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Large-Scale Circulations (LSCs) in nature
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Turbulent Rayleigh-Benard convection
 in aspect ratio 1 cylinders

Observed LSC dynamics: 
• meandering
• cessations
• preferred orientation, net rotation
• twisting and sloshing oscillations

Low-dimensional model: 
• dynamics described by a pair of 
physically motivated, stochastic 
ordinary differential equations.
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Prandtl number σ = 4.4 (water)
Rayleigh number R = 1.1× 1010




 T0 = average temperature

 δ = amplitude 

 θ0 = orientation
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Finding the orientation θ0 of the LSC
fit to measured temperatures:



Meandering of the LSC orientation

.



Orientation fluctuations are diffusive

<(dθ0)2>=Dθdt 
Dθ = diffusivity

dθ0 = orientation change over a time interval dt.

slope = 1



Cessations

average time between cessations: 1.5 days
circulation period: 49 s



LSC forgets orientation during cessations

No preference for reversals (|Δθ| = 0.5)

Brown & Ahlers, J. Fluid Mech. 568 (2006)



Model of the LSC dynamics

•Order-of-magnitude stochastic model
•Based on Navier-Stokes equations
•Empirical observation of LSC structure allows 
volume averages to turn PDEs into ODEs
•only 2 variables required -- θ0 and δ.

Brown & Ahlers, Phys. Fluids 20 (2008)



Langevin equation for LSC strength
Navier-Stokes:

volume 
average: 

Assume δ    U: (both characterize LSC strength)

(buoyancy) (drag)

(turbulent fluctuations)

φ

Boundary layer width:

damping timescale:

stable amplitude:

diffusivity = Dδ

U = max. velocity

(buoyancy) (drag)

δ0 = 18π∆TσR3/2
e

R

τδ = L2

18νR1/2
e
∼ 47 s



Diffusion in a potential well
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fixed points (δ̇ = 0)
δ = 0: unstable
δ = δ0: stable

δ̇d

cessations:
diffusion over potential barrier
(Arrhenius-Kramers)
frequency ωc = (2πτδ)−1 exp(−2∆V/Dδ)
predicted: 0.5 per day
measured: 1.5 per day

potential: V ≡ −
∫

δ̇ddδ



Langevin equation for azimuthal motion
   (rotational inertia)

from Navier-Stokes:

volume average:

Convert to δ and θ0 :

(turbulent fluctuations)

θ

θ̈0 = − θ̇0δ

τθ̇δ0
+ fθ̇(t)

diffusivity Dθ̇

   (rotational inertia)

damping timescale: τθ̇ = L2

2νRe
∼ 7 s



Orientational memory loss due to 
lack of rotational inertia during cessations

During cessations: small δ 
⇒ no rotational inertia
⇒ no damping of diffusion
⇒ orientational memory loss

θ̈0 = − θ̇0δ

τθ̇δ0
+ fθ̇(t)

   (rotational inertia)



Asymmetric forcing described with additional terms
Example: Earthʼs Coriolis force



Net Rotation

total running time: 258 days
net rate: 0.30 +/- 0.08 rev./day
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Brown & Ahlers, Phys. Fluids 18 (2006)



Asymmetric forcing described with additional terms:
Azimuthal potential due to Coriolis force
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p(θ0) ∼ exp(−Vθ/Dθ)

Vθ = −
∫

θ̇0,ddθ0

LSC

φΩ

Earth

deflection of horizontal legs causes net rotation
deflection of vertical legs causes preferred θ0

θ̇0
τθ̇

= ωφ (2Ω cos φ sin θ0 − Ω sinφ) + fθ̇(t)
overdamped: (θ̈0 = 0)



Oscillation modes
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Twist Slosh

Funfschilling & Ahlers,
Phys. Rev. Lett. 92 (2004)

Xi, Zhou, Zhou, Chan & Xia, 
J. Fluid Mech. 630 (2009)

equivalently: traveling waves of hot(upward) and 
cold(downward) fluid on opposite sides of the container

What is responsible for the restoring force?



Slosh displacement: Pressure forcing from side wall

Potential Vg a function of LSC diameter

ωφ = circulation rate

Vg ≡ −
∫

α̈gdα = ω2
φL2

2D(α)2
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centripetal acceleration:
u̇D = ω2

φD(α)/2
u̇θ = u̇DL2D′(α)/D(α)3
restoring acceleration:
α̈g = 2u̇θ

D(α) = −ω2
φL2 D′(α)

D(α)3



Oscillations around potential minimum

Potential Vg a function of LSC diameter

(damping):
rotational
inertia

(restoring):
side wall 
pressure

(driving):
turbulent
fluctuations

Vg = ω2
φL2

2D(α)2

D(!)
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α̈ = − α̇
τθ̇
− ω2

φα + fθ̇(t) (for small α)



Advected oscillations become traveling waves

α̈′
h(z, t) = −ωφL

2
dα̇′

h(z, t)
dz

− ω2
φ
α′

h(z, t)− α′
c(z, t)

2
− α̇′

h

τθ̇

+ fh(z, t)

α̈′
c(z, t) =

ωφL

2
dα̇′

c(z, t)
dz

+ ω2
φ
α′

h(z, t)− α′
c(z, t)

2
− α̇′

c

τθ̇

+ fc(z, t)

advection
restoring force:
(wall pressure)

damping:
(rotational
   inertia)

α′
h

α′
c

turbulent
fluctuations

traveling wave solutions: αh = A exp(ink0z − inωφt)



Observed oscillations: dominant n=2 mode
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Power spectrum of slosh

traveling wave solutions: α′
h = A exp(ink0z − inωφt)

Brown & Ahlers, J. Fluid Mech. 638 (2009)



What about different container geometries?
Same diameter function D(θ0) describes 

pressure forcing from side wall

D(!0)
!0

Vg ≡ −
∫

θ̈gdθ = ω2
φL2

2D(θ0)2



Experiment with adjustable aspect ratio cross section

H. Song, P.Tong, Hong Kong 
University of Science & Technology

dynamics:
preferred orientation at corners
oscillations around corners
switching between corners



Potential for rectangular cross sections
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oscillations around potential minima at corners



p(θ0) for aspect ratio 1 (sqaure)
Vg ≡ −

∫
θ̈gdθ = ω2

φL

2D(θ0)2

data from H. Song, P. Tong, HKUST

correction due to width of LSC: average potential over finite range
(smooths potential near corners)

p(θ0) ∝ exp
(
−Vg(θ0)

τθ̇Dθ̇

)

correction for non-zero width of LSC
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Aspect ratio dependence of p(θ0)
Vg ≡ −

∫
θ̈gdθ = ω2

φL

2D(θ0)2

data from H. Song, P.Tong, HKUST
with correction for width of LSC (smooths potential near corners)

p(θ0) ∝ exp
(
−Vg(θ0)

τθ̇Dθ̇

)
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Conclusions
A pair of stochastic ordinary differential equations can describe the 
dynamics of the LSC for aspect ratio 1 cylinders:
• diffusive meandering
• cessations:

• correspond to driving of system from stable to unstable fixed point 
by fluctuations

• orientational memory loss is due to loss of rotational inertia
• Asymmetric forcings can be accounted for by adding terms to 

potentials:
• Coriolis force (Brown & Ahlers, Phys. Fluids 18, 2006)
• non-uniform heating (Brown & Ahlers, Phys. Fluids 18, 2006)
• tilt (Brown & Ahlers, Phys. Fluids 20, 2008)
• container geometry 

• oscillations correspond to advected traveling waves with restoring 
force from the side wall (Brown & Ahlers, J. Fluid Mech. 638, 2009)

• same potential as for container geometry
• Rayleigh number dependence (Brown & Ahlers, Phys. Fluids 18, 

2008)


