Color of Turbulence: stochastic dynamical modeling of turbulent flows

Mihailo Jovanović

www.umn.edu/~mihailo

joint work with

Armin Zare

Yongxin Chen

Tryphon Georgiou

Recurrence, self-organization, and the dynamics of turbulence

Turbulence modeling

Turbulence modeling

OBJECTIVE

- * combine physics-based with data-driven modeling
- account for statistical signatures of turbulent flows using stochastically-forced linearized models

- PROPOSED APPROACH
 - * view second-order statistics as data for an inverse problem
- Key questions
 - * Can we identify forcing statistics to reproduce available statistics?
 - Can this be done by white in-time stochastic process?

- PROPOSED APPROACH
 - * view second-order statistics as data for an inverse problem
- Key questions
 - Can we identify forcing statistics to reproduce available statistics?
 - Can this be done by white in-time stochastic process?

OUR CONTRIBUTION

principled way of turbulence modeling as an inverse problem

Input-output analysis

- TOOL FOR QUANTIFYING SENSITIVITY
 - * spatio-temporal frequency responses

Input-output analysis

- TOOL FOR QUANTIFYING SENSITIVITY
 - * spatio-temporal frequency responses

IMPLICATIONS FOR

physics: insight into mechanisms

control: control-oriented modeling

STOCHASTIC FORCING

white in t and y harmonic in x and z

 $\mathbf{d}(x, y, z, t) = \hat{\mathbf{d}}(y, t) e^{\mathrm{i}k_x x} e^{\mathrm{i}k_z z}$

Farrell & Ioannou, Phys. Fluids A '93

Bamieh & Dahleh, Phys. Fluids '01

Jovanović & Bamieh, J. Fluid Mech. '05

STOCHASTIC FORCING

white in t and y harmonic in x and z

$$\mathbf{d}(x, y, z, t) = \hat{\mathbf{d}}(y, t) e^{\mathrm{i}k_x x} e^{\mathrm{i}k_z z}$$

Farrell & Ioannou, Phys. Fluids A '93 Bamieh & Dahleh, Phys. Fluids '01 Jovanović & Bamieh, J. Fluid Mech. '05

DETERMINISTIC FORCING

$$\left. \begin{array}{c} \mathbf{deterministic} \quad \text{in } y \\ \mathbf{harmonic} \quad \text{in } x,\,z,\,t \end{array} \right\} \quad \mathbf{d}(x,y,z,t) \; = \; \hat{\mathbf{d}}(y) \, \mathrm{e}^{\mathrm{i}k_x x} \, \mathrm{e}^{\mathrm{i}k_z z} \, \mathrm{e}^{\mathrm{i}\omega t} \\ \end{array}$$

$$\mathbf{d}(x, y, z, t) = \hat{\mathbf{d}}(y) e^{ik_x x} e^{ik_z z} e^{i\omega}$$

Trefethen et al., Science '93

Jovanović, PhD Thesis '04

McKeon & Sharma, J. Fluid Mech. '10

Input-output analysis of turbulent flows

STREAMWISE CONSTANT FLUCTUATIONS

del Álamo & Jiménez, J. Fluid Mech. '06 Hwang & Cossu, McKeon & coworkers

Response to stochastic inputs

- LYAPUNOV EQUATION
 - \star propagates white correlation of d into colored statistics of x

$$AX + XA^* = -BWB^*$$

Response to stochastic inputs

stochastic input
$$d$$
 $\dot{x} = Ax + Bd$ stochastic output x

LYAPUNOV EQUATION

 \star propagates white correlation of d into colored statistics of x

$$AX + XA^* = -BWB^*$$

* colored-in-time d

$$AX + XA^* = -(BH^* + HB^*)$$

$$H := \lim_{t \to \infty} \mathbf{E}(x(t) d^*(t)) + \frac{1}{2}BW$$

THEOREM

 $X = X^* \succeq 0$ is the steady-state covariance of (A, B)

there is a solution H to

$$BH^* + HB^* = -(AX + XA^*)$$

$$\operatorname{rank} \begin{bmatrix} AX + XA^* & B \\ B^* & 0 \end{bmatrix} = \operatorname{rank} \begin{bmatrix} 0 & B \\ B^* & 0 \end{bmatrix}$$

Lyapunov equation

discrete-time dynamics: $x_{t+1} = A x_t + B d_t$

white-in-time input: $\mathbf{E}(d_t d_{\tau}^*) = W \delta_{t-\tau}$

LYAPUNOV EQUATION

$$X_{t+1} := \mathbf{E} (x_{t+1} x_{t+1}^*)$$

$$= \mathbf{E} ((A x_t + B d_t) (x_t^* A^* + d_t^* B^*))$$

$$= A \mathbf{E} (x_t x_t^*) A^* + B \mathbf{E} (d_t d_t^*) B^*$$

$$= A X_t A^* + B W B^*$$

* continuous-time version

$$\frac{\mathrm{d}\,X_t}{\mathrm{d}\,t} = A\,X_t + X_t\,A^* + B\,WB^*$$

Outline

- STRUCTURED COVARIANCE COMPLETION PROBLEM
 - * embed available statistical features in turbulence models
 - * complete unavailable data (via convex optimization)
- TURBULENCE MODELING
 - ⋆ case study: turbulent channel flow
 - verification in linear stochastic simulations
- ALGORITHM
 - * Alternating Minimization Algorithm (AMA)
 - * works as proximal gradient on the dual problem
- SUMMARY AND OUTLOOK

Details

THEORY AND ALGORITHMS

IEEE TRANSACTIONS ON AUTOMATIC CONTROL, VOL. 00, NO. 00, 2016

Low-Complexity Modeling of Partially Available Second-Order Statistics: Theory and an Efficient Matrix Completion Algorithm

Armin Zare, Student Member, IEEE, Yongxin Chen, Student Member, IEEE, Mihailo R. Jovanović, Senior Member, IEEE, and Tryphon T. Georgiou, Fellow, IEEE

Details

THEORY AND ALGORITHMS

IEEE TRANSACTIONS ON AUTOMATIC CONTROL, VOL. 00, NO. 00, 2016

Low-Complexity Modeling of Partially Available Second-Order Statistics: Theory and an Efficient Matrix Completion Algorithm

Armin Zare, Student Member, IEEE, Yongxin Chen, Student Member, IEEE, Mihailo R. Jovanović, Senior Member, IEEE, and Tryphon T. Georgiou, Fellow, IEEE

TURBULENCE MODELING

J. Fluid Mech., page 1 of 45. © Cambridge University Press 2016 doi:10.1017/jfm.2016.682

Colour of turbulence

Armin Zare¹, Mihailo R. Jovanović¹,† and Tryphon T. Georgiou¹

Department of Electrical and Computer Engineering, University of Minnesota, Minneapolis, MN 55455, USA

(Received 16 February 2016; revised 1 August 2016; accepted 17 October 2016)

STRUCTURED COVARIANCE COMPLETION

Problem setup

known entries of X

$$AX + XA^* = -\underbrace{(BH^* + HB^*)}_{Z}$$

PROBLEM DATA

- \star system matrix A; output matrix C
- \star partially available entries of X

Unknowns

- $\star \ \ \text{missing entries of} \ X$
- \star disturbance dynamics Z

input matrix B

input power spectrum H

Inverse problem

CONVEX OPTIMIZATION PROBLEM

minimize
$$-\log \det (X) + \gamma \|Z\|_*$$
 subject to $AX + XA^* + Z = 0$ physics $(CXC^*)_{ij} = G_{ij}$ for given i,j available data

Inverse problem

CONVEX OPTIMIZATION PROBLEM

minimize
$$-\log \det (X) + \gamma \|Z\|_*$$
 subject to $AX + XA^* + Z = 0$ physics $(CXC^*)_{ij} = G_{ij}$ for given i,j available data

* nuclear norm: proxy for rank minimization

$$||Z||_* := \sum \sigma_i(Z)$$

Fazel, Boyd, Hindi, Recht, Parrilo, Candès, Chandrasekaran, ...

Filter design

* white-in-time input

$$\mathbf{E}(w(t_1) w^*(t_2)) = \Omega \delta(t_1 - t_2)$$

* filter dynamics

$$A_f = A + B C_f$$

$$C_f = \left(H^* - \frac{1}{2} \Omega B^*\right) X^{-1}$$

Low-rank modification

colored input: $\dot{x} = Ax + Bd$

Low-rank modification

colored input:
$$\dot{x} = Ax + Bd$$

low-rank modification: $\dot{x} = (A + BC_f)x + Bw$

TURBULENCE MODELING

Turbulent channel flow

output covariance:

$$\Phi(\mathbf{k}) := \lim_{t \to \infty} \mathbf{E} \left(\mathbf{v}(t, \mathbf{k}) \, \mathbf{v}^*(t, \mathbf{k}) \right)$$
$$\mathbf{v} = \begin{bmatrix} u & v & w \end{bmatrix}^T$$

k – horizontal wavenumbers

$$A = \left[\begin{array}{cc} A_{11} & 0 \\ A_{12} & A_{22} \end{array} \right]$$

known elements of $\Phi(\mathbf{k})$

KEY OBSERVATION

* white-in-time forcing: too restrictive

Jovanović & Georgiou, APS DFD '10

One-point correlations

-0.5

Nonlinear simulations — Solution to inverse problem \circ

0.5

Two-point correlations

Importance of physics

COVARIANCE COMPLETION PROBLEM

minimize
$$-\log \det (X) + \gamma \|Z\|_*$$
 subject to $AX + XA^* + Z = 0$ physics $(CXC^*)_{ij} = G_{ij}$ for given i,j available data

physics helps!

Verification in stochastic simulations

0

• $R_{\tau} = 180$; $k_x = 2.5$, $k_z = 7$

Direct Numerical Simulations -

Linear Stochastic Simulations

Power spectral density

• $R_{\tau} = 186$; $k_x = 2.5$, $k_z = 7$

original linearized NS model
eddy-viscosity enhanced model
dynamics w/ low-rank modification

$$\mathcal{T}(\omega) = -C (i\omega I + A)^{-1}B$$

Modeling nonlinear terms

Modeling nonlinear terms

equivalence at the level of 2nd order statistics

ALGORITHM

Primal and dual problems

PRIMAL

minimize
$$-\log \det (X) + \gamma ||Z||_*$$

subject to $AX + BZ - C = 0$

Primal and dual problems

PRIMAL

minimize
$$-\log \det (X) + \gamma ||Z||_*$$

subject to $AX + BZ - C = 0$

DUAL

$$\mathcal{A}^{\dagger}$$
 – adjoint of $\mathcal{A}; \quad Y := \begin{bmatrix} Y_1 \\ Y_2 \end{bmatrix}$

SDP characterization

$$Z = Z_{+} - Z_{-}, \quad Z_{+} \succeq 0, \quad Z_{-} \succeq 0$$

minimize
$$-\log \det(X) + \gamma \operatorname{trace}(Z_{+} + Z_{-})$$

subject to $AX + BZ - C = 0$
 $Z_{+} \succeq 0, Z_{-} \succeq 0$

Customized algorithms

ALTERNATING DIRECTION METHOD OF MULTIPLIERS (ADMM)

Boyd et al., Found. Trends Mach. Learn. '11

ALTERNATING MINIMIZATION ALGORITHM (AMA)

Tseng, SIAM J. Control Optim. '91

Augmented Lagrangian

$$\mathcal{L}_{\rho}(X, Z; Y) = -\log \det (X) + \gamma \|Z\|_{*} + \langle Y, AX + BZ - C \rangle$$
$$+ \frac{\rho}{2} \|AX + BZ - C\|_{F}^{2}$$

Augmented Lagrangian

$$\mathcal{L}_{\rho}(X, Z; Y) = -\log \det (X) + \gamma \|Z\|_{*} + \langle Y, \mathcal{A}X + \mathcal{B}Z - \mathcal{C} \rangle$$
$$+ \frac{\rho}{2} \|\mathcal{A}X + \mathcal{B}Z - \mathcal{C}\|_{F}^{2}$$

METHOD OF MULTIPLIERS

 \star minimizes \mathcal{L}_{ρ} jointly over X and Z

$$(X^{k+1}, Z^{k+1}) := \underset{X, Z}{\operatorname{argmin}} \mathcal{L}_{\rho}(X, Z; Y^{k})$$
$$Y^{k+1} := Y^{k} + \rho \left(\mathcal{A} X^{k+1} + \mathcal{B} Z^{k+1} - \mathcal{C} \right)$$

ADMM vs AMA

ADMM

$$X^{k+1} := \underset{X}{\operatorname{argmin}} \ \mathcal{L}_{\rho}(X, Z^k; Y^k)$$

$$Z^{k+1} := \underset{Z}{\operatorname{argmin}} \ \mathcal{L}_{\rho}(X^{k+1}, Z; Y^k)$$

$$Y^{k+1} := Y^k + \rho \left(\mathcal{A} X^{k+1} + \mathcal{B} Z^{k+1} - \mathcal{C} \right)$$

ADMM vs AMA

ADMM

$$X^{k+1} := \underset{X}{\operatorname{argmin}} \ \mathcal{L}_{\rho}(X, Z^{k}; Y^{k})$$

$$Z^{k+1} := \underset{Z}{\operatorname{argmin}} \ \mathcal{L}_{\rho}(X^{k+1}, Z; Y^{k})$$

$$Y^{k+1} := Y^{k} + \rho \left(\mathcal{A} X^{k+1} + \mathcal{B} Z^{k+1} - \mathcal{C} \right)$$

AMA

$$X^{k+1} := \underset{X}{\operatorname{argmin}} \ \mathcal{L}_0(X, Z^k; Y^k)$$
 matrix inverse $Z^{k+1} := \underset{Z}{\operatorname{argmin}} \ \mathcal{L}_{\rho}(X^{k+1}, Z; Y^k)$ sv-thresholding $Y^{k+1} := Y^k + \rho_k \left(\mathcal{A} \, X^{k+1} \, + \, \mathcal{B} \, Z^{k+1} \, - \, \mathcal{C} \right)$

Properties of AMA

- COVARIANCE COMPLETION VIA AMA
 - * proximal gradient on the dual problem
 - * sub-linear convergence with constant step-size

Properties of AMA

- COVARIANCE COMPLETION VIA AMA
 - * proximal gradient on the dual problem
 - * sub-linear convergence with constant step-size

STEP-SIZE SELECTION

- * Barzilla-Borwein initialization followed by backtracking
- \star positive definiteness of X^{k+1}
- * sufficient dual ascent

Zare, Chen, Jovanović, Georgiou, IEEE TAC '16

Challenges

TURBULENCE MODELING

- * development of turbulence closure models
- * modeling higher-order moments
- * design of flow estimators/controllers

ALGORITHMIC

- alternative rank approximations
 (e.g., iterative re-weighting, matrix factorization)
- * improving scalability

THEORETICAL

- * conditions for exact recovery
- * convergence rate of AMA with BB step-size initialization

Summary

- THEORETICAL AND ALGORITHMIC DEVELOPMENTS
 - * Zare, Chen, Jovanović, Georgiou, IEEE TAC '16 (in press)
 - * Zare, Jovanović, Georgiou, IEEE CDC '16
- APPLICATION TO TURBULENT FLOWS
 - * Zare, Jovanović, Georgiou, J. Fluid Mech. '16 (in press)

arXiv:1602.05105

- CUSTOMIZED ALGORITHMS FOR COVARIANCE COMPLETION
 - * ADMM vs AMA
 - * AMA works as a proximal gradient on the dual problem

Acknowledgements

SUPPORT

- ★ NSF Award CMMI-13-63266 (Program manager: Jordan Berg)
- * AFOSR Award FA9550-16-1-0009 (Program manager: Frederick Leve)
 - UMN Informatics Institute Transdisciplinary Faculty Fellowship
 - ★ 2014 CTR Summer Program

Computing resources

University of Minnesota Supercomputing Institute

Discussions

B. Bamieh, S. Chernyshenko, B. Farrell, Y. Hwang, P. Ioannou,
 J. Jimenez, B. McKeon, R. Moarref, P. Moin, J. Nichols, P. Schmid,
 J. Sillero