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Inertial Logarithmic Region

Consider a turbulent wall-flow,

UC
| Inertial sublayer
Y‘ Uxy) | 8X) — inphysical space
U re

0 = channel half-height, boundary layer thickness

u_ = friction velocity = (t,/p)"? = characteristic velocity scale
y* = yu_Ilv = inner-normalized distance from the wall

1= y/d = outer-normalized distance from the wall

o+ = du._/v = Reynolds number (ratio of outer to inner length)
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Logarithmic Mean Velocity Profile
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Logarithmic Mean Velocity Profile Slope
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FIGURE 3. Mean velocity profiles with log law function, where k¥ = 0.39, subtracted for the
Superpipe, LCC and Melbourne datasets (shown in order from {Op to bottom). The dashed
vertical lines indicate the region 3Re'/> < z* < 0.15Re,. and the horizontal lines indicate the
best fit for this range highlightinmmu. Error bars of U* are shown at the
indicated locations.
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K Estimates Over Time
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0.387 £ 0.01 Frenzen & Vogel (1985)

0.436 £ 0.002 Zagarola & Smits (1998)

0.38 Osterlund (2000)
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0.421 £ 0.002 McKeon (2004)

0.387 Andreas et al. (2006)

0.384 Nagib, Chauhan, Monkewitz (2007)

0.389 £ 0.004 Klewicki, Fife & Wei (2009), [dW/dy at 6* = 2004] (Hoyas & Jimenez data)
0.39 Marusic et al. (2013) [four high Reynolds number facilities]
0.383, [0.384] Pirozzoli (2014), [dW/dy at 6" = 4080]

0.4 £0.02 Bailey et al. (2014)

0.381966... Klewicki et al. (2014), [6* — oo extension]
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THE UNIVERSITY OF
MELBOURNE

%«r =
V«‘i(:
»

University of
New Hampshire




Rationalizing the Log Law

i) Prandtl: dU/dy « u_/y
Leads to
du*/dy* = (ky*)*
(distance from the wall scaling hypothesis)
i) Millikan: U* = f(y*), U* - U,* = F(n)
Leads to
y*dU*/dy* = ndU*/dn =
(inner/outer/overlap hypothesis)

Is there a better justification?



Scaling

Scaling comes from the symmetries admitted by the relevant governing
equation, i.e., when the equation is recast according to the transformations
indicated by the admitted symmetries, it becomes invariant to changes in the
underlying parameters.

Conversely, if the governing equation does not admit an invariant form, there
is little (no) reason to expect the variable of interest can be scaled.

Thus, is rational to expect that the universal logarithmic constitutes a
similarity solution stemming from an invariant representation of the
governing equation

(e.g., like what is done for laminar similarity solutions)
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Four Layer Structure
Channel & Boundary Layer
(multiple leading order balances)

Mean Momentum Balances
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Layer lll Structure
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Layer lll Rescaling

In layer IIT all the terms are of the same order of magnitude (except
right at y,,), and thus the goal is to find a scaling that renders all of
the terms O(1). To this end, let,

dyt = adj, and dT+ =ydT,
and require that,
%; and % be O(1)

This yields,
dj = edy™, and dT+ = edT (e = 1/Vd)
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Layer lll Rescaling (continued)

With this transformation, the mean momentum equation becomes,

Ut L dT | 1 _
dy? Ty T
with
(e =1/8")
1~ A
(i.e., the “hat” variables are centered around the peak in 77)
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Invariance Across a Hierarchy of Scaling Layers

_ Fife et al. DCDS (2009)
Plugging .

Ty =T (y") + i:T - By “Adjusted Reynolds stress”
into Tl + €2
0—%+‘({1;‘++(Z; { \
o dTLR1+ /dyT+ = dTT
yields LU . dT; + /dyT+ +1/0T+ — f

yt=yi+871%, Tt =TrHyH)+B82T@H), Ut =U*(yf)+m(y3)(yt—y3)+\U(3)

yields the invariant form

Ypi

W (y*) = 0(57Y?)

d2U+ N dT L1-0 B =TI + €2

diz  dy

({.’T+ |
dy*+ ‘

A= 332

AT dT (dT' 1)‘3*"2

= +—
dy? dy*t \ dyt &t
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Condition for Self-Similarity

On each layer the condition for dynamic self-similarity

“hat” variables are
o normalized by
ﬁ(g _ 0) W and u..

A(ﬁ) - = d:gg

is asymptotically approached. i.e., the normalized curvature of the Reynolds stress
profile becomes invariant from one layer to the next

Physically, the normalized flux of turbulent inertial force attains constancy on
the portion of the scaling layer hierarchy where the leading order mean
dynamics are wholly inertial —i.e., in layer IV
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Coordinate Stretching

It is also analytically known that,

Origin of
adw/dy=A/2 = ¢T-1 “distance from the wall”
scaling

where ¢ (Fife similarity parameter) is the coordinate stretching
function that yields the invariant form:

22U+  dT
di? ' dy

According to this theory, on the inertial domain of interest, ¢ — ¢
and von Karman’s constant is given by two equivalent relations:

* K = ¢,.?, is a function of the constant coordinate stretching
underlying asymptotic self-similarity, or

* K = A?/4, is associated with the asymptotically constant flux of
turbulent inertial force
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Layer Width Distribution
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FIG. 1. Distribution of W (y™) for channel flows. Profiles at 7 = 547, 934 and 2004 are from

the study of Hoyas and Jiménez.?? The profile at 5t = 4073 is from Pirozolli,?® and the profile at
6t = 5186 is from Lee and Moser.?* Vertical lines denoting the beginning and end of layer III are

shown for 4T = 2004.
Linear W(y*) in layer IV provides equation based reason for
distance-from-the-wall scaling
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Channel Similarity Solution

Recall the transformation that yields the invariant form of the mean momentum equation

1 _ 18T 1&8T* (dT+ 1 R LR T B e O
o 242 2dy?t \dyt 6+t O 2dy?t dy+2
The exact channel flow mean vorticity equation is,
20 R
0=——=+ , (2)
dyt? = dyt?
where ), = —dU/dy. Setting ¢ = const. (not necessarily ¢.) and combining with the third
equality in (1) yields
2 Ut [ LU\
= — 3
b dy+3 ( dy+2) (3)
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Analytical Integration
(Klewicki & Oberlack 2015)

Let f = —d?U™ /dy™, and then (3) becomes

g f3/ 2 _ _i (4)
¢ dy*’
Separating variables and integrating yields
cayz, kg -
| s (5)
)
and squaring and inverting this result gives
U+ 200t _ 2 F)—2
fE—dy+2=¢(y — %) (6)
Two more integrations yield the final result
Ut =¢’In(y*t —yg) + By™ +C. (7)

The Reynolds stress, T, is then found from the exact relation, Note that the BC on dU*/dy* requires
that B > 0 as y* - o (i.e., as 0* - 0).

dU+ Bz
& =T "
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Finite Reynolds Number Behaviours
(traditional representation)
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FIG. 2. Profiles of U™ versus y* for channel flows, and their comparison with the best fits of (16)
for yg = 0 over the domain 2.6V0+ < yT < 0.36T; (a) full profiles, (b) closeup of the inertial
domain. Profiles at 67 = 547, 934 and 2004 are from the study of Hoyas and Jiménez.?? The
profile at 6t = 4073 is from Pirozolli,?® and the profile at §* = 5186 is from Lee and Moser.?* Line
styles of the DNS data are the same as in Fig. 1. The curve fits (color online) are the solid lines

that overlay the data.
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Finite Reynolds Number Behaviours
(similarity solution representation)
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FIG. 3. (a) Profiles of Ut versus y* /6% for channel flows, and their comparison with the best
fits of (16) for y§ = 0 over the domain 1 < y*/V46+ < 0.3V0+; (b) Profiles of Uf = Ut — U7 on
the lower part of the inertial domain. Profiles at 6t = 547, 934 and 2004 are from the study of
Hoyas and Jiménez.?? The profile at 67 = 4073 is from Pirozolli,?® and the profile at 4 = 5186 is

from Lee and Moser.?* Line styles of the DNS data are the same as in Fig. 1. The curve fits (color

online) are the solid lines that overlay the data.
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Log-Linear Law Coefficients

Ut =¢*In(y* —yF)+ Byt +C
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FIG. 4. (a) Curve-fit coefficients in (16) for yj = 0 versus 67. ® A — ¢2; ¢, B; B C; A,
¥ = ®? — A. Dashed line is the square of the golden ratio, ® = (1 + v/5)/2. (b) Curve-fit

coefficients for different ,1/6*; A, ,1_/6* = 8Ll y{f =10; 7, yb* =-5---B,— —C;----,V,
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ZPG Boundary Layer Analysis

(Morrill-Winter et al. JFM 2017, in press)

Can we recast the mean momentum equation for the boundary layer

277+ +
°Ut Ot v

(‘)y+2 Oy—{— ~—~—~
| MI
VF B |

in a form that represents the mean inertia (Ml) term A* = U*dU*/dx* + V*dU*/dy*
as a only function of 6*?
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High Reynolds Number Boundary Layer Wind Tunnel
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Flow Physics Facility

(New Hampshire)
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Figure 10: (a) FPF wind tunnel, flow enters the test section through the inlet at the front and
discharges into the plenum at the rear, (b) View down the test section into the discharge plenum.
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Mini-Spanwise Vorticity Probe

(Morrill-Winter et al. EiF 2015)

mini-Foss style probe

*units are in mm
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HRNBLWT and FPF Data Sets

(Morrill-Winter et al. EiF 2015)

symbol st Uso (m/s) ur(m/s) v/ur(x10~%m) It Facility

A 2400 10.1 0.37 43 11.5 HRNBLWT
A 3300 10.1 0.36 45 11.1  HRNBLWT
m] 3400 44 0.16 95 58 FPE
> 3700 152 0.54 30 169 HRNBLWT
% 4500 6.6 0.23 67 79 FEEE
> 4700 151 0.52 31 16.3 HRNBLWT
A 4800 10.0 0.34 47 10.7 HRNBLWT
o 5400 8.8 0.30 52 96 FPF
o 6100 4.2 0.14 100 50 FPF
A 7000 10.0 0.33 48 10.5 HRNBLWT
4 7700 6.6 0.22 68 /7> FFE
> 7800 153 0.51 31 16.3 HRNBLWT
m 9500 4.3 0.14 108 47 FPF
o 9700 8.8 0.29 53 94  FPF
> 10100 15.3 0.50 92 156 HRNBLWT
L4 13100 6.6 0.21 71 7l FPF
° 16400 8.8 0.28 55 9.1 FPF

Table 1. Experimental parameters. U is the free stream velocity and [ is the representative length of the sensor.
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Behaviour of Mean Inertia Term
(Morrill-Winter et al. EiF 2015)

B
X
=
<

10° 10° | 10* 0f2 0.4 0.6 Qfs 1 12

5
. A = a(z,y)Ap(z)

0 0.2 0.4 0.6 0.8 1 00
—_— -1
a:=90 / a(z,y) dy,
0
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Representation of Mean Inertia Term

The above findings yield

d?U+ i dT
dyt? = dyt

+a(6t)A) (0) a(zt,yt) =0

1/5+

(empirically found to equal 1.003/6%)

Where it is now noted that it can be analytically shown (via integration) that the
bracketed product is identically equal to 1/8*. Thus,

&PUr  drs 1 ,
)= (yT,67)=0
dyt? o dyt o0t aly”,0")

The desired 1/6* dependence has been extracted, but a still equals a(y*, &*).
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Transforming the Inertia Terms

The aim now is to remove the y* dependence of a on the inertial domain (layer IV).
This is done by simultaneously transforming both the Tl and Ml (A) terms.

T++—/ A(s,07)

where, A(y™,0") == a(yt,d") —a,,(61), and @,,,(67) := a(ym,dT). Using these defini-
tions, (3.2) becomes

d2U+ g dT L %m _ g
dy+2 dyt &t o

While ., = a,,(0%) is a possibility, data covering over a decade in &* fortuitously
indicate that o, (0*) = const. = 0.46.

Thus, we recover a form of the mean equation that is like that for channel flow
on the inertial domain.
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Transformed Inertia Term Profiles
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FIGURE 3. The inner-normalized terms present in (1.1) - thin (black) lines and (3.5) - thick (blue)
lines at 67 ~ 2,400 employing the DNS of Sillero et al. (2013). The VFT is denoted by dashed

lines (———-), whereas TI" and T given by ( ) and (—-—-— ), respectively. The transformed
Reynolds stress gradient (d7'/dy™) and «,, (67)/6" in (3.5) are denoted by (—-—-- ) and (—),

—m
respectively. The gray line simply marks zero. The vertical dashed (red) lines are limits of the
intermediate region provided by (4.4). Note that this is a continuous plot; however, we have
employed different multipliers in different wall-normal regions so as to re-scale the distributions

for visual clarity.
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Layer lll Properties
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FIGURE 4. Scaling in the intermediate regime. (a) The terms of (4.2) on along ¢ for different
5%, The ( ) and ® are the DNS of Sillero et al. (2013) and the symbols are given in table 1.
(b) The wall position of the zero-crossing in the transformed Reynolds stress gradient (or peak
in the Reynolds stress) versus the (6% /@)/2. The solid black line is vy, = 1.47(67% /@, )"/>.
The gray lines are y;;, = 10.5(67 /@)/* and y;;, = 0.21(6% /@,,)*/*, which are added to give
perspective to the intermediate scaling. The intercepts were chosen such that all the fits would

pass through the lowest §* point. (¢) The nominal width (im0 — §mi) and the beginning (g,,“)
at/A,.

of the sc allng domain. The (———-) lines are best fit lines of the form § = &1 + (S0 — $1)e
Where s is any hat variable, §p and §; are the starting and ending values of $, respectively, and
A. is a constant.
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Invariant Layer Hierarchy

Note that , rather than f3,
now denotes the hierarchy
parameter.

FIGURE 6. The terms present in (5.6) at multiple values of x at three different 7. (a) 5 = 2400,
(b) 8 = 7000 and (c) 6" = 16400. The DNS is given by ( ) and ® , where the experimental
symbols can be found in table 1.
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Conclusions

* For channel flow one can:
1) Begin with the mean equation
2) Transform it to an invariant form, and
3) Analytically integrate it to yield an asymptotically universal log law
similarity solution

* For the ZPG boundary layer a scenario is given indicating that one can:
1) Begin with the mean equation
2) Transform the Ml and Tl terms to look like channel flow
3) Transform this equation to an invariant form, and
4) Analytically integrate it to yield an asymptotically universal log law
similarity solution

* This scenario recovers the empirical observation that the asymptotic slope of the
logarithmic mean velocity profile is the same in boundary layers, pipes and channels.

» Structure predicted is consistent with Townsend’s attached eddy notions, the self-similar
hierarchy of the McKeon and Sharma (2010) resolvent model, and the physical structure
of uniform momentum zones and vortical fissure revealed by Meinhart and Adrian (1995).
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