — C)

+ LIAX + BZ - |}
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Augmented Lagrangian

L,(X,Z;Y) = —logdet (X) + v[|Z|l. + (Y, AX + BZ — C)

+ LIAX + BZ - |}

e METHOD OF MULTIPLIERS
» minimizes L, jointly over X and Z

(Xk“‘l,ZkH) ‘= argmin [,p(X,ZQYk)
X, Z

Yk+1 — Yk + p(AXk+1 + BZ]C+1 o C)
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ADMM vs AMA
e ADMM

XEH = argmin L,(X, 2% YF)
X

ZF = argmin L,(X*, Z;YF)
Z

Yk+1 — Yk: + p(AXk—H + sz—l-l o C)
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ADMM vs AMA
e ADMM

XL = arg;nin L,(X,Z%YF)
Zk = arg;nin L,(XF 7Yk
VEH = YR 4 p (AXFH + BZMT — C)
e AMA
Xkl o= arg}r{nin Lo(X, ZFYF) matrix inverse
ZM = arg;nin L,(X*1 Z:Y*) sv-thresholding
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Properties of AMA

e COVARIANCE COMPLETION VIA AMA

= proximal gradient on the dual problem

= sub-linear convergence with constant step-size
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Properties of AMA

e COVARIANCE COMPLETION VIA AMA

x proximal gradient on the dual problem

= sub-linear convergence with constant step-size
STEP-SIZE SELECTION

= Barzilla-Borwein initialization followed by backtracking

x positive definiteness of X*+1

* sufficient dual ascent

Zare, Chen, Jovanovic, Georgiou, IEEE TAC '16
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Challenges

e TURBULENCE MODELING

* development of turbulence closure models
* modeling higher-order moments

* design of flow estimators/controllers

e ALGORITHMIC

* alternative rank approximations
(e.g., iterative re-weighting, matrix factorization)

* improving scalability

e THEORETICAL

* conditions for exact recovery

* convergence rate of AMA with BB step-size initialization
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Summary
e THEORETICAL AND ALGORITHMIC DEVELOPMENTS

* Zare, Chen, Jovanovi¢, Georgiou, IEEE TAC ’16 (in press)
* Zare, Jovanovi¢, Georgiou, IEEE CDC '16
e APPLICATION TO TURBULENT FLOWS
* Zare, Jovanovi¢, Georgiou, J. Fluid Mech. '16 (in press)
arXiv:1602.05105
e CUSTOMIZED ALGORITHMS FOR COVARIANCE COMPLETION
* ADMM vs AMA

* AMA works as a proximal gradient on the dual problem
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