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Large-Scale Circulations (LSCs) in nature
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Turbulent Rayleigh-Benard convection
Hoat In aspect ratio 1 cylinders

t Observed LSC dynamics:
m * meandering
- cessations
N Y - preferred orientation, net rotation
- twisting and sloshing oscillations

Low-dimensional model:

- dynamics described by a pair of
physically motivated, stochastic
t ordinary differential equations.

heat

Prandtl number o = 4.4 (water)
Rayleigh number R = 1.1 x 1019




Fmdmg the orientation 6, of the LSC

fit to measured temperatures:
T =1Ty+ dcos(fy —0)

T, = average temperature
o = amplitude

0, = orientation
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Meandering of the LSC orientation
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Orientation fluctuations are diffusive

d6, = orientation change over a time interval dt.

TN T
dt

<(d6,)>>=Dadt

D, = diffusivity




Cessations
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average time between cessations: 1.5 days
circulation period: 49 s




LSC forgets orientation during cessations
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No preference for reversals (IABl1 = 0.5)

Brown & Ahlers, J. Fluid Mech. 568 (2006)




Model of the LSC dynamics

-Order-of-magnitude stochastic model

‘Based on Navier-Stokes equations

-Empirical observation of LSC structure allows
volume averages to turn PDEs into ODEs
-only 2 variables required -- 6, and o.

Brown & Ahlers, Phys. Fluids 20 (2008)




Langevin equation for LSC strength

Navier-Stokes:  (buoyancy) (drag)
iy = ga(T — Ty) + vV3uy

U6\ 12UR.*

volume  2U  2gad 1201202 (y2y,) =

average: "3~ T g 13/2 N2 L L?
U = max. velocity

Assume § « U: (both characterize LSC strength) Boundary layer width:

L .
5 53/2 A= —R;Uz

o= — - + f5(t) .

Ts  Ts\V 00

/ t (turbulent fluctuations)
(buoyancy)  (drag) diffusivity = Ds

18T AT o R2/?

R
2
damping timescale: 75 — L ~ 47 s
Ping 0 = 18uRL/?

stable amplitude: 9y =




Diffusion in a potential well

53/2

+ fs(t)
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potential: V = — f5dd5

fixed points (6 = 0)
0 = 0: unstable
d = dg: stable

cessations:

diffusion over potential barrier
(Arrhenius-Kramers)

frequency w. = (2775) "1 exp(—2AV/Ds)
predicted: 0.5 per day

measured: 1.5 per day




Langevin equation for azimuthal motion

(rotational inertia)
from Navier-Stokes: g + (1 - V)ug = 0

206,
3
. 08
Converttodand 8,: | fp = ——— + fa(t)
7'9' 50 X
N\
(rotational inertia) (turbulent fluctuations)
diffusivity Dy

volume average:

N L’
damping timescale: Ty = 5,7 ~ 1 S




Orientational memory loss due to
lack of rotational inertia during cessations
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Asymmetric forcing described with additional terms
Example: Earth’s Coriolis force




Net Rotation
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total running time: 258 days
net rate: 0.30 +/- 0.08 rev./day




Preferred Orientation
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Brown & Ahlers, Phys. Fluids 18 (2006)




Asymmetric forcing described with additional terms:
Azimuthal potential due to Coriolis force

— deflection of horizontal legs causes net rotation
| — deflection of vertical legs causes preferred 0,

overdamped: ( 6’0 = 0) /

79_0 = W (QQcosgbsmﬁo — Qsmqb + f9( )
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Oscillation modes
Twist Slosh

phase O phase x phase O phase n
z z z z

N\

Funfschilling & Ahlers, Xi, Zhou, Zhou, Chan & Xia,
Phys. Rev. Lett. 92 (2004) J. Fluid Mech. 630 (2009)

equivalently: traveling waves of hot(upward) and
cold(downward) fluid on opposite sides of the container

What is responsible for the restoring force?




Slosh displacement: Pressure forcing from side wall

centripetal acceleration:
Up = w?bD(oz) /2

wg = upL*D’(a)/D(a)?
restormg acceleration:

. D («
g = Do) — _W2L2 D(((x)i)%

We = circulation rate

. w2 L?
Vg =— [ dgda = 2D¢(a)2

Potential V4 a function of LSC diameter




Oscillations around potential minimum

U
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N— (damping):  (restoring):  (driving):
rotational side wall turbulent
inertia pressure fluctuations

Potential V4 a function of LSC diameter




Advected oscillations become traveling waves

damping:
(rotational  tyrpylent
inertia)  flyctuations

restoring force:

advection (wall pressure)
_wyLddj(st) 5 ah(zt) —aj(z)
2 dz ¢
_ wel ddl(z,1) | — ol (1)

_ _¢ . 775
2 dz ’7'9'_|_f(z )

traveling wave solutions: ap = Aexp(inkoz — inwyt)




Observed oscillations:; dominant n=2 mode

traveling wave solutions: «a; = Aexp(inkoz — inwyt)
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Power spectrum of slosh (v
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Brown & Ahlers, J. Fluid Mech. 638 (2009)




What about different container geometries?
Same diameter function D(0o) describes
pressure forcing from side wall

0
°\D(6o)

Vy=— [0,d0 = 5527




H. Song, P.Tong, Hong Kong
University of Science & Technology

dynamics:

preferred orientation at corners
oscillations around corners
switching between corners




Potential for rectangular cross sections
w?bL2
2D (09)2

Vy, =

___square
cross-section
aspect ratio 2
cross-section
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oscillations around potential minima at corners




P(6o) for aspect ratio 1 (sqaure)
V,=— [0,d0 =

p(bo) o exp (—

w?bL
2D(00)2
Vg(eo))
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correction for non-zero width of LSC
T S ' ] 1.0

. o]
—m— experiment -
—0— model '

"~ 05 00 05 10 15

0 (I‘&d)

0 (rad)

correction due to width of LSC: average potential over finite range
(smooths potential near corners)

data from H. Song, P. Tong, HKUST
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Conclusions

A pair of stochastic ordinary differential equations can describe the
dynamics of the LSC for aspect ratio 1 cylinders:

- diffusive meandering
- cessations:

- correspond to driving of system from stable to unstable fixed point
by fluctuations

- orientational memory loss is due to loss of rotational inertia

- Asymmetric forcings can be accounted for by adding terms to
potentials:

- Coriolis force (Brown & Ahlers, Phys. Fluids 18, 2006)

- non-uniform heating (Brown & Ahlers, Phys. Fluids 18, 2006)
- tilt (Brown & Ahlers, Phys. Fluids 20, 2008)

* container geometry

- oscillations correspond to advected traveling waves with restoring
force from the side wall (Brown & Ahlers, J. Fluid Mech. 638, 2009)

- same potential as for container geometry

 Rayleigh number dependence (Brown & Ahlers, Phys. Fluids 18,
2008)




