A dynamical model of the largescale circulation in turbulent Rayleigh-Benard convection

> Eric Brown University of Chicago James Franck Institute

Guenter Ahlers University of California, Santa Barbara Department of Physics and iQCD

Work supported by NSF DMR-0243336

Large-Scale Circulations (LSCs) in nature

THERMOHALINE CIRCULATION - GREAT OCEAN CURRENT

Turbulent Rayleigh-Benard convection in aspect ratio 1 cylinders

Observed LSC dynamics:

- meandering
- cessations
- preferred orientation, net rotation
- twisting and sloshing oscillations

Low-dimensional model:

 dynamics described by a pair of physically motivated, stochastic ordinary differential equations.

Prandtl number $\sigma = 4.4$ (water) Rayleigh number $R = 1.1 \times 10^{10}$

Meandering of the LSC orientation

Orientation fluctuations are diffusive

 $d\theta_0$ = orientation change over a time interval dt.

Cessations

circulation period: 49 s

LSC forgets orientation during cessations

No preference for reversals ($|\Delta \theta| = 0.5$)

Brown & Ahlers, J. Fluid Mech. 568 (2006)

Model of the LSC dynamics

•Order-of-magnitude stochastic model •Based on Navier-Stokes equations •Empirical observation of LSC structure allows volume averages to turn PDEs into ODEs •only 2 variables required -- θ_0 and δ .

Brown & Ahlers, Phys. Fluids 20 (2008)

Langevin equation for LSC strength

Navier-Stokes: (buoyancy) (drag) $\dot{u}_{\phi} = g\alpha(T - T_0) + \nu \nabla^2 u_{\phi}$ volume average: $\frac{2\dot{U}}{3} = \frac{2g\alpha\delta}{3\pi} - \frac{12\nu^{1/2}U^{3/2}}{L^{3/2}} \longleftarrow \langle \nabla^2 u_{\phi} \rangle = \frac{U}{\lambda^2} \frac{6\lambda}{L} = \frac{12UR_e^{1/2}}{L^2}$

Assume $\delta \propto U$: (both characterize LSC strength)

U = max. velocity Boundary layer width:

$$\begin{split} \dot{\delta} &= \frac{\delta}{\tau_{\delta}} - \frac{\delta^{3/2}}{\tau_{\delta}\sqrt{\delta_0}} + f_{\delta}(t) \\ \dot{f} & \uparrow \\ \text{(buoyancy) (drag)} & \text{(turbulent fluctuations)} \\ \text{stable amplitude:} \quad \delta_0 &= \frac{18\pi\Delta T\sigma R_e^{3/2}}{R} \\ \text{damping timescale:} \quad \tau_{\delta} &= \frac{L^2}{18\nu R_e^{1/2}} \sim 47 \text{ s} \end{split}$$

Diffusion in a potential well

$$\dot{\delta} = \frac{\delta}{\frac{\tau_{\delta}}{\tau_{\delta}} - \frac{\delta^{3/2}}{\tau_{\delta}\sqrt{\delta_0}}} + f_{\delta}(t)$$
$$\dot{\dot{\delta}_d}$$

fixed points
$$(\dot{\delta} = 0)$$

 $\delta = 0$: unstable
 $\delta = \delta_0$: stable

cessations:

diffusion over potential barrier (Arrhenius-Kramers) frequency $\omega_c = (2\pi\tau_{\delta})^{-1} \exp(-2\Delta V/D_{\delta})$ predicted: 0.5 per day measured: 1.5 per day

Orientational memory loss due to lack of rotational inertia during cessations

$$\ddot{\theta}_{0} = -\frac{\dot{\theta}_{0}\delta}{\tau_{\dot{\theta}}\delta_{0}} + f_{\dot{\theta}}(t)$$

$$\uparrow$$
(rotational inertia)

During cessations: small δ
⇒ no rotational inertia
⇒ no damping of diffusion
⇒ orientational memory loss

Asymmetric forcing described with additional terms Example: Earth's Coriolis force

Net Rotation

total running time: 258 days net rate: 0.30 +/- 0.08 rev./day

Preferred Orientation

Brown & Ahlers, Phys. Fluids 18 (2006)

Asymmetric forcing described with additional terms: Azimuthal potential due to Coriolis force

Oscillation modes

Funfschilling & Ahlers, Phys. Rev. Lett. 92 (2004)

Xi, Zhou, Zhou, Chan & Xia, J. Fluid Mech. 630 (2009)

equivalently: traveling waves of hot(upward) and cold(downward) fluid on opposite sides of the container

What is responsible for the restoring force?

Slosh displacement: Pressure forcing from side wall

Potential V_g a function of LSC diameter

Oscillations around potential minimum

Potential V_g a function of LSC diameter

Observed oscillations: dominant n=2 mode traveling wave solutions: $\alpha'_h = A \exp(ink_0 z - in\omega_\phi t)$

Brown & Ahlers, J. Fluid Mech. 638 (2009)

What about different container geometries? Same diameter function $D(\theta_0)$ describes pressure forcing from side wall

$$V_g \equiv -\int \ddot{\theta}_g d\theta = \frac{\omega_{\phi}^2 L^2}{2D(\theta_0)^2}$$

Experiment with adjustable aspect ratio cross section

H. Song, P.Tong, Hong Kong University of Science & Technology

dynamics: preferred orientation at corners oscillations around corners switching between corners

oscillations around potential minima at corners

correction due to width of LSC: average potential over finite range (smooths potential near corners)

data from H. Song, P. Tong, HKUST

Conclusions

A pair of stochastic ordinary differential equations can describe the dynamics of the LSC for aspect ratio 1 cylinders:

- diffusive meandering
- cessations:
 - correspond to driving of system from stable to unstable fixed point by fluctuations
 - orientational memory loss is due to loss of rotational inertia
- Asymmetric forcings can be accounted for by adding terms to potentials:
 - Coriolis force (Brown & Ahlers, Phys. Fluids 18, 2006)
 - non-uniform heating (Brown & Ahlers, Phys. Fluids 18, 2006)
 - tilt (Brown & Ahlers, Phys. Fluids 20, 2008)
 - container geometry
- oscillations correspond to advected traveling waves with restoring force from the side wall (Brown & Ahlers, J. Fluid Mech. 638, 2009)
 - same potential as for container geometry
- Rayleigh number dependence (Brown & Ahlers, Phys. Fluids 18, 2008)