Falling clouds of particles

Élisabeth Guazzelli

IUSTI - CNRS - Aix-Marseille Université elisabeth.guazzelli@polytech.univ-mrs.fr

Élisabeth Guazzelli Falling clouds of particles ▲日 → ▲圖 → ▲目 → ▲目 → ▲目 →

A cloud of spheres

A cloud of fibers

Beyond Stokes

Dispersion of Sphagnum Moss Spores Whitaker & Edwards Science 2010

Bioconvection Jánosi, Kessler & Horváth PRE 1998

Elisabeth Guazzelli Falling clouds of particles

"Specifically, we consider the motion under gravity of particles within a blob (a convenient term for a finite volume of a dispersion of particles in liquid) comprising a large number N of particles initially distributed randomly in liquid with uniform mean concentration within a prescribed closed surface, and inquire as to its subsequent time evolution. The particles will tend to spread out from each other, and questions of interest are therefore: do particles leave the blob, and if so how, and what is the lifetime of the blob as a cohesive entity?"

Nitsche and Batchelor JFM 1997

→

- 1 A cloud of spheres at low Reynolds number
 - Stability of the cloud
 - Influence of initial shape
 - Particle leakage
 - Breakup
- 2 And also a cloud of fibers
- Beyond Stokes flow: A cloud at finite Reynolds number
 - Scalings and dimensionless numbers
 - Regimes of macro-scale and micro-scale inertia
 - Instability and breakup

4 Conclusions

A cloud of spheres		

- 1 A cloud of spheres at low Reynolds number
 - Stability of the cloud
 - Influence of initial shape
 - Particle leakage
 - Breakup
- 2 And also a cloud of fibers
- 3 Beyond Stokes flow: A cloud at finite Reynolds number
 - Scalings and dimensionless numbers
 - Regimes of macro-scale and micro-scale inertia
 - Instability and breakup

Conclusions

Beyond Stokes

Sedimentation of a single sphere

Stokes velocity:

$$\mathbf{U}_{\mathbf{S}} = 2(\rho_p - \rho_f)a^2\mathbf{g}/9\mu$$

$$\mathbf{u} = \left(\frac{\mathbf{I}}{r} + \frac{\mathbf{x}\mathbf{x}}{r^3}\right) \cdot \frac{\mathbf{F}^{\mathbf{e}}}{8\pi\mu} + \left(\frac{\mathbf{I}}{3r^3} - \frac{\mathbf{x}\mathbf{x}}{r^5}\right) \cdot \frac{a^2\mathbf{F}^{\mathbf{e}}}{8\pi\mu}$$

Long-range interactions: $u \sim O(\frac{aU_s}{r})$

IUSTI – CNRS – Aix-Marseille Université

Elisabeth Guazzelli

Falling clouds of particles

A cloud of spheres		
Stability of the cloud		

Spherical cloud of spheres

$$N\frac{4}{3}\pi a^3(\rho_p-\rho)\mathbf{g}$$

• Drag force (Hadamard, Rybczyński 1911)

$$\mathsf{F}^{\mathsf{h}} = -2\pi\murac{2+3rac{\mu_s}{\mu}}{rac{\mu_s}{\mu}+1}R\,\mathbf{V}$$

Settling velocity

$$= \frac{N\frac{4}{3}\pi a^{3}(\rho_{p}-\rho)\mathbf{g}}{2\pi\mu\frac{2+3\frac{\mu_{s}}{\mu}}{\mu+1}R}$$
$$\approx \frac{N\frac{4}{3}\pi a^{3}(\rho_{p}-\rho)\mathbf{g}}{5\pi\mu R}$$

Continuous spherical distribution of excess mass and a solution

Elisabeth Guazzelli

Falling clouds of particles

Flow field inside a falling drop

from Batchelor 1970

Falling clouds of particles

3

イロト イヨト イヨト イ

A cloud of spheres

Stability of the cloud

A cloud of fibers

Beyond Stokes

Conclusions

Toroidal circulation

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 - のへの

USTI – CNRS – Aix-Marseille Université

Elisabeth Guazzelli Falling clouds of particles

Stability of the cloud?

- "A spherical blob shape is especially well suited to a study of random particle migration across interface because the gravity-driven flow maintains essentially constant form" (Nitsche & Batchelor JFM 1997).
- "An initially spherical blob does not substantially change its shape when falling" (Machu, Meile, Nitsche & Schaflinger JFM 2000).
- "In the case of low Reynolds numbers, the suspension drop retains a roughly spherical shape while settling" (Bosse, Kleiser, Härtel & Meiburg PoF 2005).

A cloud of spheres

A cloud of fibers

Beyond Stokes

Experiment

But the cloud is unstable! Simulation

Metzger, Nicolas & Guazzelli JFM 2007

Élisabeth Guazzelli

Falling clouds of particles

A cloud of spheres		
000000000000000000000000000000000000000	0000000000	
Stability of the cloud		

Point-force model: The Stokeslet

• Minimal description: ONLY far-field and strictly Re = 0

$$\dot{\mathbf{r}}_{i} = \mathbf{U}_{\mathbf{S}} + \frac{\mathbf{F}^{\mathbf{e}}}{8\pi\mu} \cdot \sum_{j\neq i} \left(\frac{\mathbf{I}}{|\mathbf{r}_{\mathbf{ij}}^{*}|} + \frac{\mathbf{r}_{\mathbf{ij}}\mathbf{r}_{\mathbf{ij}}}{|\mathbf{r}_{\mathbf{ij}}^{*}|^{3}} \right)$$

with $\mathbf{r}_{ij} \equiv \mathbf{r}_i - \mathbf{r}_j$

• Dimensionless equations (length-scale = R_0 and velocity-scale = $V_0 = \frac{N_0 F}{5\pi\mu R_0}$ of the initially spherical cloud)

$$\dot{\mathbf{r}^*}_i = \frac{5R_0}{6N_0a} \cdot \mathbf{e}_g + \frac{5}{8N_0} \sum_{j \neq i} \left(\frac{\mathbf{I}}{|\mathbf{r}^*_{ij}|} + \frac{\mathbf{r}_{ij}\mathbf{r}_{ij}}{|\mathbf{r}^*_{ij}|^3} \right) \cdot \mathbf{e}_g$$

Ekiel-Jeżewska, Metzger & Guazzelli PoF 2006 Metzger, Nicolas & Guazzelli JFM 2007

A cloud of spheres		
Stability of the cloud		

Evolution of the cloud

t*=1

Élisabeth Guazzelli Falling clouds of particles

A cloud of spheres		
000000000000000000000000000000000000000	0000000000	
Stability of the cloud		

Break-up probability and time

Sole dependance on N_0

Elisabeth Guazzelli

Falling clouds of particles

Beyond Stokes

A cloud of spheres

Successive numerical-cloud profiles

Positions of the point particles integrated over the azimuthal angle

lisabeth Guazzelli

▲ 同 ▶ → 三 ▶

Beyond Stokes

Successive experimental-cloud profiles

IUSTI – CNRS – Aix-Marseille Université

Élisabeth Guazzelli

Falling clouds of particles

A cloud of spheres		
000000000000000000000000000000000000000		
Influence of initial shape		

Evolution of the horizontal-to-vertical aspect ratio γ

Larger horizontal expansion of the cloud in the experiments Excluded volume effects not accounted for in the model

IUSTI – CNRS – Aix-Marseille Université

Elisabeth Guazzelli

Falling clouds of particles

Particle leakage

Mechanism leading to particle leakage from the cloud

Departure from the closed toroidal circulation due to local unsteadiness of the velocity of the particles **E** + **E** - **O**

Élisabeth Guazzelli

Falling clouds of particles

Rate of particle leakage from Nitsche & Batchelor

- Relevant unit of length: mean particle spacing $d = R \left(\frac{4\pi}{3N}\right)^{1/3}$
- Rate-determining factor: velocity of fall of a cloud V
- Rate of particle leakage:

$$-rac{dN}{dt} \propto rac{V}{d}$$

• Linear increase in time:

$$\frac{N_0-N}{N_0^{1/3}}\propto \frac{tV_0}{R_0}$$

for point particle simulations having a small number of particles, $20 \le N_0 \le 320$, over a typical time interval $0 \le t^* = \frac{tV_0}{R_0} \le 120$ (Nitsche & Batchelor JFM 1997)

→ < 3 →

A cloud of spheres		
000000000000000000000000000000000000000		

Particle leakage

Experiments versus simulations

Elisabeth Guazzelli

Falling clouds of particles

A cloud of spheres

Numerical scaling

Falling clouds of particles

A cloud of spheres

A cloud of fibers

Beyond Stokes

Conclusions

Instability and breakup

Elisabeth Guazzelli Falling clouds of particles

A cloud of spheres		
000000000000000000000000000000000000000		
Breakup		

Physical insight using a cloud having a torus shape

in the cloud reference frame

- For $\gamma \ge \gamma_c = 1.64 \pm 0.05$, the streamlines pass through the hole in the centre of the torus
- Break-up = change in flow configuration created by the point particles when γ reaches γ_c

Criterion for destabilisation

A cloud of spheres

Breakup

- In point-particle simulations for different $N_0 = 1500$ and 3000, break-up at $\gamma_c \approx 1.64$
- In experiments for $N_0 \approx 1500~(\phi = 20 \pm 3\%)$, break-up occurs for a larger $\gamma_c \approx 2.4$

A cloud of fibers	

- A cloud of spheres at low Reynolds number
 - Stability of the cloud
 - Influence of initial shape
 - Particle leakage
 - Breakup

2 And also a cloud of fibers

3 Beyond Stokes flow: A cloud at finite Reynolds number

- Scalings and dimensionless numbers
- Regimes of macro-scale and micro-scale inertia
- Instability and breakup

4 Conclusions

- 4 ∃ →

Faster evolution!

Falling clouds of particles

3

・ 回 ト ・ ヨ ト

A cloud of fibers		
	0000000000	

Minimal description: The "fiblet"

• Dimensionless equation for translational velocity

$$\dot{\mathbf{r}}_{\alpha}^{*} = \frac{5c}{8N_{0}} \left(\mathbf{I} + \mathbf{p}_{\alpha} \mathbf{p}_{\alpha} \right) \cdot \mathbf{e}_{\mathbf{g}} + \frac{5}{8N_{0}} \sum_{\beta \neq \alpha}^{N_{0}} \left(\frac{\mathbf{I}}{|\mathbf{r}^{*}|} + \frac{\mathbf{r}^{*} \mathbf{r}^{*}}{|\mathbf{r}^{*}|^{3}} \right) \cdot \mathbf{e}_{\mathbf{g}}$$

with $c = 2R_0 \ln(2A)/I$ and aspect ratio A = I/d

Dimensionless equation for rotational velocity

$$\dot{\mathbf{p}}_{\alpha}^{*} = \frac{5}{8N_{0}} \left(\mathbf{I} - \mathbf{p}_{\alpha} \mathbf{p}_{\alpha} \right) \cdot \sum_{\beta \neq \alpha}^{N_{0}} \left[\frac{\left(\mathbf{r}^{*} \cdot \mathbf{p}_{\alpha} \right) \mathbf{I} - \mathbf{p}_{\alpha} \mathbf{r}^{*} - \mathbf{r}^{*} \mathbf{p}_{\alpha}}{|\mathbf{r}^{*}|^{3}} + \frac{3 \left(\mathbf{r}^{*} \cdot \mathbf{p}_{\alpha} \right) \mathbf{r}^{*} \mathbf{r}^{*}}{|\mathbf{r}^{*}|^{5}} \right] \cdot \mathbf{e}_{g}$$

Self-term prevails over hydrodynamic interactions between the particles as c becomes large relative to N_0

A (10) < A (10) </p>

Beyond Stokes

Evolution of the fiblet cloud

0 t*

▲ロト ▲圖 ト ▲目 ト ▲目 ト ● ○ ○ ○ ○

IUSTI – CNRS – Aix-Marseille Université

Élisabeth Guazzelli

Falling clouds of particles

Break-up time

Sole dependance on c/N_0 (self motion of the anisotropic particles) Park, Metzger, Guazzelli & Butler JFM 2010

IUSTI - CNRS - Aix-Marseille Université

Falling clouds of particles

Beyond Stokes

Influence of the self-term on the rate of growth

Faster expansion and accelerated breakup for c = 10 (left) than for no self term c = 0 (right)

IUSTI – CNRS – Aix-Marseille Univer

Elisabeth Guazzeili

A cloud of fibers	Beyond Stokes	Conclusions

- A cloud of spheres at low Reynolds numb
 - Stability of the cloud
 - Influence of initial shape
 - Particle leakage
 - Breakup
- 2 And also a cloud of fibers
- 3 Beyond Stokes flow: A cloud at finite Reynolds number
 - Scalings and dimensionless numbers
 - Regimes of macro-scale and micro-scale inertia
 - Instability and breakup

4 Conclusions

- 4 ∃ →

Oseen solution

Loss of fore-aft symmetry above inertial screening length

$$\ell = a/Re = \nu/U_0$$

Oseen 1910

Falling clouds of particles

3

イロト イヨト イヨト イ

Dimensional analysis

- Seven independent physical quantities:
 - Viscosity μ and density ρ_f of the fluid
 - Radius a and density ρ_p of the particles
 - Radius R_0 and number of particles N_0 of the cloud
 - Gravitational acceleration g
- Underlying consideration: long range interactions dominant short range interactions neglected (no dependance on a/R_0)

• Appropriate dimensionless numbers:

- N_0 or $\phi = N_0 (a/R_0)^3$
- Dimensionless inertial length ℓ^{*} = ℓ/R₀ = (a/R₀)/Re_p or particle Reynolds number Re_p = U₀aρ_f/μ = (a/R₀)/ℓ^{*}
- Cloud Reynolds number $Re_c = V_0 R_0 \rho_f / \mu$
- Stokes number $St=rac{2}{9}(
 ho_p/
 ho_f)Re_p\ll 1$

A = A + A = A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

A cloud of fibers

Beyond Stokes

Scalings and dimensionless numbers

Regimes of evolution for a sedimenting cloud

inspired by Subramanian & Koch JFM 2008

Élisabeth Guazzelli

Falling clouds of particles

A cloud of spheres

A cloud of fibers

Beyond Stokes

Conclusions

Regimes of macro-scale and micro-scale inertia

Macro-scale inertia

Navier-Stokes equations solved in Fourier space – Lagrangian point-particle tracking – two-way coupling (Bosse, Kleiser, Härtel & Meiburg PoF 2005) + Experiments in 'Macro-scale inertia' regime

Élisabeth Guazzelli

Falling clouds of particles

A cloud of fibers

Beyond Stokes

Regimes of macro-scale and micro-scale inertia

Macro-scale inertia: Simulations

Thorsten Bosse, IFD, ETH Zurich; Suspension Drop at Re, = 1; Time t = 0.000

Bosse, Kleiser, Härtel & Meiburg PoF 2005

Élisabeth Guazzelli

Falling clouds of particles

IUSTI – CNRS – Aix-Marseille Université

Image: A match a ma

A cloud of fibers

Beyond Stokes

Regimes of macro-scale and micro-scale inertia

Macro-scale inertia: Experiments

Elisabeth Gua<u>zzelli</u>

Falling clouds of particles

IUSTI – CNRS – Aix-Marseille Université

Image: A match a ma

Beyond Stokes 00000000000

Micro-scale inertia

Oseenlet simulations + Experiments in 'Micro-scale inertia' regime

3

・ロト ・回ト ・ヨト ・

Falling clouds of particles

	Beyond Stokes ○○○○○○●○○○○	
Regimes of macro-scale and micro-sc		

Oseenlet simulations

• Steady Oseen equations still linear (but no longer reversible)

$$\dot{r}_{i}^{\alpha} = U_{0}\delta_{i3} + \frac{F}{8\pi\mu}\sum_{\alpha\neq\beta}\left\{\frac{r_{i}}{r^{2}}\left[\frac{2\ell}{r}(1-E) - E\right] + \frac{E}{r}\delta_{i3}\right\}$$

with
$$r_i \equiv r_i^{lpha} - r_i^{eta}$$
, $E = \exp(-(1 + x_3/r)r/2\ell)$, gravity $i = 3$

• Dimensionless equations (length-scale = R_0 and velocity-scale = $V_0 = \frac{N_0 F}{5\pi\mu R_0}$ of the initially spherical cloud)

$$\dot{r^{*}}_{i}^{\alpha} = \frac{5}{8N_{0}} \sum_{\alpha \neq \beta} \left\{ \frac{r_{i}^{*}}{r^{*2}} \left[\frac{2\ell^{*}}{r^{*}} (1 - E) - E \right] + \frac{E}{r^{*}} \delta_{i3} \right\}$$

inspired by Subramanian & Koch JFM 2008

Elisabeth Guazzelli Falling clouds of particles

Beyond Stokes

Regimes of macro-scale and micro-scale inertia

Micro-scale inertia: Simulations

Oseenlet simulations with $N_0=2000$ and $\ell^*=1$

Elisabeth Guazzelli Falling clouds of particles IUSTI – CNRS – Aix-Marseille Université

A cloud of fibers

Beyond Stokes

Regimes of macro-scale and micro-scale inertia

Micro-scale inertia: Experiments

 $\textit{Re}_{c}=$ 15, $\textit{N}_{0}=$ 600 and $\ell^{*}=$ 0.65 ($\textit{Re}_{p}=$ 0.14, $\textit{R}_{0}\textit{/}a=$ 11, $\phi\approx$ 50%, and St= 0.077) Pignatel, Nicolas, Guazzelli JFM 2011

Elisabeth Guazzelli

Falling clouds of particles

IUSTI – CNRS – Aix-Marseille Université

A cloud of spheres

Break-up time

Two clear regimes of macro and micro-inertia!

Elisabeth Guazzelli

Falling clouds of particles

ILISTI CNRS Aix Marcaille Université

Beyond Stokes

Instability and breakup

Mechanisms for torus transition and breakup

 N_0 = 2000 and ℓ^* = 1 (left) and ℓ^* = 20 (right)

- Evolution toward a torus shape due to fluid inflow instead of particle depletion in Stokes regime
- Breakup at larger aspect ratio than in Stokes regime because front incoming-flow has to overcome the rear incoming-flow

			Conclusions
 A cloud of Stability Influence Particle Breakup 	spheres at low Reynol of the cloud of initial shape leakage	ds number	
2 And also a	cloud of fibers		

- 3 Beyond Stokes flow: A cloud at finite Reynolds number
 - Scalings and dimensionless numbers
 - Regimes of macro-scale and micro-scale inertia
 - Instability and breakup

4 Conclusions

→

Conclusions

- Multi-body hydrodynamic interactions + coupling between hydrodynamics and the micro-arrangement of the particles → collective dynamics
- While the suspension may be modeled as an effective medium of excess mass, the discrete nature of the suspension is a fundamental ingredient in understanding the observed phenomena
- Different regimes (Stokes, inertia, ...)
- Success of point-particle approach (even though excluded volume effects not accounted for)

▲ @ ▶ ▲ ∃ ▶ ▲

Collaborations

- B. Metzger & F. Pignatel (IUSTI Marseille)
- M. Nicolas (IUSTI Marseille)
- M. L. Ekiel-Jeżewska (IPPT-PAN Warsaw)
- J. E. Butler & J. Park (University of Florida)

▲ @ ▶ < ∃ ▶</p>