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(I)   Non-linearity

(II) Non-infinity   

finiteness of Re & L/h

(III) Non-locality

in the energy transfer

(IV) Non-equilibrium

Some Non’s in the Nature of Turbulence

This talk may present another Non?



(I) Non-Linearity

K. Morishita &K.Moffatt
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(Kraichnan & Panda P1988; Chen et al.1989; She et al.1991; Tsinober 2009)

(Orszag,1977) 
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Ishihara et al.(Ann.Rev.F.M,2009)



Conclusion of (I)

 a Hypothesis
The nature of turbulence dislikes 

too high local Reynolds number, i.e.,

too much unbalance between nonlinear vs. viscous terms.

and NS dynamics works against such a state, so that

strong-small-eddy structures are so organized 

to suppress Rloc, by e.g., instability ?



(II) Non-Infinity

non-stationarity,

non-isotropy



Kraichnan (1991)

The Kolmogorov theories have profoundly shaped and 

Illuminated thinking about turbulence.  

But, in one respect, this influence has been unfortunate: 

relatively little attention has been developed to the 

prediction of turbulence statistics at finite Reynolds number. 

…..

Moreover it is likely that the question of intermittency

corrections to K41 can be resolved only when detailed 

understanding of the dynamics at finite Reynolds number 

has been achieved.

….



Batchelor(1961)

The theory is an asymptotic one, and its 

predictions hold with increasing accuracy (if the 

theory is correct) as R∞, but no theoretical 

estimate has been made of the actual value of R

needed for a given degree of accuracy.

Lecture by Antonia(2007)



Question:

Where is the inertial subrange ?

Where is the range,                       ?

How large                     need be ?
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Viscosity,                   Non-Stationarity,             Forcing, 

Anisotropy

Karman Howarth Eq.

Let’s check by DNS data …



4/5 Law

Theory a la K41
(neglecting intermittency)

YK,Yoshino, Ishihara(JPSJ,2008)
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Where is the IR ?

Wave number space

E(k) and energy flux P(k)

Real space

2nd and 3rd order moments 

k-5/3 law

r2/3 law

Theory a la K41 Ishihara et al.(Ann.Rev.F.M,2009)
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Limdborg,1999;Qian,1999;Lundgren,2003; 

Davidson 2004, Kaneda et al.,2008



present

Gotoh et. al 2002

Fukayama et.al 2000

・

・ Orlandi & Antonia 2002

Moisy et. al 1999

Gagne et. al 2004

Zhou & Antonia 2000

Mydlarski & Warhaft 1996

・

・

・ van de Water & Herweijer 1999

Model by Antonia & Burattini 2005

Forced
Decaying

1000

theory

YK,Yoshino, Ishihara, JPSJ(2008)

R =   1,000 (forced)

50,000(decaying)



   on  effects Forcing & Viscous 

Where is IR ? Range satisfying

Example:

Decaying turbulence

Forced turbulence

Wavenumber space for both decaying and forced



Non-Stationarity

YK,Yoshino, Ishihara, JPSJ(2008)



Non-isotropy

YK,Yoshino, Ishihara, JPSJ(2008)



Conclusion of II)

 a Lesson
There several “Non”s  which affect/contaminate/pollute   

“inertial range” statistics, such as scaling, intermittency corrections.

Their influence, which vanishes at infinite Re,

should not be confused with

genuine intermittency effects which remain finite at infinite Re



(III) Non-Locality

in Energy Transfer (in scale-space)



Statistics of Energy Transfer

Pimeori, et al. PF(1990),
Pimeori, et al. PF(1991)
Domaradki, et al. PF(1993)
Cerutti & Meneeveau, PF(1998)
Chen et al.PRL(2003)

Energy transfer from Grid to Sub-Grid scales:

Spectral cut-off filter at kc
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Triad Interaction

NS equation 

second order nonlinearity

in the wave vector space

uu   S u(p)u(q)     k=p+q  

Triad Interaction

not

k   k’  k”  ….

k
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q
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Local vs Non-Local 
Interactions

a >>1 a ~1

Distant/Non-Local Interaction Local Interaction

Let u = U + u’, and U  Large scale (q) ,  u’  small scale (k)

then  u u = U U + U u’ + u’ U + u’u’

If distant interaction is dominant   Uu’ + u’U >> u’u’,  (RDT like)

If local interaction is dominant      u’u’ >> Uu’ + u’U

Dynamics:
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Aoyama et al. (2005)

function of k and x



PDF of  T （& ）

Aoyama et al. (2005)



Interfaces  -- Within turbulence
DNS

energy dissipation rate enstrophy

Ishihara etaｌ. (Ann. Rev. Fluid Mech, 2009)



Conclusion of (III)

 a Question
The average of the energy transfer P(k)=<T(k,x)>

is dominated by local interaction.

But this does not imply that large deviation statistics (high order 
moments) of T(k,x) is also dominated local interaction.

?? Nonlocal interaction may be important??



(IV) Non-Equilibrium



Statistical Mechanics 

for Systems at or near Thermal Equilibrium

Linear Response Theory (Nakano-Kubo)

Suppose that an external force X is applied to a thermal equilibrium 

system with the equilibrium density distribution re, then



J   =   CX

Generalized Flux    vs.     Generalized Force

e.g.

Density Flux        vs.      Density gradient ； J = C grad r

Heat     Flux         vs.    Temperature gradient ； J = C grad T

Electric Current   vs.     External electric field ;  J = s E = s grad  ,         

(I=E/R, Ohm’s law)                    

---

Momentum Flux   vs.    Strain rate                          ; 

(Newton’s law)



Universality in Response 

to disturbances, near equilibrium state

1905,  Einstein,  D=mkT,
the first example of FD-elation Perrin’s experiment.

1928, Nyquist’s theorem on thermal noise:

P(f)=4kT  Re(Z(f))

1931, Onsager’s reciprocal theorem:
J   =   C X,        C=TC

generalized flux,     generalized force

1950-60,  Nakano, Kubo  Linear Response Theory

Two kinds of universality in

not only     a) Equilibrium state itself,     like Boyle-Charles’ law

but also     b) Response to disturbance



Thermal Equilibrium system

Linear response

Equilibrium state

Disturbance

X

grad φ

grad T

grad c

F=CX (Hooke’s law)

J = C’ grad φ= σE (Ohm’s law)

J = C’’ grad T (Fourier’s law)

J = C’’’ grad c (Fick’s law)



Equilibrium state

?

disturbance

response

Turbulence ?



energy spectrum

Tsuji (FDR, 2009)

Supports for “Universality” -2



Equilibrium state

a la Kolmogorov 

K41

disturbance

response



Local co-ordinate

NS-equation

Mean Shear

cf. Kaneda & Yoshida (New J. Phys., 2004)



Anisotropic part

0
( ) ( ) ( )ij ij ijQ Q C Sa a k k k<ui(k)uj(-k)> =

at small scale of turbulent shear flow

equilibrium spectrum

(Stress-Strain rate relation for

Newtonian Fluid)



Anisotropic part
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Only 2 (universal) parameters, A and B

Is this correct?  
What are the values of A and B?

0
( ) ( ) ( )ij ij ijQ Q C Sa a k k k<ui(k)uj(-k)> =

at small scale of turbulent shear flow

isotropic quasi-equilibrium spectrum

response

By K41



Anisotropic Energy spectrum in 

homogeneous turbulent shear flow

-- Comparison with DNS
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Theoretical predictions:

where

Ishihara, Yoshida & Kaneda (2002)

Also B.L. experiments by Tsuji



Comparison with 
experiments
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Stratified turbulence:

Boussinesq approximation

Buoyancy by Stratification

(Yoshida & YK, New J. Phys.2004)



MHD turbulence;

Quasi-Static approximation

quasi-static approximation

＋O(b2)

Magnetic force

(Ishida & YK, Phys. Fluids, 2007)



Equilibrium state

Disturbance; X

Response: J

Mean shear

Stratification

MHD

Jij=  Qij= Cijkm Xkm

Universal  at high Re,

Independent of X  



Conclusion of (IV)

 a Conjecture
Although we don’t know how to accurately specify the “equilibrium” 
state of turbulence, we may apply an idea similar to the linear 
response theory.

There may be a certain kind of universality 

not only in the equilibrium state itself ,

but also in the response to disturbance added to the equilibrium state.



Thank you for your attention

Welcome your comments & questions

THE  END


