

OUTLINE

von Karman (1930) Millikan (1938) Coles (1952) Gad-el-Hak http://efluids.com Kline, Reynolds, Schraub & Runstadler
J. Fluid Mechanics (1967)
Copyright © (1967) Cambridge University Press.

Reprinted with permission.

LeHew, Guala & McKeon Expts. in Fluids (2011) Wu & Moin http://ctr.stanford.edu

Toin Caltech

SUMMARY OF RESOLVENT ANALYSIS

1. Fourier decomposition in homogeneous directions

$$\mathbf{u}(x, y, z, t) = \iiint_{-\infty}^{\infty} \hat{\mathbf{u}}(y; \kappa_x, \kappa_z, \omega) e^{i(\kappa_x x + \kappa_z z - \omega t)} d\kappa_x d\kappa_z d\omega$$

$$\mathbf{u}_t + (\mathbf{u} \cdot \nabla)\mathbf{U} + (\mathbf{U} \cdot \nabla)\mathbf{u} + \nabla p - (1/Re_{\tau})\nabla^2 \mathbf{u} = \underbrace{-(\mathbf{u} \cdot \nabla)\mathbf{u}}_{\mathbf{u}}$$

resolvent operator

$$\hat{\mathbf{u}}(y; \kappa_x, \kappa_z, \omega) = H(\kappa_x, \kappa_z, \omega) \,\hat{\mathbf{f}}(y; \kappa_x, \kappa_z, \omega)$$

2. singular value decomposition in y for any $\kappa_x, \kappa_z, \omega$

$$\hat{\mathbf{f}}(y) = \hat{\phi}_{j}(y) \xrightarrow{H} \hat{\mathbf{u}}(y) = \sigma_{j} \hat{\psi}_{j}(y)$$

$$\hat{\mathbf{f}}(y) = \sum_{j=1}^{\infty} \chi_{j} \hat{\phi}_{j}(y) \xrightarrow{H} \hat{\mathbf{u}}(y) = \sum_{j=1}^{\infty} \chi_{j} \sigma_{j} \hat{\psi}_{j}(y)$$

Caltech

RESOLVENT ANALYSIS - SYSTEMS REPRESENTATION

$$\mathbf{u}_t + (\mathbf{u} \cdot \nabla)\mathbf{U} + (\mathbf{U} \cdot \nabla)\mathbf{u} + \nabla p - (1/Re_\tau)\nabla^2\mathbf{u} = (\mathbf{u} \cdot \nabla)\mathbf{u}$$

Boundary conditions: $u_w=0$, $v_w=0$, $w_w=0$

RESOLVENT MODE SHAPES

 x/λ_x

INFLUENCE OF THE MEAN VELOCITY

$$H(\kappa_x, \kappa_z, \omega) = C(\kappa_x, \kappa_z) R(\kappa_x, \kappa_z, \omega) C^{\dagger}(\kappa_x, \kappa_z)$$

$$R = \begin{bmatrix} \Delta^{-1} \left(i\kappa_x \left(\mathbf{U} - \mathbf{c} \right) \Delta - U'' \right) - (1/Re_{\tau}) \Delta^2 \right) & 0 \\ i\kappa_z U' & i\kappa_x \left(\mathbf{U} - \mathbf{c} \right) - (1/Re_{\tau}) \Delta \end{bmatrix}^{-1}$$

REQUIREMENTS FOR SELF-SIMILARITY

$$H(\kappa_x, \kappa_z, \omega) = C(\kappa_x, \kappa_z) R(\kappa_x, \kappa_z, \omega) C^{\dagger}(\kappa_x, \kappa_z)$$

$$R = \begin{bmatrix} \Delta^{-1} \left(i\kappa_x \left(\mathbf{U} - \mathbf{c} \right) \Delta - U'' \right) - (1/Re_{\tau}) \Delta^2 \right) & 0 \\ i\kappa_z U' & i\kappa_x \left(\mathbf{U} - \mathbf{c} \right) - (1/Re_{\tau}) \Delta \end{bmatrix}^{-1}$$

condition 1: U-c should be independent of $Re_{ au}$ yields: scaling in y

condition 2: wall-normal locality of resolvent modes yields: range of c

condition 3: $\mathrm{i}\kappa_x({\color{red}U-c})$ balances $(1/Re_{\tau})\Delta$ yields: scaling in x, z

INNER AND OUTER SIMILARITY

$$E_{uu}(y; \kappa_x, \kappa_z, c) = \kappa_x^2 \kappa_z (\sigma_1(\kappa_x, \kappa_z, c) | u_1 | (y; \kappa_x, \kappa_z, c))^2$$

$$E_{uu}(y, \kappa_x, \kappa_z) = \int_2^{16} E_{uu}(y, \kappa_x, \kappa_z, c) dc + \int_{16}^{U_{cl} - 6.15} E_{uu}(y, \kappa_x, \kappa_z, c) dc + \int_{U_{cl} - 6.15}^{U_{cl}} E_{uu}(y, \kappa_x, \kappa_z, c) dc$$

$$E_{uu}(y) = \iiint_{\mathscr{L}} E_{uu}(y; \kappa_x, \kappa_z, c) \, d\log(\kappa_x) \, d\log(\kappa_z) \, dc$$

Inner (near-wall)

Outer (wake)

$$R_{\tau} = 3333$$
 $R_{\tau} = 10000$ $R_{\tau} = 30000$

REQUIREMENTS FOR GEOMETRIC SELF-SIMILARITY

$$H(\kappa_x, \kappa_z, \omega) = C(\kappa_x, \kappa_z) R(\kappa_x, \kappa_z, \omega) C^{\dagger}(\kappa_x, \kappa_z)$$

$$R = \begin{bmatrix} \Delta^{-1} \left(i\kappa_x \left(\mathbf{U} - \mathbf{c} \right) \Delta - U'' \right) - (1/Re_{\tau}) \Delta^2 \right) & 0 \\ i\kappa_z U' & i\kappa_x \left(\mathbf{U} - \mathbf{c} \right) - (1/Re_{\tau}) \Delta \end{bmatrix}^{-1}$$

condition 1: U-c should be scalable in y $U(y)-c = g(y/y_c)$

$$U(y) = d_1 + d_2 \log_{d_3}(y)$$

$$c = U(y_c)$$

$$U(y) - c = d_2 \log_{d_3}(y/y_c)$$

condition 2, condition 3: as before

$$y \propto y_c$$
 $\lambda_z \propto y_c$
 $\lambda_z \propto y_c$

SELF-SIMILAR HIERARCHIES

GEOMETRIC SELF-SIMILARITY

$$E_{uu}(y; \kappa_{x}, \kappa_{z}, c) = \kappa_{x}^{2} \kappa_{z} (\sigma_{1}(\kappa_{x}, \kappa_{z}, c) | u_{1} | (y; \kappa_{x}, \kappa_{z}, c))^{2}$$

$$E_{uu}(y, \kappa_{x}, \kappa_{z}) = \int_{2}^{16} E_{uu}(y, \kappa_{x}, \kappa_{z}, c) dc + \int_{16}^{U_{cl} - 6.15} E_{uu}(y, \kappa_{x}, \kappa_{z}, c) dc + \int_{U_{cl} - 6.15}^{U_{cl}} E_{uu}(y, \kappa_{x}, \kappa_{z}, c) dc$$

$$E_{uu}(y) = \iiint_{\mathscr{S}} E_{uu}(y; \kappa_{x}, \kappa_{z}, c) d \log(\kappa_{x}) d \log(\kappa_{z}) dc$$

SIMILARITY UNDER BROADBAND FORCING

$$E_{uu}(y, \lambda_x)/Re_{\tau}^2$$

 $Re_{\tau} = 3,333$
 $Re_{\tau} = 10,000$
 $Re_{\tau} = 30,000$

PREDICTIONS UP TO ATMOSPHERIC RE

$$E_{uu,W}(y) = \int_2^{U_{cl}} W(c) E_{uu}(y,c) dc,$$

$$R_{\tau} = 934$$
 $R_{\tau} = 2003$ $R_{\tau} = 3333$ $R_{\tau} = 10000$ $R_{\tau} = 30000$ prediction

boundary layers [Kunkel & Marusic, 06]: $R_{\tau} = 5813; \times 13490; + 23013; \star$

A TURBULENCE "KERNEL"

$$\kappa_{x,1} + \kappa_{x,2} + \kappa_{x,3} = 0$$

$$\kappa_{z,1} + \kappa_{z,2} + \kappa_{z,3} = 0$$

$$\omega_1 + \omega_2 + \omega_3 = 0$$

	$\pm \kappa_x$	$\pm \kappa_z$	c	A
m_1	6	6	16	$0.4e^{-2.6i}$
m_2	1	6	16	1.8
m_3	7	12	16	$0.3e^{-2i}$

Nonlinearly interacting hierarchies

$$\chi_1 = \sum_{m_2, m_3} \mathcal{N}_{123} \, \chi_2 \, \chi_3$$

$$\mathcal{N}_{123} = \sigma_2 \, \sigma_3 \, \left\langle \, \hat{\psi}_2 \cdot \nabla \hat{\psi}_3, \, \hat{\phi}_1 \, \right\rangle$$

scaling of the interaction coefficient

$$\mathcal{N}_{123} = e^{-2.5\kappa(c_n - c_m)} \mathcal{N}_{123}$$

RESOLVENT MODE SHAPES

 x/λ_x

SOME CONCLUSIONS AND IMPLICATIONS

- Resolvent analysis as a tool to study structure and self-sustaining mechanisms
- By starting with a self-similar mean profile, similarity of the resolvent can be identified
 - Similarity of modes with convection velocities corresponding to inner, wake and overlap (log) regions
 - Geometric self-similarity in log region, impressed on nonlinear interactions
- Implications for "reassembly" of invariant solutions
- Implications for computation of near-wall cycle
- Further structure to exploit...

